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Σs-products revisited

Reynaldo Rojas-Hernández

Abstract. We show that any Σs-product of at most c-many LΣ(≤ ω)-spaces has
the LΣ(≤ ω)-property. This result generalizes some known results about LΣ(≤
ω)-spaces. On the other hand, we prove that every Σs-product of monotonically
monolithic spaces is monotonically monolithic, and in a similar form, we show
that every Σs-product of Collins-Roscoe spaces has the Collins-Roscoe property.
These results generalize some known results about the Collins-Roscoe spaces and
answer some questions due to Tkachuk [Lifting the Collins-Roscoe property by

condensations, Topology Proc. 42 (2012), 1–15]. Besides, we prove that if X is
a simple Lindelöf Σ-space, then Cp(X) has the Collins-Roscoe property.

Keywords: Σs-product; Lindelöf Σ-space; LΣ(≤ ω)-space; monotonically mono-
lithic space; Collins-Roscoe space; function space; simple space

Classification: Primary 54C35, 54B10, 54D99

1. Introduction

Lindelöf Σ-property is important in topology, functional analysis and descrip-
tive set theory. One of many equivalent definitions says that X is a Lindelöf
Σ-space if and only if there exists a second countable space M and an upper
semicontinuous compact-valued onto map ϕ : M → X .

Given a class K of compact spaces, Kubís, Okunev and Szeptycki introduced
and studied in [7] the class LΣ(K) of spaces X for which there exists a second
countable space M and an upper semicontinuous onto map ϕ : M → X such that
ϕ(x) belongs to the class K for any x ∈ M . If K consists of compact spaces of
weight at most ω then the class LΣ(K) is denoted in [7] by LΣ(≤ ω). Compact
spaces from the class LΣ(≤ ω) were studied (under a different name) by Tkachuk
in [12] and Tkachenko in [11].

A compact space X is a Gul’ko compact space if Cp(X) is a Lindelöf Σ-space.
Molina-Lara and Okunev proved in [8] that every Gul’ko compact space of cardi-
nality at most c is an LΣ(≤ ω)-space. Tkachuk proved in [17] that, for any space
X for which Cp(X) has the Lindelöf Σ-property, Cp(X) is an LΣ(≤ ω)-space if
and only if |X | ≤ c.

The concept of Σs-product was introduced in [10] by Sokolov who proved that
a compact space X is a Gul’ko compact space if and only if X embeds into a
Σs-product of real lines. We establish that if K is a class of compact spaces
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closed with respect to finite unions, closed subspaces and countable products,
then any Σs-product of at most c-many LΣ(K)-spaces has the LΣ(K)-property. In
particular, any Σs-product of at most c-many LΣ(≤ ω)-spaces has the LΣ(≤ ω)-
property. We use this statement to give another proof of the mentioned theorems
on LΣ(≤ ω)-spaces.

The above results show that Σs-products are useful in the study of the Lindelöf
Σ-property in general and in function spaces (see also [15] and [14]). We also
will use Σs-products to study monotone monolithicity and the Collins-Roscoe-
property.

Tkachuk introduced in [16] the concept of a monotonically monolithic space.
Collins-Roscoe spaces where studied in [3] by Collins and Roscoe (under a different
name). Gruenhage proved in [5] that every Collins-Roscoe space is monotonically
monolithic. Tkachuk gave in [18] an example of a monotonically monolithic space
which does not have the Collins-Roscoe property.

Gruenhage established in the paper [5] that every Gul’ko compact space X
has the Collins-Roscoe property. Also, Tkachuk proved in [18] that, if X is a
Lindelöf Σ-space which can be condensed into some Σs-product of real lines, then
the space X has the Collins-Roscoe property. It was proved in [15] that every Σs-
product of second countable spaces has the Collins-Roscoe property. In the same
paper Tkachuk posed the following question: is it true that every Σs-product
of Collins-Roscoe spaces has the Collins-Roscoe property? We give a positive
answer to this question and use this result to give a different proof of the above
results about the Collins-Roscoe property. We also prove that any Σs-product of
monotonically monolithic spaces is a monotonically monolithic space, answering
another question in [15].

Besides, answering a question in [8], Tkachuk proved in [17] that if X is a
simple Lindelöf Σ-space and |X | ≤ c, then Cp(X) is a Lindelöf Σ-space. He also
asked whether the condition |X | ≤ c can be omitted in his result. In virtue of
results in [18], if the answer to Tkachuk’s question is positive, then Cp(X) must
have the Collins-Roscoe property when X is a simple Lindelöf Σ-space. We do
not know if the answer to Tkachuk’s question is positive, but in the last part of
this paper, we show that Cp(X) has the Collins-Roscoe property when X is a
simple Lindelöf Σ-space.

2. Terminology and notation

All spaces in this article are assumed to be Tychonoff. We use terminology and
notation as in [2] and [4]. The symbol ω denotes the set of all natural numbers
(always considered with the discrete topology) and c is the cardinal 2ω.

For a subset A of a topological space X let clX(A) be the closure of A in X . If
there is no possibility of confusion, we will simply write cl(A) instead of clX(A).

We denote by Cp(X) the space of all real-valued continuous functions with the
topology of pointwise convergence; that is, the topology of subspace of the space
R

X of all functions from X to R equipped with the Tychonoff product topology.
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Let C be a cover of a space X . A family N of subsets of X is called a network

with respect to C if for every element C of C and any neighborhood U of C, there
is an element N of N such that C ⊂ N ⊂ U .

If X =
∏

{Xt : t ∈ T } is a topological product, t ∈ T and E ⊂ T , then pt and
pE denote the natural projections onto Xt and

∏

{Xt : t ∈ E}, respectively.
Let X =

∏

{Xt : t ∈ T } be a topological product and suppose that a ∈ X is
fixed. Given any x ∈ X , A ⊂ X and E ⊂ T , let suppa(x) = {t ∈ T : x(t) 6= a(t)},
suppa(x, E) = suppa(x)∩E and suppa(A, E) =

⋃

{suppa(x, E) : x ∈ A}. If there
is no possibility of confusion we simply write supp(x), supp(x, E) and supp(A, E)
instead of suppa(x), suppa(x, E) and suppa(A, E), respectively.

We denote by υX the Hewitt realcompactification of the space X .

3. LΣ(≤ ω)-property in Σs-products

The aim of this section is to show that the class of LΣ(K) is closed under
Σs-products of at most c-many factors, when K has some nice properties. We
give some applications of this result when K is the class of all metrizable compact
spaces.

The following notion was introduced by Sokolov [10].

Definition 3.1. Given a family of spaces {Xt : t ∈ T }, let X =
∏

{Xt : t ∈ T }
and fix a point a ∈ X . Suppose that s = {Tn : n ∈ ω} is a sequence of subsets
of T . Given x ∈ X denote by Ωx the set {n ∈ ω : | supp(x, Tn)| < ω}. The
subspace Z = {x ∈ X : T =

⋃

{Tn : n ∈ Ωx}} of X is called the Σs-product of the

family {Xt : t ∈ T } centered at a.

Remark 3.2. Given a product X =
∏

{Xt : t ∈ T }, a fixed point a in X , and a
sequence s = {Tn : n ∈ ω} of subsets of T , let us observe that:

(a) if x is an element of the Σs-product of the family {Xt : t ∈ T } centered
at a, it follows from T =

⋃

{Tn : n ∈ Ωx} that supp(x) =
⋃

{supp(x, Tn) :
n ∈ Ωx} and hence | supp(x)| ≤ ω;

(b) if s∗ is a sequence of subsets of T with s ⊂ s∗, then the Σs-product of the
family {Xt : t ∈ T } centered at a is contained in the Σs∗ -product of the
family {Xt : t ∈ T } centered at a.

We will use the following characterization of LΣ(K)-spaces [7]: given a class K
of compact spaces, a space X is an LΣ(K)-space if and only if there is a cover C
of X such that C ⊂ K and a countable network N with respect to C.

We are ready to prove the main result of this section.

Theorem 3.3. Let K be a class of compact spaces closed with respect to finite

unions, closed subspaces and countable products. Then any Σs-product of at

most c-many LΣ(K)-spaces is also an LΣ(K)-space.

Proof: Consider a family {Xt : t ∈ T } of LΣ(K)-spaces with |T | ≤ c. Let
X =

∏

{Xt : t ∈ T }, fix a point a ∈ X and consider a sequence s = {Tn : n ∈ ω}
of subsets of T . Denote by Z the Σs-product of the family {Xt : t ∈ T } centered
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at a. We can assume that T ∩ ω = ∅. Given t ∈ T , choose a cover Ct of Xt such
that Ct ⊂ K and a countable network Nt with respect to Ct. We can assume that
Ct and Nt are closed under finite intersections, {a(t)} ∈ Ct∩Nt, and a(t) ∈ Ct∩Nt

for every Ct ∈ Ct and Nt ∈ Nt. Choose an enumeration {Nt,m : m ∈ ω} of Nt.
Pick n ∈ ω. Denote by Yn the σ-product in

∏

{Xt : t ∈ Tn} centered at pTn
(a).

Let Cn be the family of all sets of the form
∏

{Ct : t ∈ Tn} for which Ct ∈ Ct for
t ∈ G and Ct = {a(t)} for t ∈ Tn \ G, where G is a finite subset of Tn. It is clear
that Cn is a cover of Yn and Cn ⊂ K. Since |Tn| ≤ c, we can find a countable family
Bn of subsets of Tn such that for any finite set F ⊂ Tn there exists a pairwise
disjoint family {Bt : t ∈ F} ⊂ Bn such that t ∈ Bt for each t ∈ F . Given a finite
pairwise disjoint family F ⊂ Bn and u : F → ω let NF ,u,n =

∏

{Nt : t ∈ Tn}
where Nt = Nt,u(B) if t ∈ B for some B ∈ F and Nt = {a(t)} if t ∈ Tn \

⋃

F .
Let Nn = {Yn ∩ NF ,u,n : F is a finite pairwise disjoint subfamily of Bn and
u : F → ω}. Let us observe that Nn is a countable family of subsets of Yn.

Claim 1. The family Nn is a network with respect to Cn.

Choose C ∈ Cn and suppose that C ⊂ U ∩ Yn for some open set U in
∏

{Xt :
t ∈ Tn}. Choose a finite set G ⊂ Tn such that C =

∏

{Ct : t ∈ Tn} where
Ct ∈ Ct for t ∈ G and Ct = {a(t)} for t ∈ Tn \ G. By [4, Theorem 3.2.10] we
can find a finite set F ⊂ Tn and open sets Ut in Xt for t ∈ F in such a way that
C ⊂

⋂

{p−1
t (Ut) : t ∈ F} ⊂ U (here pt denotes the projection from

∏

{Xt : t ∈ Tn}
onto Xt). We can assume that G ⊂ F . By the choice of Bn we can find a pairwise
disjoint family F = {Bt : t ∈ F} ⊂ Bn such that t ∈ Bt for each t ∈ F . Given
t ∈ F , since Ct ⊂ Ut, we can find mt ∈ ω such that Ct ⊂ Nt,mt

⊂ Ut. Define a
function u : F → ω by u(Bt) = mt for each Bt ∈ F . Then C ⊂ NF ,u,n ⊂ U and
hence C ⊂ NF ,u,n ∩ Yn ⊂ U ∩ Yn, where NF ,u,n ∩ Yn ∈ Nn. So we have proved
Claim 1.

Now we are ready to show that Z is an LΣ(K)-space. Let A = {A ⊂ ω : T =
⋃

{Tn : n ∈ A}}. Consider the family C of all sets of the form
⋂

{p−1
Tn

(Cn) : n ∈ A}
where Cn ∈ Cn for each n ∈ A and A ∈ A, and the family N of all sets of the
form Z ∩

⋂

{p−1
Tn

(Nn) : n ∈ B} where Nn ∈ Nn for n ∈ B and B is a finite subset
of ω. Observe that N is a countable family of subsets of Z.

Claim 2. C is a family of subsets of Z, C ⊂ K and C is a cover of Z.

Pick C ∈ C. Choose A ∈ A and Cn ∈ Cn, for each n ∈ A, for which C =
⋂

{p−1
Tn

(Cn) : n ∈ A}. Pick x ∈ C. Given n ∈ A, it follows from pTn
(x) ∈

Cn ⊂ Yn that n ∈ Ωx. Hence A ⊂ Ωx. Since A ∈ A, we have the equalities
T =

⋃

{Tn : n ∈ A} =
⋃

{Tn : n ∈ Ωx}, that is, x ∈ Z. Hence C ⊂ Z.
On the other hand, Cn =

∏

{Cn
t : t ∈ Tn} where Cn

t ∈ Ct for t ∈ Gn and
Cn

t = {a(t)} for t ∈ Tn \ Gn, where Gn is a finite subset of Tn. Observe that
C =

∏

{Ct : t ∈ T } where Ct =
⋂

{Cn
t : t ∈ Tn and n ∈ A}. It is clear that C is

a compact space; consider the set G =
⋃

{Gn : n ∈ ω} and note that if t ∈ T \ G
we can choose nt ∈ A for which t ∈ Tnt

and hence Ct = Cnt

t = {a(t)}. It follows
that pG : C →

∏

{Ct : t ∈ G} is a homeomorphism, so C ∈ K.
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Now we will prove that C is a cover of Z. Pick x ∈ Z. It is clear that Ωx ∈ A.
Given n ∈ Ωx we know that pTn

(x) ∈ Yn and hence we can choose Cn ∈ Cn such
that pTn

(x) ∈ Cn. Let C =
⋂

{p−1
Tn

(Cn) : n ∈ Ωx}. It is clear that x ∈ C and
C ∈ C. Therefore C is a cover of Z.

Claim 3. The family N is a network with respect to the cover C.

Pick C ∈ C and let U be an open set in X with C ⊂ U ∩ Z. Choose A ∈ A
and Cn ∈ Cn for each n ∈ A, in such a way that C =

⋂

{p−1
Tn

(Cn) : n ∈ A}. It
follows from Cn ∈ Cn that Cn =

∏

{Cn
t : t ∈ Tn} where Cn

t ∈ Ct for t ∈ Gn

and Cn
t = {a(t)} for t ∈ Tn \ Gn, where Gn is a finite subset of Tn. Let us

observe that C =
∏

{Ct : t ∈ T } where Ct =
⋂

{Cn
t : t ∈ Tn and n ∈ A}. By

[4, Theorem 3.2.10] there is an open set Ut in Xt, for each t ∈ T , and a finite
subset F of T such that Ut = Xt for t ∈ T \ F and C ⊂

∏

{Ut : t ∈ T } ⊂ U .
Given t ∈ T , since Ct =

⋂

{Cn
t : t ∈ Tn and n ∈ A} ⊂ Ut, we can find a finite

subfamily Dt of {Cn
t : t ∈ Tn and n ∈ A} ⊂ Ct such that Ct ⊂ Dt ⊂ Ut where

Dt =
⋂

Dt. Since Ct is closed under finite intersections, Dt ∈ Ct. Given n ∈ A
let Dn =

∏

{Dn
t : t ∈ Tn} where Dn

t = Dt ∈ Ct for t ∈ Gn and Dn
t = {a(t)}

for t ∈ Tn \ Gn. It is clear that Cn ⊂ Dn. Also, observe that Dn ∈ Cn and
Dn ⊂ Un where Un =

∏

{Ut : t ∈ Tn}. By Claim 1 we can choose Nn ∈ Nn such
that Dn ⊂ Nn ⊂ Un. Since A ∈ A, there exists a finite subset B ⊂ A such that
F ⊂

⋃

{Tn : n ∈ B}. Finally note that

C ⊂
⋂

n∈B

p−1
Tn

(Cn) ⊂
⋂

n∈B

p−1
Tn

(Dn) ⊂
⋂

n∈B

p−1
Tn

(Nn) ⊂
⋂

n∈B

p−1
Tn

(Un) =
∏

t∈T

Ut ⊂ U.

Hence C ⊂ N ⊂ U ∩ Z where N = Z ∩
⋂

{p−1
Tn

(Nn) : n ∈ B} ∈ N . We have
proved Claim 3.

It follows from Claims 2 and 3 that Z is an LΣ(K)-space. �

The classes of compact spaces and second countable spaces are closed with
respect to finite unions, closed subspaces and countable products. Therefore we
have the following corollaries.

Corollary 3.4. Any Σs-product of at most c-many Lindelöf Σ-spaces is a Lindelöf

Σ-space.

Corollary 3.5. Any Σs-product of at most c-many LΣ(≤ ω)-spaces is an LΣ(≤
ω)-space.

It was proved in [10] that a compact space X is Gul’ko compact if and only
if X embeds into a Σs-product of real lines. Since the real line is clearly an
LΣ(≤ ω)-space and the LΣ(≤ ω)-property is inherited by closed subspaces, we
have the following consequence.

Corollary 3.6 ([8]). Every Gul’ko compact space of cardinality ≤ c is an LΣ(≤
ω)-space.
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Recall that a compact space X is Eberlein compact if X is homeomorphic to
a subspace of Cp(K) for some compact space K. It is well known that every
Eberlein compact space is a Gul’ko compact space. This shows that we have the
following corollary.

Corollary 3.7 ([12]). Let X be an Eberlein compact space of cardinality not

exceeding continuum. Then X is an LΣ(≤ ω)-space.

Now we will prove a result about the LΣ(≤ ω)-property in function spaces (see
[17, Theorem 2.10]).

Corollary 3.8. If X is a space such that |X | ≤ c and Cp(X) is a Lindelöf

Σ-space, then Cp(X) is an LΣ(≤ ω)-space.

Proof: Because of [9, Theorem 3.5] and [13, Theorem 2.3] both υX and Cp(υX)
are Lindelöf Σ-spaces. Apply [17, Proposition 2.8] to see that |Cp(υX)| ≤ c. It
follows from [9, Corollary 2.11] that Cp(Cp(υX)) is a Lindelöf Σ-space. Now we
can apply [14, Corollary 4.12] to see that the space Cp(υX) can be condensed
in a Σs-product of real lines. Since |Cp(υX)| ≤ c, the space Cp(υX) can be
condensed in a Σs-product Z of at most c-many copies of the real line. Because
of Corollary 3.5 the space Z is an LΣ(≤ ω)-space. Apply [8, Corollary 2.2] and
[8, Lemma 2.3] to conclude that Cp(υX) is an LΣ(≤ ω)-space. The space Cp(X),
being a continuous image of Cp(υX), is also an LΣ(≤ ω)-space. �

4. Monotone monolithicity and the Collins-Roscoe property in Σs-

products

In this section we prove that the classes of monotonically monolithic spaces and
Collins-Roscoe spaces are closed under Σs-products. We apply these results to
prove some known results about monotone monolithicity and the Collins-Roscoe
property.

First we will deal with monotonically monolithic spaces. The following concepts
were introduced by Tkachuk [16].

Definition 4.1. Given a subset A of a space X we say that a family N of subsets
of X is an external network of A in X if for each x ∈ A and each open subset U
of X with x ∈ U there is N ∈ N such that x ∈ N ⊂ U .

Definition 4.2. We say that a space X is monotonically monolithic if to each
A ⊂ X we can assign an external network N (A) of cl(A) in X such that:

(a) |N (A)| ≤ max{|A|, ω};
(b) if A ⊂ B ⊂ X , then N (A) ⊂ N (B);
(c) if {Aα : α < γ} is a family of subsets of X with Aα ⊂ Aβ for α < β < γ,

then N (
⋃

{Aα : α < γ}) =
⋃

{N (Aα) : α < γ}.

The following equivalence of monotone monolithicity, which turned out to be
very useful, was obtained by Gruenhage [5] and Guo and Junnila [6].
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Theorem 4.3. A space X is monotonically monolithic if and only if to each finite

subset F of X we can assign a countable collection N (F ) of subsets of X such

that, for each subset A of X , the family
⋃

{N (F ) : F ∈ [A]<ω} is an external

network of cl(A) in X .

Given a sequence s of subsets of a set T , we define a relation ∼ on T as follows:
we say that t1 ∼ t2 if, for every E ∈ s, we have t1 ∈ E if and only if t2 ∈ E.

Lemma 4.4. Suppose that s is a sequence of subsets of a set T , which is closed

under complements and finite intersections. Assume that H1, . . . , Hn ∈ [T ]<ω is a

family of non-empty sets such that if ti ∈ Hi and tj ∈ Hj then ti ∼ tj if and only

if i = j. Then we can find a disjoint family {E1, . . . , En} ⊂ s such that Hi ⊂ Ei

for i = 1, . . . , n.

Proof: If n = 2, for t1 ∈ H1 and t2 ∈ H2 we can find E ∈ s such that t1 ∈ E
and t2 ∈ T \E. Let E1 = E and E2 = T \E. Then, {E1, E2} satisfies the required
conditions. For n > 2 take H1, . . . , Hn as in the Lemma. For every i, j ≤ n with
i 6= j, take a disjoint family {Eij , E

∗
ij} ⊂ s such that Hi ⊂ Eij and Hj ⊂ E∗

ij .
Now take Ei =

⋂

{Eij ∩ E∗
ji : j ≤ n and j 6= i} for i = 1, . . . , n. Then the family

{E1, . . . , En} ⊂ s is pairwise disjoint and Hi ⊂ Ei for i = 1, . . . , n. �

We are ready to show that monotone monolithicity is closed under Σs-products.

Theorem 4.5. Every Σs-product of monotonically monolithic spaces is mono-

tonically monolithic.

Proof: Suppose that Xt is monotonically monolithic and fix the respective oper-
ator Nt as in Theorem 4.3 and Nt(∅) = ∅ for every t ∈ T . Let X =

∏

{Xt : t ∈ T }
and fix a point a ∈ X . Suppose that s = {Tn : n ∈ ω} is a sequence of subsets
of T . We must prove that the Σs-product Z of the family {Xt : t ∈ T } centered
at a is monotonically monolithic. Since monotone monolithicity is a hereditary
property, by Remark 3.2 (b), we can assume that the family s is closed under com-
plements and finite intersections. Let E(s) = {{E1, . . . , En} ∈ [s]<ω : Ei ∩Ej = ∅
for i 6= j}.

We shall construct a monotonic monolithicity operator in Z. Pick a finite set
F ⊂ Z. Given a set E ⊂ T because of Remark 3.2(a) the set supp(F, E) is
countable. Let NE(F ) be the family of all sets of the form

∏

{Nt : t ∈ E}, where
Nt ∈ Nt(pt(F )) if t ∈ G and Nt = {a(t)} if t ∈ E \ G for some finite subset G of
supp(F, E). Notice that NE(F ) is countable. Finally, let

N (F ) =

{

Z ∩
⋂

E∈F

p−1
E (NE) : F ∈ E(s) and NE ∈ NE(F ) for every E ∈ F

}

.

Since E(s) and NE(F ) for each E ∈ s are countable, the family N (F ) is also count-
able. We shall prove that the operator N satisfies the conditions in Theorem 4.3.
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Claim. For every A ⊂ Z the family
⋃

{N (F ) : F ∈ [A]<ω} is an external
network of clZ(A) in Z.

Pick A ⊂ Z, x ∈ clZ(A) and an open set U in Z with x ∈ U . We shall prove
that there exist F ∈ [A]<ω and N ∈ N (F ) such that x ∈ N ⊂ U . Choose a
finite set H ⊂ T and a family {Wt : t ∈ H} such that Wt is open in Xt for every
t ∈ H and x ∈ W ⊂ U for W = Z ∩

⋂

{p−1
t (Wt) : t ∈ H}. We can assume that

a(t) /∈ Wt if x(t) 6= a(t). Let {H1, . . . , Hn} be a partition of H such that if ti ∈ Hi

and tj ∈ Hj then ti ∼ tj if and only if i = j. By Lemma 4.4 we can obtain a
pairwise disjoint family {E∗

1 , . . . , E∗
n} ∈ E(s) such that Hi ⊂ E∗

i for i = 1, . . . , n.
Take i ∈ {1, . . . , n} and fix ti ∈ Hi. It follows from x ∈ Z that T =

⋃

{Tm :
m ∈ Ωx}. Hence we can find Tmi

∈ s such that ti ∈ Tmi
and | supp(x, Tmi

)| < ω.
Let Ei = E∗

i ∩Tmi
, Gi = supp(x, Ei) and Ki = Gi∪Hi. Using the definition of ∼

we can see that Ki ⊂ Ei. For every t ∈ Gi \Hi let Wt = Xt \ {a(t)}. Notice that
a(t) /∈ Wt and x(t) ∈ Wt for every t ∈ Gi. Let Bi = A ∩

⋂

{p−1
t (Wt) : t ∈ Gi}.

Then x ∈ clZ(Bi); observe that Gi ⊂ supp(z, Ei) for every z ∈ Bi and pick
t ∈ Gi. Then x(t) ∈ clXt

(pt(Bi)). By the choice of Nt, the family
⋃

{Nt(pt(F )) :
F ∈ [Bi]

<ω} is an external network for clXt
(pt(Bi)) in Xt. Then we can choose

a non-empty finite set Ft ⊂ Bi and Nt ∈ Nt(pt(Ft)) such that x(t) ∈ Nt ⊂ Wt.
Let Fi =

⋃

{Ft : t ∈ Gi} ⊂ Bi. For t ∈ Ei \ Gi let Nt = {a(t)}. Choose NEi
=

∏

{Nt : t ∈ Ei}. It follows from Fi ⊂ Bi that Gi is a finite subset of supp(Fi, Ei).
Hence NEi

∈ NEi
(Fi). Note that x ∈ p−1

Ei
(NEi

) ⊂
⋂

{p−1
t (Wt) : t ∈ Ki}.

Finally, it is clear that F = {E1, . . . , En} ∈ E(s) and F =
⋃

{Fi : i = 1, . . . , n}
is a finite subset of A. Let N = Z∩

⋂

{p−1
E (NE) : E ∈ F}. Since NEi

∈ NEi
(Fi) ⊂

NEi
(F ), for every Ei ∈ F , we conclude that N ∈ N (F ). It is clear that x ∈ N .

Besides, for K =
⋃

{Ki : i = 1, . . . , n} we have H ⊂ K and

n
⋂

i=1

p−1
Ei

(NEi
) ⊂

n
⋂

i=1

⋂

t∈Ki

p−1
t (Wt) =

⋂

t∈K

p−1
t (Wt) ⊂

⋂

t∈H

p−1
t (Wt).

So N = Z∩
⋂

{p−1
Ei

(NEi
) : i = 1, . . . , n} ⊂ Z∩

⋂

{p−1
t (Wt) : t ∈ H} = W ⊂ U . �

Let {Xt : t ∈ T } be a family of spaces, a a point in
∏

{Xt : t ∈ T } and
s = {Tn : n ∈ ω} a sequence of subsets of T . Observe that if Tn = T , for each
n ∈ ω, then the Σs-product of the family {Xt : t ∈ T } centered at a coincides
with the σ-product of the family {Xt : t ∈ T } centered at a. On the other hand, if
T = {tn : n ∈ ω} is countable and Tn = {tn}, for each n ∈ ω, then the Σs-product
of the family {Xt : t ∈ T } centered at a coincides with the countable product
∏

{Xt : t ∈ T }. This gives the following corollaries.

Corollary 4.6 ([1]). Every σ-product of monotonically monolithic spaces is

monotonically monolithic.

Corollary 4.7 ([16]). Every countable product of monotonically monolithic

spaces is monotonically monolithic.
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We finish this section by proving that every Σs-product of a family of Collins-
Roscoe spaces shares this property. First, we recall the definition [3].

Definition 4.8. Given a space X , assume that for every point x ∈ X a countable
family G(x) of subsets of X is chosen. Say that {G(x) : x ∈ X} is a Collins-Roscoe

collection if for any x ∈ X and each open set U in X which contains x we can
find an open set V such that x ∈ V ⊂ U and for any y ∈ V there exists a set
P ∈ G(y) with x ∈ P ⊂ U . If a space X has a Collins-Roscoe collection then we
will say that X has the Collins-Roscoe property.

Remark 4.9. Let X =
∏

{Xt : t ∈ F} be a finite product. Suppose that for
each t ∈ F the family {Gt(xt) : xt ∈ Xt} is a Collins-Roscoe collection for Xt. For
each x ∈ X let G(x) be the family of all sets of the form

∏

{Gt : t ∈ F}, where
Gt ∈ Gt(x(t)) for each t ∈ F . Then {G(x) : x ∈ X} is a Collins-Roscoe collection
for the space X .

Gruenhage established in [5] the following equivalence of the Collins-Roscoe
property which turned out to be very useful.

Theorem 4.10. A collection {G(x) : x ∈ X} of countable families of subsets of a

space X is a Collins-Roscoe collection if and only if for any set A ⊂ X , the family
⋃

{G(x) : x ∈ A} contains an external network for cl(A).

Theorem 4.11. Every Σs-product of Collins-Roscoe spaces has the Collins-

Roscoe property.

Proof: Let {Gt(xt) : xt ∈ Xt} be a Collins-Roscoe collection in Xt, for every
t ∈ T . Suppose that X , a, s, Z and E(s) are as in the proof of Theorem 4.5.
We must prove that Z has the Collins-Roscoe property. Since the Collins-Roscoe
property is inherited by arbitrary subspaces, because of Remark 3.2(b), we can
assume that the family s is closed under complements and finite intersections.
We shall construct a Collins-Roscoe collection in Z. Pick x ∈ Z. Given E ⊂ T ,
by Remark 3.2(a) the set supp(x, E) is countable. Let GE(x) be the family of all
sets of the form

∏

{Gt : t ∈ E}, where Gt ∈ Gt(x(t)) for t ∈ F , Gt = {a(t)} for
t ∈ E \ F and F is a finite subset of supp(x, E). Note that the family GE(x) is
countable. Finally, let

G(x) =

{

Z ∩
⋂

E∈F

p−1
E (GE) : F ∈ E(s) and GE ∈ GE(x) for every E ∈ F

}

.

Since E(s) and GE(x), for each E ∈ s, are countable, the family G(x) is also
countable. By Theorem 4.10 it is sufficient to prove the following claim.

Claim. For every A ⊂ Z the family
⋃

{G(x) : x ∈ A} is an external network
of clZ(A) in Z.

Pick A ⊂ Z, x ∈ clZ(A) and an open set U in Z with x ∈ U . We shall prove
that there exist z ∈ A and G ∈ G(z) with x ∈ G ⊂ U . Choose a finite set H ⊂ T
and a family {Wt : t ∈ H} such that Wt is open in Xt for every t ∈ H and
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x ∈ W ⊂ U for W = Z ∩
⋂

{p−1
t (Wt) : t ∈ H}. We can assume that a(t) /∈ Wt

if x(t) 6= a(t). Let {H1, . . . , Hn} be a partition of H such that if ti ∈ Hi and
tj ∈ Hj then ti ∼ tj if and only if i = j. Applying Lemma 4.4 we can obtain a
pairwise disjoint family {E∗

1 , . . . , E∗
n} ∈ E(s) such that Hi ⊂ E∗

i for i = 1, . . . , n.
Given i ∈ {1, . . . , n}, pick any ti ∈ Hi. Since x ∈ Z, we have T =

⋃

{Tm : m ∈
Ωx} and so we can fix Tmi

∈ s such that ti ∈ Tmi
and | supp(x, Tmi

)| < ω. Let
Ei = E∗

i ∩ Tmi
, Fi = supp(x, Ei) and Ki = Hi ∪ Fi. By the definition of ∼, we

have Ki ⊂ Ei; observe that also {E1, . . . , En} ∈ E(s). For every t ∈ Fi \ Hi let
Wt = Xt \ {a(t)}. Note that a(t) /∈ Wt and x(t) ∈ Wt for every t ∈ Fi.

Let F =
⋃

{Fi : i = 1, . . . , n}, W ∗ = Z∩
⋂

{p−1
t (Wt) : t ∈ F} and B = A∩W ∗.

It follows from x ∈ W ∗ that x ∈ clZ(B). Let XF =
∏

{Xt : t ∈ F}; it is clear
that pF (x) ∈ clXF

(pF (B)) ∩ pF (W ∗). Let us observe that Fi ⊂ supp(z, Ei) for
every z ∈ B and i = 1, . . . , n. For each y ∈ XF , let GF (y) be the family of all sets
of the form

∏

{Gt : t ∈ F} where Gt ∈ Gt(y(t)) for each t ∈ F . It follows from
Remark 4.9, that the family {GF (y) : y ∈ XF } is a Collins-Roscoe collection in
XF . By Theorem 4.10 the family

⋃

{GF (y) : y ∈ pF (B)} is an external network
of clXF

(pF (B)) in XF . Since pF (x) ∈ clXF
(pF (B)) ∩ pF (W ∗), there are z ∈ B

and Gt ∈ Gt(z(t)), for each t ∈ F , such that pF (x) ∈
∏

{Gt : t ∈ F} ⊂ pF (W ∗) =
∏

{Wt : t ∈ F}. It follows that pt(x) ∈ Gt ⊂ Wt for any t ∈ Fi and i = 1, . . . , n.
Given i ∈ {1, . . . , n} let GEi

=
∏

{Gt : t ∈ Ei}, where Gt = {a(t)} for
t ∈ Ei \ Fi and Gt is as above if t ∈ Fi. Observe that pEi

(x) ∈ GEi
and

pKi
(GEi

) ⊂
∏

{Wt : t ∈ Ki}. Since z ∈ B, Fi ⊂ supp(z, Ei) and so GEi
∈ GEi

(z).
We know that F = {E1, . . . , En} ∈ E(s), so G = Z∩

⋂

{p−1
E (GE) : E ∈ F} ∈ G(z).

It is clear that x ∈ G. For K =
⋃

{Ki : i = 1, . . . , n} we have H ⊂ K and

n
⋂

i=1

p−1
Ei

(GEi
) ⊂

n
⋂

i=1

p−1
Ki

(pKi
(GEi

)) ⊂
n
⋂

i=1

p−1
Ki

(

∏

{Wt : t ∈ Ki}
)

=
⋂

t∈K

p−1
t (Wt).

Therefore G = Z ∩
⋂n

i=1 p−1
Ei

(GEi
) ⊂ Z ∩

⋂

{p−1
t (Wt) : t ∈ H} = W ⊂ U . �

Any second countable space has countable network weight and hence has the
Collins-Roscoe property. As an immediate consequence, we obtain the following
corollary.

Corollary 4.12 ([15]). Any Σs-product of second countable spaces has the

Collins-Roscoe property.

Recall that a compact space X is Gul’ko compact if and only if X embeds
into a Σs-product of real lines. Since the Collins-Roscoe property is inherited by
arbitrary subspaces, we have the following result.

Corollary 4.13 ([5]). Any Gul’ko compact space is a Collins-Roscoe space.

The following results are particular cases of Theorem 4.11.

Corollary 4.14 ([18]). Every σ-product of Collins-Roscoe spaces has the Collins-

Roscoe property.
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Corollary 4.15 ([18]). Every countable product of Collins-Roscoe spaces has the

Collins-Roscoe property.

Recall that a family A of subsets of a space X is T0-separating if for any distinct
points x, y ∈ X there exists A ∈ A such that A ∩ {x, y} is a singleton. A family
U =

⋃

{Un : n ∈ ω} of subsets of X is called weakly σ-point-finite if for any point
x ∈ X we have the equality U =

⋃

{Un : the family Un is point-finite at x}.

Corollary 4.16 ([18]). Suppose that X is a Lindelöf Σ-space and there exists a

weakly σ-point-finite T0-separating family of cozero subsets of X . Then the space

X has the Collins-Roscoe property.

Proof: Suppose that a family U of cozero subsets of X is weakly σ-point-finite
and T0-separating. For any U ∈ U take a continuous function fU : X → [0, 1]
such that U = f−1

U ((0, 1]); then the diagonal product of the family {fU : U ∈ U}
condenses X onto a subset Y of a Σs-product Z of real lines. It follows from
Theorem 4.11 that Z is a Collins-Roscoe space. Since the Collins-Roscoe property
is inherited by arbitrary subspaces, Y has the Collins-Roscoe property. Now we
can apply [15, Theorem 3.1] to see that X has the Collins-Roscoe property. �

5. Simple spaces and the Collins-Roscoe property

Say that X is a simple space if X has at most one non-isolated point.
Recall that space X is Lindelöf Σ if and only if there is a compact cover C of X

and a countable family N of subsets of X which is a network with respect to C.

Theorem 5.1. If X is a simple Lindelöf Σ-space, then there exists a topology

τ∗ on the set X such that τ(X) ⊂ τ∗, the space X∗ = (X, τ∗) is Lindelöf Σ and

Cp(X
∗) is also Lindelöf Σ.

Proof: Since X is a Lindelöf Σ-space, we can fix a compact cover C of the space
X for which there exists a closed countable network N with respect to C. We can
assume that X is uncountable. Denote by p the unique non-isolated point of X .
We can assume that N is closed under finite intersections and p ∈ C ∩N for each
C ∈ C and N ∈ N . Let F = {A ⊂ X : p ∈ A and X =

⋃

{N ∈ N : |N \A| < ω}}.

Claim 1. τ(p, X) ⊂ F .

Let U be a neighborhood of p in X . We need to show that X =
⋃

{N ∈ N :
|N \ U | < ω}. Pick a point x ∈ X and choose C ∈ C with x ∈ C. Clearly,
F = C \ U is a finite set and U ∪ F ∈ τ(C, X). Therefore we can choose N ∈ N
with C ⊂ N ⊂ U ∪F . It follows that x ∈ N and N \U ⊂ F is a finite set. Hence
X =

⋃

{N ∈ N : |N \ U | < ω}.

Claim 2. F is a filter.

It is clear that F is closed under supersets and does not contain the empty
set. We shall prove that F is closed under finite intersections. Pick A1, A2 ∈ F .
First observe that p ∈ A1 ∩ A2. Given x ∈ X there exist N1, N2 ∈ N for
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which x ∈ N1 ∩ N2, |N1 \ A1| < ω and |N2 \ A2| < ω. Let N = N1 ∩ N2.
Then x ∈ N and since N is closed under finite intersections, N ∈ N . Besides
N \ (A1∩A2) ⊂ (N1 \A1)∪ (N2 \A2) is a finite set. This shows that X =

⋃

{N ∈
N : |N \ (A1 ∩ A2)| < ω}. Hence A1 ∩ A2 ∈ F . It follows from an induction
argument that F is closed under finite intersections.

Let T = X \ {p}. Define a topology τ∗ on X as follows: any point in T is
declared isolated and F is the system of open neighborhoods of p. Denote by X∗

the space X endowed with the topology τ∗. Because of Claim 2 the topology τ∗ is
well defined, and because of Claim 1 the identity map i : X∗ → X is continuous.

Claim 3. X∗ is a Lindelöf Σ-space.

For each x ∈ X∗ let Cx =
⋂

{N ∈ N : x ∈ N}; consider the families C∗ =
{Cx : x ∈ X} and N ∗ = N . First, we will prove that C∗ is a compact cover of
X∗. It is clear that C∗ covers X∗. Pick Cx ∈ C. Notice that p ∈ Cx. Let U ⊂ τ∗

be an open cover of Cx. Choose U ∈ U with p ∈ U . Since U ∈ F , there exists
N ∈ N such that x ∈ N and |N \U | < ω. Notice that Cx ⊂ N and hence Cx \U
is finite. It follows that Cx can be covered by a finite subfamily of U . Thus Cx is
compact. We have proved that C∗ is a compact cover of X∗. Now we will prove
that N ∗ is a network with respect to C∗. Pick Cx ∈ C∗ and take U ∈ τ∗ with
Cx ⊂ U . It follows from p ∈ Cx that U ∈ F and so there exists Nx ∈ N such
that x ∈ Nx and |Nx \ U | < ω. For each y ∈ Nx \ U choose Ny ∈ N such that
Cx ⊂ Ny ⊂ X \ {y} and let N = Nx ∩

⋂

{Ny : y ∈ Nx \ U}. It follows that
N ∈ N = N ∗ and Cx ⊂ N ⊂ U . This concludes the proof of this claim.

Claim 4. Cp(X
∗) is a Lindelöf Σ-space.

Consider the set Q = {f ∈ Cp(X
∗, 2) : f(p) = 0}. Let {Nn : n ∈ ω} be a

numeration of N and let s = {Tn : n ∈ ω} where Tn = Nn∩T for each n ∈ ω. It is
clear that Q is homeomorphic to the Σs-product in 2T centered at zero. It follows
from [15, Theorem 3.2] that Q has the Lindelöf Σ-property. Since Cp(X

∗, 2)
is a union of two subspaces homeomorphic to Q, the space Cp(X

∗, 2) also has
the Lindelöf Σ-property. By Claim 3 the space X∗ is Lindelöf Σ; being zero-
dimensional, it embeds in Cp(Cp(X

∗, 2)) which, together with Okunev’s theorem
[9, Corollary 2.11], implies that Cp(X

∗) is a Lindelöf Σ-space. �

Corollary 5.2. If X is a simple Lindelöf Σ-space, then Cp(X) has the Collins-

Roscoe property.

Proof: By Theorem 5.1 there exists a topology τ∗ on the set X such that τ(X) ⊂
τ∗, the space X∗ = (X, τ∗) is Lindelöf Σ and Cp(X

∗) is also Lindelöf Σ. It follows
from [18, Corollary 2.15] that Cp(X

∗) has the Collins-Roscoe property. Since the
identity map i : X∗ → X is a condensation, Cp(X) ⊂ Cp(X

∗). Hence Cp(X) has
the Collins-Roscoe property. �
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