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Abstract. We prove nearly uniform convergence bounds for the BPX preconditioner based
on smoothed aggregation under the assumption that the mesh is regular. The analysis is
based on the fact that under the assumption of regular geometry, the coarse-space basis
functions form a system of macroelements. This property tends to be satisfied by the
smoothed aggregation bases formed for unstructured meshes.
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1. Introduction

The classical multigrid is a multiplicative method of Schwarz type with inexact

subspace solvers given by smoothers [1]. As a consequence, its fundamental com-

ponents suffer from inner dependencies and have to be performed in a sequence,

preventing truly large-scale parallelism. Unlike standard multigrid, the so-called

BPX preconditioner frame of Bramble, Pasciak, and Xu [2] is fully additive, allowing

for fine-grain parallelism on the level of a single coarse-space basis function. The

sufficient conditions for its convergence and the mathematical requirements on its

efficient implementation are, however, different from the ones for multiplicative mul-

tilevel iterative methods, despite the fact that the sufficient conditions look similar.

Our smoothed aggregation algebraic multigrid coarsening technique was proved

to be very efficient in the context of solving large scale systems of linear algebraic

equations arising from the discretization of elliptic problems and their singular per-

turbations (see [4], [7], [6], [8]). The smoothed aggregation method was, however,

This work was sponsored by TAČR (Technologická agentura České republiky) grant
TA01020352 and Department of the Navy Grant N62909-11-1-7032.
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developed and analyzed in the context of traditional multiplicative multigrid. In this

paper, we use smoothed aggregation in the BPX frame and analyze the convergence

of the resulting iterative method applied to a model example.

In the unpublished technical report [10], we made a first attempt to analyze the

smoothed aggregation method in the context of standard multigrid. The report

contains merely a sketch of the theory. The most difficult part was to establish the

resolution-independent equivalence of discrete and continuous L2-norms

(1.1)

∥∥∥∥
∑

i

xiϕ
l
i

∥∥∥∥
L2

≈ scaling
(∑

i

x2
i

)1/2

for the hierarchy of coarse-spaces span{ϕl
i}i (l denotes the level, ϕl

i a basis function).

The equivalence was used to prove the weak approximation property needed to verify

the assumptions of the regularity-free abstract multigrid convergence theory of [1].

In [7], for the standard multigrid, we found a way to avoid the need for this

equivalence by fully algebraic means. The convergence proof of [7] only requires the

equivalence of discrete and continuous L2-norms to hold for disaggregated functions,

which is satisfied trivially, because aggregation-based prolongators are, after scaling,

orthogonal matrices.

In the context of the BPX preconditioner, however, equivalence (1.1) is unavoid-

able. This follows from the fact that the efficient implementation of the BPX pre-

conditioner requires the computationally cheap implementation of the approximate

l2-projections onto coarse-spaces; such implementation must avoid the action of the

inverse of the Gram matrix. Thus, for the coarse-space basis, we need a Gram matrix

that has an inverse that can be approximated by the inverse of its diagonal. For this

reason, we returned to the method of analysis outlined in [10] and developed it fully

for the case of model geometry. Our proof of (1.1) is non-constructive, based on

a compactness argument (Rellich’s theorem).

For the BPX preconditioner based on smoothed aggregation we prove, assuming

model geometry and H1-equivalent form, that the condition number of the precon-

ditioned system grows at most as O(L2), where L is the number of levels.

The presented theory requires the coarse-space bases (or their supports) to form

a system of disjoint macroelements covering the entire computational domain. The

macroelement function is spanned solely by the set of associated basis functions; no

other basis functions are allowed to intersect the macroelement with their supports.

Such macroelements are obviously formed in the case of regular geometry. In the

general case, however, the smoothed aggregation coarse-space bases tend to form

the macroelements as well. The equivalence of discrete and continuous L2-norms is

therefore very likely to hold for unstructured aggregation formed on unstructured

meshes.
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The interpolation estimates (the weak approximation property of the coarse-space

bases with the l2-norm of the left-hand side measured on the finest level) are more

or less standard variations on the finite element theory of [3], used in a variety of

forms in many works, for example [7]. In a BPX context, those estimates had to be

carried out for smoothed aggregation coarse-space basis functions, which we, using

an algebraic trick, avoided in [7]. Here, only the weak approximation property of

pure aggregations had to be proved.

The proof of uniform equivalence (1.1) is, up to its sketch in an unpublished

technical report [10], new.

In what follows, 〈·, ·〉 and ‖·‖ denote the Euclidean l2-inner product and the Eu-

clidean norm, respectively, in the relevant vector space. Assume A is a symmetric,

positive definite matrix. We use the symbols 〈·, ·〉A and ‖·‖A for the usual A-inner
product 〈·, ·〉A = 〈A·, ·〉 and A-norm ‖·‖A = 〈·, ·〉1/2A . Let I be an index set. We
employ the notation 〈·, ·〉l2(I) and ‖·‖l2(I) for the Euclidean inner product and the
norm on a discrete domain I defined as

〈x,y〉l2(I) =
∑

i∈I

xiyi, ‖·‖l2(I) = 〈·, ·〉
1/2
l2(I)

,

respectively. Here, x and y are vectors such that their entries xi, yi ∈ R are defined

for all i ∈ I. On R
N , {1, . . . , N} ⊃ I, 〈·, ·〉l2(I) is a semi-product and ‖·‖l2(I) is

a semi-norm. If U is a Banach space, ‖·‖U is understood as the norm in U . For U

being a Hilbert space, (·, ·)U stands for inner product on U . Assume (U, ‖·‖U ) and
(V, ‖·‖V ) are Banach spaces and L : U → V a linear mapping. We introduce the

operator norm of L by

‖L‖U→V = sup
u∈U\{0}

‖Lu‖V
‖u‖U

.

For a symmetric, positive definite matrix A we define a condition number

cond(A) = λmax(A)/λmin(A).

Similarly, for symmetric positive definite matricesA, B, the mutual condition number

is given by cond(A,B) = λmax(BA)/λmin(BA).

We use generic constants C, c > 0 in the way usual in partial differential equations

theory. This means, for example, for ‖u‖ 6 C‖v‖ and ‖v‖ 6 C‖w‖ we simply
write ‖u‖ 6 C‖w‖. Typically, C, c are constants independent of the finest level
mesh size and, whenever relevant, also of the level and the number of levels. In

the local estimates, constants are also independent of the local index in the mesh

(macroelement number, basis function number). In the abstract estimate of [2]
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presented in Section 2, the constants are independent of the level and the number of

levels.

2. BPX preconditioner in operator setting

In this section we define the BPX preconditioner and give a convergence bound.

At the end of the section, we describe the implementation of the method, assuming

the system of prolongators is given. Up to minor technical details that suit our

purpose, this section follows [2].

Let (U, (·, ·)U , ‖·‖U ) be a Hilbert space. Consider a problem

findu ∈ U : a(u, v) = f(v) ∀ v ∈ U.

Here, a(·, ·) is a symmetric bilinear form, coercive and continuous on U and f(·) ∈
U−1 (U−1 is the dual space). Let

U = U1 ⊃ U2 ⊃ . . . ⊃ UL

be a hierarchy of nested Hilbert spaces with the inner product inherited from U . For

each l = 1, . . . , L, define operator Al : Ul → Ul by

(2.1) a(ul, vl) = (Alul, vl)U ∀ul, vl ∈ Ul.

In what follows, we often use the symbol A for A1. Denote σl to be the largest

eigenvalue of Al. Assume σl > σl, l = 1, . . . , L, is an upper bound, σl+1 6 σl. Let

Ql : U → Ul be an orthogonal projection and Q̃l : U → Ul its spectrally equivalent

approximation. The BPX preconditioner is defined by

(2.2) B =
1

σ1
Q̃1 +

L∑

l=2

( 1

σl
− 1

σl−1

)
Q̃l.

SinceQ1 = I , whereI denotes the identity mapping, we can also set Q̃1 = Q1 = I.

Note that by rearranging the sums and setting Q̃L+1 = 0 we get

(2.3) B =
1

σ1
Q̃1 +

L∑

l=2

1

σl
Q̃l −

L∑

l=2

1

σl−1
Q̃l

=

L∑

l=1

1

σl
Q̃l −

L−1∑

l=1

1

σl
Q̃l+1 −

1

σL
Q̃L+1

=
L∑

l=1

1

σl
(Q̃l − Q̃l+1).
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In the following theorem, we give a convergence bound of [2]. Since the proof is

relatively simple and we prove a slightly different statement than the authors of [2]

(with the upper bounds σl in the place of the actual maximal eigenvalues σl), we

provide the proof in detail for readers’ convenience.

Theorem 2.1 ([2]). Assume there is a constant C1 independent of l and L such

that for every u ∈ U and every level l = 1, . . . , L, the exact projectionsQl,QL+1 = 0,

satisfy

(2.4) ‖(I −Ql+1)u‖2U 6
C1

σl
a(u, u).

In addition, we assume that the operators Q̃l, l = 1, . . . , L, are symmetric, spectrally

equivalent to projections Ql in the sense that

(2.5) c2(Qlu, u)U 6 (Q̃lu, u)U 6 C2(Qlu, u)U ∀u ∈ U, l = 1, . . . , L,

with constants C2 > c2 > 0 independent of l and L, l = 1, . . . , L − 1. Last, we

assume that σl+1 6 σl for all levels l = 1, . . . , L− 1. Then B is symmetric, BA is

a(·, ·)-symmetric, and

(2.6)
c2
C1L

a(u, u) 6 a(BA u, u) 6 C2La(u, u) ∀u ∈ U

with constants c2/(C1L) and C2L being the lower and the upper estimates of the

lower and the upper spectral bound of BA , respectively.

The following proof is a masterpiece by Bramble, Pasciak, and Xu. The upper

bound is more or less straightforward. The proof of coercivity (the lower bound) is

similar to the proof of Lion’s lemma.

P r o o f. The symmetry of B is obvious from the symmetry of Q̃l, l = 1, . . . , L

and definition of B (2.2). The a(·, ·)-symmetry of BA follows by a standard argu-

ment

a(BA u, v) = (A BA u, v)U = (A u,BA v)U = a(u,BA v).

Let us set Bex to be the operator B with Q̃l = Ql for all levels l. Let u ∈ U .

By (2.2) and (2.1), we have

a(BA u, u) =
1

σ1
(Q̃1A u,A u)U

+
L∑

l=2

( 1

σl
− 1

σl−1

)
(Q̃lA u,A u)U
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and

a(BexA u, u) =
1

σ1
(Q1A u,A u)U

+
L∑

l=2

( 1

σl
− 1

σl−1

)
(QlA u,A u)U

with

c2(QlA u,A u)U 6 (Q̃lA u,A u)U 6 C2(QlA u,A u)U

by (2.5). Therefore,

c2a(BexA u, u) 6 a(BA u, u) 6 C2a(BexA u, u) ∀u ∈ U.

It is therefore sufficient to prove (2.6) with Bex in the place of B and c2 = C2 = 1.

Set UL+1 = ∅. Define Wl to be the orthogonal complement of Ul+1 in Ul, that is,

Wl = {u ∈ Ul : (u,w)U = 0 ∀w ∈ Ul+1}, l = 1, . . . , L.

Clearly, spaces Wl, l = 1, . . . , L, form an orthogonal decomposition of U and the

operators Ql −Ql+1 are orthogonal projections onto the respective spaces Wl. As

a consequence of this orthogonality, (2.1) and (2.3), using the properties of orthogonal

projections

Ql −Ql+1 = (Ql −Ql+1)
2 = (Ql −Ql+1)

∗

(∗ denotes the adjoint operator) and the Pythagorean Theorem,

a(BexA u, u) =
L∑

l=1

1

σl
a((Ql −Ql+1)A u, u)

=
L∑

l=1

1

σl
((Ql −Ql+1)A u,A u)U

=

L∑

l=1

1

σl
((Ql −Ql+1)

2
A u,A u)U

=

L∑

l=1

1

σl
((Ql −Ql+1)A u, (Ql −Ql+1)A u)U

=

L∑

l=1

1

σl
‖(Ql −Ql+1)A u‖2U(2.7)

=

L∑

l=1

1

σl
(‖QlA u‖2U − ‖Ql+1A u‖2U )

6

L∑

l=1

1

σl
‖QlA u‖2U .(2.8)
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LetPl be a(·, ·)-orthogonal projection onto Ul, l = 1, . . . , L, and u, v ∈ U . Since Pl

is a(·, ·)-symmetric, Pl = I on Ul, Ql is symmetric and I −Ql is the orthogonal

projection onto U⊥
l (⊥ denotes the orthogonal complement),

(QlA u, v)U = (A u,Qlv)U = (A u,PlQlv)U = (A Plu,Qlv)U

= (AlPlu,Qlv)U = (AlPlu,Qlv)U + (AlPlu, (I −Ql)v)U

= (AlPlu, v)U ,

hence,

QlA = AlPl

and therefore,

‖QlA u‖2U = ‖AlPlu‖2U 6 σla(Plu,Plu) 6 σla(u, u).

This estimate together with (2.8) prove the upper bound of (2.6) with Bex in the

place of B and C2 = 1.

To establish the lower bound of (2.6), we estimate using

I =

L∑

l=1

(Ql −Ql+1),

the fact that I −Ql is an orthogonal projection onto U
⊥
l and the Cauchy-Schwarz

inequality,

a(u, u) =

L∑

l=1

a((Ql −Ql+1)u, u)

=
L∑

l=1

((Ql −Ql+1)u,A u)U

=

L∑

l=1

((Ql −Ql+1)u, (Ql −Ql+1)A u)U

=

L∑

l=1

[((I −Ql)u, (Ql −Ql+1)A u)U

+ ((Ql −Ql+1)u, (Ql −Ql+1)A u)U ]

=

L∑

l=1

((I −Ql+1)u, (Ql −Ql+1)A u)U

6

L∑

l=1

‖(I −Ql+1)u‖U‖(Ql −Ql+1)A u‖U .
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Thus, by assumption (2.4), the Cauchy-Schwarz inequality, and (2.7) we get

a(u, u) 6

L∑

l=1

(C1

σl

)1/2

a1/2(u, u)‖(Ql −Ql+1)A u‖U

6 C
1/2
1 a1/2(u, u)

( L∑

l=1

1

σl
‖(Ql −Ql+1)A u‖2U

)1/2( L∑

l=1

12
)1/2

= (C1L)
1/2a1/2(u, u)a(Bexu, u)

1/2.

Assume u 6= 0. Dividing the above estimate by a1/2(u, u) and squaring the result,

we get

(Bexu, u) >
1

C1L
a(u, u),

proving the first inequality of (2.6) for Bex in the place of B and c2 = 1. For

u = 0, (2.6) holds trivially. This completes our proof. �

In the rest of this section, we describe the implementation of the method assuming

the system of prolongators is given.

Let

Ax = b

be the system of linear algebraic equations with an n×n symmetric, positive definite

matrix A and b ∈ R
n. Set n1 = n. We assume the system of injective linear

prolongators

I ll+1 : R
nl+1 → R

nlnl+1 < nl, l = 1, . . . , L− 1,

is given. We set (U, (·, ·)U , ‖·‖U ) to be the Euclidean space (Rn, 〈·, ·〉, ‖·‖) and

(2.9) a(·, ·) = 〈A·, ·〉.

We introduce composite prolongators

I1l = I12I
2
3 . . . I

l−1
l , l = 1, . . . , L.

The coarse-spaces are defined by

Ul = Range(I1l ), l = 1, . . . , L

and coarse-level matrices by

Al = (I1l )
TAI1l .
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Note that the matrix Al is the operator Al defined by (2.9) and (2.1), represented

with respect to the basis given by the columns of I1l . The exact projection operators

in the matrix form are

(2.10) Ql = Ql = I1l ((I
1
l )

TI1l )
−1(I1l )

T, l = 1, . . . , L.

We choose the inexact projections to be the operators Ql with the matrix (I1l )
TI1l

replaced by its diagonal, that is

(2.11) Q̃l = Q̃l = I1l D
−1
l (I1l )

T, Dl = diag((I1l )
TI1l ), l = 1, . . . , L.

The action of the BPX preconditioner (2.2) is given by the following algorithm:

A l g o r i t hm 1. Given x ∈ R
n, evaluate the action y = Bx ∈ R

n of the precon-

ditioner B = B by

(2.12) y =
1

σ1
x+

L∑

l=2

( 1

σl
− 1

σl−1

)
I1l D

−1
l (I1l )

Tx, Dl = diag((I1l )
TI1l ).

In (2.12), σl is an upper bound of

(2.13) σl = λmax(Al) = sup
x∈Range(I1

l
)\{0}

‖x‖2A
‖x‖2 = sup

x∈R
nl\{0}

‖I1l x‖2A
‖I1l x‖2

, l = 1, . . . , L.

The choice of σl is, for our model example, addressed in Remark 4.18.

Denote f li to be the i-th column of I
1
l . Note that vectors {f li}nl

i=1 form a natural

basis of Ul = Range(I1l ). It is straightforward to see that the operation y = Q̃lx can

be implemented using the parallel loop

y = 0; for i = 1, . . . , nl do in parallel y← y +
〈x, f li 〉
‖f li‖2

f li

with the update of y being a critical section. (Only one of the parallel processes

is allowed to perform the critical section at any moment.) Algorithm 1 can be

therefore implemented in parallel using the operation of sparse inner product 〈·, ·〉l2(I)
as follows:

A l g o r i t hm 2.

⊲ Setup: given composite prolongators I1l , l = 2, . . . , L, set f li to be the i-th

column of I1l and evaluate D
l
ii, l = 2, . . . , L, i = 1, . . . , nl, as follows:

⊲⊲ for all l = 2, . . . , L, i = 1, . . . , nl, do in parallel

set Dl
ii = 〈f li , f li 〉l2(supp(f li )).

227



⊲ Action: given x ∈ R
n1 , evaluate y = Bx as follows:

⊲⊲ set y = σ−1
1 x,

⊲⊲ for all l = 2, . . . , L, i = 1, . . . , nl+1 do in parallel

y← y + ((σ−1
l − σ−1

l−1)/D
l
ii)〈f li ,x〉l2(supp(f li ))f

l
i ,

with the update of y being a critical section.

Note that in practice, the critical section can be avoided by colouring the graph

of the overlaps of the supports of f li and by performing the update of y colour by

colour.

3. Smoothed aggregation prolongators in model case

In the smoothed aggregation method ([4], [5], [7]) we create prolongator I ll+1

(assuming prolongators I12 , . . . , I
l−1
l are already given) in the form

I ll+1 = SlP
l
l+1.

Here, Sl is an nl × nl sparse linear prolongator smoother, being the first degree

polynomial in Al = (I1l )
TAI1l , and P l

l+1 is an nl × nl+1 tentative prolongator given

by unknowns aggregation. The tentative prolongator is responsible for the approxi-

mation, while the prolongator smoother enforces the smoothness of the coarse-level

spaces. The simplest prolongator P l
l+1 will be given in this section. For the most gen-

eral form of tentative prolongator applicable to non-scalar problems on unstructured

meshes, see [7].

Let Ω = (0, 1)× (0, 1) be a computational domain. We consider a model problem

(3.1) find u ∈ H1
0 (Ω): a(u, v) = f(v) ∀ v ∈ H1

0 (Ω).

Here, a(·, ·) = (∇·,∇·)L2(Ω) and f(·) ∈ (H1
0 (Ω))

−1. The problem is discretized by

P1 elements on a uniform triangular mesh obtained from a regular square mesh

when each square is broken by connecting its left lower and right upper vertices with

a straight edge. We assume the number of interior nodes in the direction of both

axes x and y is 3L−1.

On the finest level, we form the aggregates (index sets of vertices) {A1
i }9

L−2

i=1 by

grouping the mesh vertices into 3 × 3 regular, square groups. For each aggregate,

the central vertex represents the aggregate on the second level. Thus, we have mesh

vertices on level 2 and the procedure can be repeated, giving rise to the hierarchy

of the aggregates {Al
i}9

L−l−1

i=1 , l = 1, . . . , L − 1, and the hierarchy of nodal points
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{vl
i}nl

i=1, l = 1, . . . , L, with vl
i being the central point of the aggregate Al−1

i . Then,

we define the tentative prolongators

(3.2) (P l
l+1)ij =

{
1 for i ∈ Al

j ,

0 otherwise,

i = 1, . . . , nl, j = 1, . . . , nl+1, nl = 9L−l, l = 1, . . . , L − 1. Thus, P l
l+1 is a 0/1

matrix with disjoint non-zero structure. Each column of P l
l+1 corresponds to the

disaggregation of one R
nl+1 variable into nine R

nl variables. Thus, P l
l+1 can be

thought of as a piecewise constant coarsening in a discrete sense.

Next we specify the prolongator smoother. Let λ̄1 > λmax(A) be an available

upper bound. We set

(3.3) λ̄l = λ̄1

for all levels l = 2, . . . , L. In Lemma 4.1, we will show that λmax(Al) 6 λ̄l. Define

prolongator smoothers Sl by

(3.4) Sl = I − 4

3

1

λ̄l
Al, l = 1, . . . L− 1.

The parameter 4
3 is chosen because, in a certain sense, it minimizes the upper bound

of λmax(S
2
l Al). The details are obvious from (4.5) in the proof of Lemma 4.1.

The choice of the upper bounds σl > σl needed in (2.12) is addressed by Re-

mark 4.18.

4. Verification of the assumptions of the abstract theory

Define the coarse-level basis functions ϕl
i = π1I

1
l e

l
i, l = 1, . . . , L, i = 1, . . . , nl.

Here, π1 is the finest level finite element interpolator

π1 : x ∈ R
n 7→

∑

i

xiϕ
1
i

with {ϕ1
i }ni=1 being the finest level finite element basis and e

l
i the i-th canonical basis

vector of Rnl .

Lemma 4.1. Assume λ̄1 > λmax(A) is an available upper bound satisfying λ̄1 6

Cλmax(A). Set λ̄l = λ̄1 for all levels l = 1, . . . , L. There is a constant C > 0
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independent of the mesh size h, level l and basis function number i such that for all

l = 1, . . . , L, i = 1, . . . , nl,

‖ϕl
i‖H1(Ω) 6 C,(4.1)

‖ϕl
i‖L2(Ω) 6 Chl, hl = 3l−1h,(4.2)

and

(4.3) λmax(Al) 6 λ̄l 6 C.

P r o o f. Assume the first inequality of (4.3) holds for level l, 1 6 l < L. We will

show that λ̄l+1 = λ̄l = λ̄1 satisfies the first inequality of (4.3) as well. We estimate

(4.4) λmax(Al+1) = sup
x∈R

nl+1\{0}

〈Al+1x,x〉
‖x‖2

= sup
x∈R

nl+1\{0}

〈AlSlP
l
l+1x, SlP

l
l+1x〉

‖x‖2

= sup
x∈R

nl+1\{0}

〈S2
l AlP

l
l+1x, P

l
l+1x〉

‖x‖2

6 λmax(S
2
l Al) sup

x∈R
nl+1\{0}

‖P l
l+1x‖2
‖x‖2 .

Next we estimate λmax(S
2
l Al) in terms of λ̄l. By the spectral mapping theorem,

(4.5) λmax(S
2
l Al) = λmax

((
I − 4

3

1

λ̄l
Al

)2
Al

)

= max
λ∈σ(Al)

(
1− 4

3

1

λ̄l
λ
)2
λ

= λ̄l max
λ∈σ(Al)

(
1− 4

3

λ

λ̄l

)2 λ

λ̄l

6 λ̄l max
t∈[0,1]

(
1− 4

3
t
)2
t

=
1

9
λ̄l.

Since each aggregate contains exactly 9 degrees of freedom, it holds that

(4.6)
‖P l

l+1x‖2
‖x‖2 = 9
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for all x ∈ R
nl . This identity, (4.4), and (4.5) give

λ̄l+1 ≡ λ̄l > λmax(Al+1).

The proof of the first inequality of (4.3) follows by induction with λ̄1 > λmax(A).

Now, the well-known bound λmax(A) 6 C ([3]) with C independent of h, gives the

second inequality of (4.3).

The estimate (4.1) is a consequence (4.3). Indeed,

|ϕl
i|2H1(Ω) = (∇π1I

1
l e

l
i,∇π1I

1
l e

l
i)L2(Ω) = 〈A1I

1
l e

l
i, I

1
l e

l
i〉

= 〈Ale
l
i, e

l
i〉 6 λmax(Al)‖eli‖2 6 C.

Since the H1(Ω)-norm and the H1(Ω)-seminorm are equivalent on H1
0 (Ω) by

Friedrichs’ inequality, we get the statement (4.1).

Let us prove (4.2). It is well-known ([3]) that

(4.7) ch‖x‖ 6 ‖π1x‖L2(Ω) 6 Ch‖x‖ ∀x ∈ R
n1

with constants C > c > 0 independent of h. Finally estimate using ̺(Sl) =

λmax(I − 4
3λl

−1A) 6 1, (4.6), and (4.7),

‖ϕl
i‖L2(Ω) = ‖π1I

1
l e

l
i‖L2(Ω) 6 Ch‖I1l eli‖

= Ch‖S1P
1
2 I

2
l e

l
i‖ 6 Ch̺(S1)‖P 1

2 I
2
l e

l
i‖

6 Ch‖P 1
2 I

2
l e

l
i‖ = 3Ch‖I2l eli‖

= . . . = 3l−1Ch‖I lleli‖ = Chl.

This constitutes the proof of (4.2). �

To make our theory comprehensible, we introduce the notion of macroelement.

The macroelement has two aspects: the set of associated basis functions {ϕi}i∈τ

(τ is an index set) and the geometrical domain T (understood closed) that contains

the intersection of their supports, that is,

(4.8) T ⊃
⋂

i∈τ

suppϕi.

The essential properties of the macroelements 〈T, {ϕj}j∈τ 〉 are:
1. property (4.8),

2. the closed domains T have disjoint interiors and cover the entire computational

domain,

3. except for the basis functions ϕi, i ∈ τ , associated with the macroelement, no

other basis functions are allowed to intersect intT with their supports.
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The function on the macroelement is therefore a linear combination of macroele-

ment basis functions {ϕi}, i ∈ τ , satisfying (4.8) with no other basis functions

involved. The rigorous definition follows:

Definition 4.2. Consider a computational domain Ω and a system of basis func-

tions {ϕi}, with (well-defined) supports contained in Ω. Let {Ti} be a family of closed
domains Ti ⊂ Ω such that

a)

(4.9)
⋃

i

Ti = Ω and intTi ∩ intTj = ∅ for i 6= j,

b) for every Ti there is an index set τi such that the corresponding set of basis

functions {ϕj}j∈τi satisfies

(4.10)
⋂

j∈τi

suppϕj ⊂ Ti and suppϕj ∩ intTi = ∅ ∀ j 6∈ τi.

Then we call the system {〈Ti, {ϕj}j∈τi〉}i a system of macroelements on Ω.

R em a r k 4.3. Clearly, the finite elements as concieved in [3] are, according to

Definition 4.2, also macroelements.

It is a matter of routine to show that for Poisson equation in 1D discretized

using P1 elements on a uniform grid, the coarse-space basis functions obtained by

smoothed aggregation using the aggregates consisting of three neighbouring nodes

are in fact P1 basis functions as well, see [9]. The coarse-level resolution is 3× the
fine-level resolution. The macroelements are then formed by overlaps of supports of

two adjacent basis functions and are identical with coarse P1 elements.

Before introducing our macroelements and proving their properties, we need sev-

eral auxiliary statements:

Lemma 4.4. The coarse-level spaces satisfy the following properties:

a) The coarse-level matrices follow the nine-point scheme; entry alij of Al =

(I1l )
TAI1l can be non-zero only for directly adjacent (in the 9-point scheme)

aggregates Al−1
i and Al−1

j on the level l − 1. On the first level, the adjacency

of the aggregates is considered assuming an underlying 9-point scheme instead

of a 7-point scheme.

b) Apart from the vertices directly adjacent to the boundary with essential bound-

ary condition, the vector of ones 1l ∈ R
nl forms the kernel of Al, i.e.,

(4.11) (Al1l)i = 0
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for all vertices vl
i not adjacent to the boundary with essential boundary condi-

tion. Adjacency to the boundary is considered assuming an underlying 9-point

scheme extended to the boundary nodes, see Fig. 4.1.

v
l
i

v
l
j

macroelements T l
k

Ω

Ω
l
int

∂Ω

∂Ωl
supp,j

Fig. 4.1. Coarse-level geometry.

c) Apart from the boundary with an essential boundary condition, the discrete

basis functions I1l e
l
i form a decomposition of unity in the sense that

(4.12) (I1l 1l)i =

( nl∑

j=1

I1l ej

)

i

= 1

for all fine-level vertices v1
i that belong to the (closed) square Ω

l

int with vertices

vl
ic1
, vl

ic2
, vl

ic3
, vl

ic4
adjacent to the corners of the unit squareΩ. The continuous

basis functions ϕl
i = π1I

1
l e

l
i satisfy

(4.13)

nl∑

i=1

ϕl
i = 1 on Ω

l

int,

see Fig. 4.1.

d) The support of each of the basis functions ϕl
i = π1I

1
l e

l
i satisfies

suppϕl
i ⊂ Ωl

supp,i,
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with Ωl
supp,i being a (closed) square with side length 2hl = 2.3l−1h and the

center of gravity located in vl
i. Apart from ∂Ω, the vertices and edge midpoints

of Ωl
supp,i are vertices v

l
j , j ∈ N l

i \ {i}, see Fig. 4.1. Here, N l
i denotes the

neighbourhood of i in the nine-point scheme.

v
2

1

A1

1

Fig. 4.2. Coarse-level geometry.

P r o o f. Let us prove statement a). Assume the stencil of Al−1 follows the

nine-point scheme. Let Al−1
i and Al−1

j be two aggregates. Clearly, alij of Al =

(I l−1
l )TAl−1I

l−1
l can be non-zero only if supp I l−1

l eli and supp I l−1
l elj are directly

adjacent sets (in the 9-point scheme) of vertices on level l−1. Since I l−1
l = Sl−1P

l−1
l ,

where Sl is a first-degree polynomial in Al−1 and P l−1
l is given by disaggregation

(suppP l−1
l eli = Al−1

i ), the supports supp I
l−1
l eli and supp I l−1

l elj are adjacent only

for two directly adjacent aggregates Al−1
i and Al−1

j . The proof of a) now follows

by induction, with the fact that the matrix A = A1, being a finite element stiffness

matrix, follows the seven-point scheme which is a subset of the nine-point scheme.

Let us prove statement b). Assume vertex vl
i is not adjacent to the boundary

with essential boundary condition. Recall that matrices Al on all levels follow the

nine-point scheme. Assume statement b) holds on the level l − 1. To prove our

statement on the level l, it is sufficient to establish that

∑

j∈N l
i

alij = 0,
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where N l
i is the neighbourhood of i in the nine-point scheme. Clearly,

(4.14)
∑

j∈N l
i

alij =
∑

j∈N l
i

〈Al−1eli, e
l
j〉

=
∑

j∈N l
i

〈Al−1S
2
l−1P

l−1
l eli, P

l−1
l elj〉

=

〈
Al−1S

2
l−1P

l−1
l eli,

∑

j∈N l
i

P l−1
l elj

〉
.

Further, suppAl−1S
2
l−1P

l−1
l eli = suppAl−1(I − ωAl−1)

2P l−1
l eli is contained in Al−1

i

with 3 layers added, which equals Al−1
i with adjacent aggregates added. Therefore,

we have

(4.15)

( ∑

j∈N l
i

P l−1
l elj

)

k

= 1 for k ∈ N ≡
⋃

j∈N l
i

Al−1
j ⊃ suppAl−1S

2
l−1P

l−1
l eli.

Denote intN to be the interior of the above set N ⊂ {1, . . . , nl−1}, defined as

intN = {k : N l−1
k ⊂ N} ∩ {k : vl−1

k is not a vertex adjacent to the boundary ∂Ω}.

Clearly,

suppS2
l−1P

l−1
l eli ⊂ intN .

From this, (4.14), and (4.15) it follows that

∑

j∈N l
i

alij = 〈Al−1S
2
l−1P

l−1
l eli,1l−1〉 = 〈S2

l−1P
l−1
l eli, Al−11l〉

= 〈S2
l−1P

l−1
l eli, Al−11l〉l2(intN ) = 0

as

(Al−11l−1)k = 0 ∀ k ∈ intN ⊂ int{1, . . . , nl−1},

by assumption, proving b) for level l. The proof of b) on all levels follows by induc-

tion, with the fact that the finite element stiffness matrix satisfies b).

Let us prove c). Consider a set M ⊂ {1, . . . , nl}. Let x ∈ R
nl be a vector such

that xl
i = 1 for all i ∈ M. By property b), (Alx)k = 0 for all k ∈ intM and

therefore, yl = Slx = (I − ωAl)x satisfies yi = 1 for all i ∈ intM. Assume c) holds
for an intermediate Ikl with some k ∈ {2, . . . , l}, that is,

(Ikl 1l)p = 1 ∀ p : vk
p ∈ Ω

l

int.
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See c). Then, (P k−1
k Ikl 1l)p = 1 for all vertices vk−1

p ∈ Ω
l

int, with one layer of vertices

added. The vector

y = Ik−1
l 1l = Sk−1P

k−1
k Ikl 1l

therefore satisfies yp = 1 for all p such that vl
p ∈ Ω

l

int. The proof now follows

by induction, with the fact that I ll1l = 1l satisfies c). Property (4.13) is a direct

consequence.

To prove d), it is sufficient to show that

(4.16) {v1
j , j ∈ supp I1l e

l
i} ⊂ intΩl

supp,i.

Assume

(4.17) {vk
j , j ∈ supp Ikl e

l
i} ⊂ intΩl

supp,i

for some k ∈ {2, . . . , l}. Consider the set

ωl,k−1
i = suppP k−1

k Ikl−1e
l
i =

⋃

j∈supp Ik
l−1

el
i

Ak−1
j .

Obviously, for the set ω̃l,k−1
i consisting of ωl,k−1

i with one layer of surrounding vertices

added, that is,

ω̃l,k−1
i = ωl,k−1

i ∪ {j ∈ N k−1
p , p ∈ ωl,k−1

i },

the corresponding set of vertices is contained in intΩl
supp,i. The proof of (4.17) for

k − 1 in place of k is completed by the fact that

supp Ik−1
l eli = supp(I − ωAk−1)P

k−1
k Ikl e

l
i ⊂ ω̃l,k−1

i .

The proof of (4.17) for all k ∈ 1, . . . , l follows by induction, with the fact that (4.17)

obviously holds for k = l. �

For l > 1, let us connect vertices vl
j , j = 1, . . . , nl, by the regular square mesh

extended to the boundary ∂Ω, see Fig. 4.1. This mesh consists of squares; let us

choose a numbering of those squares (including those adjacent to the boundary) and

denote them {T l
i }. For each square T l

i define an index set τ
l
i of numbers of vertices v

l
i

that are its corner vertices. (Note that there are no vertices vl
i located at ∂Ω.)
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Lemma 4.5. For l > 1, the system {〈T l
i , {ϕl

j}j∈τ l
i
〉}i, ϕl

j = π1I
1
l e

l
j , is a system

of macroelements on Ω.

P r o o f. We verify the conditions of Definition 4.2.

Obviously, squares T l
j have disjoint interiors and cover the entire computational

domain Ω. Thus, (4.9) holds.

By Lemma 4.4 d), vertices vl
i are located at the centers of gravity of squares

Ωl
supp,i ⊃ suppϕl

i. Clearly,

T l
i =

⋂

j∈τ l
i

Ωl
supp,j ⊃

⋂

j∈τ l
i

suppϕl
j

and for j 6∈ τ li
intT l

i ∩ suppϕl
j ⊂ intT l

i ∩ Ωl
supp,j = ∅.

This proves (4.10). �

Lemma 4.6. For l > 1, basis functions ϕl
i, i = 1, . . . , nl, satisfy the following

properties:

1. The H1(Ω)-seminorm and L2(Ω)-norm of each ϕl
i, l = 1, . . . , L, i = 1, . . . , nl,

are bounded by

(4.18) |ϕl
i|H1(Ω) 6 C

and

(4.19) ‖ϕl
i‖L2(Ω) 6 Chl.

Here, C > 0 is a constant independent of the mesh size h, level l, and basis

function number i.

2. For T l
i that is not adjacent to a boundary with an essential boundary condition,

the quadruple of associated basis functions (τ li = {i1, i2, i3, i4}) satisfies
4∑

j=1

ϕl
ij = 1 on T l

i .

3. On the edges of an interior macroelement T l
i , the traces of basis functions satisfy

trϕl
i1 = 0 on e2 ∪ e3, trϕl

i2 = 0 on e3 ∪ e4,

trϕl
i3 = 0 on e4 ∪ e1, trϕl

i4 = 0 on e1 ∪ e2.

In the above identity, the edges ej of T
l
i (in the local numbering) and vertices

vl
ij are numbered in the same way as on the reference element as depicted in

Fig. 4.3.
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v̂1 v̂2

v̂3v̂4

ê1

ê2

ê3

ê4 T̂

Fig. 4.3. Reference square.

P r o o f. Statement No. 1 follows directly from Lemma 4.1.

Statement No. 3 of our lemma follows by Lemma 4.4 d). The decomposition of

unity (Statement No. 2) follows by Lemma 4.4 c) and d). This completes our proof.

�

Lemma 4.7. Let T̂ be a unit square with edges and vertices as depicted in

Fig. 4.3. Define the set G = {(ϕ̂1, ϕ̂2, ϕ̂3, ϕ̂4)
T} ⊂ [H1(T̂ )]4, where each function ϕ̂i

is associated with vertex v̂i, by the following properties:

1. There is a positive finite constant C such that

(4.20) ‖ϕ̂i‖H1(T̂ ) 6 C, i = 1, . . . , 4.

2. The functions ϕ̂i, i = 1, . . . , 4, satisfy the decomposition of unity

(4.21)
4∑

i=1

ϕ̂i = 1 on T̂ .

3. The traces tr ϕ̂i ∈ H1/2(∂T̂ ) of functions ϕ̂i, i = 1, . . . , 4, on the boundary ∂T̂ ,

denoted later simply as ϕ̂i, satisfy

ϕ̂1 = 0 on ê2 ∪ ê3,

ϕ̂2 = 0 on ê3 ∪ ê4,

ϕ̂3 = 0 on ê1 ∪ ê4,

ϕ̂4 = 0 on ê1 ∪ ê2.

Define the Gram matrix

G = G(ϕ̂1, ϕ̂2, ϕ̂3, ϕ̂4) ≡ {gij = (ϕ̂i, ϕ̂j)L2(T̂ )}4ij=1.
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There is a positive constant c dependent exclusively on C such that

λmin(G) > c > 0

for all quadruples (ϕ̂1, ϕ̂5, ϕ̂3, ϕ̂4)
T ∈ G.

P r o o f. Let us prove that the basis functions ϕ̂i, i = 1, . . . , 4, are linearly

independent. Assume for now the contrary, i.e.,

4∑

i=1

ciϕ̂i = 0 with some ci 6= 0.

By property No. 3, ϕ̂3 = ϕ̂4 = 0 on ê1. Hence, by the assumption of the decomposi-

tion of unity (4.21),

(4.22) ϕ̂1 + ϕ̂2 = 1 on ê1

and, by the assumption of the linear dependence,

(4.23) c1ϕ̂1 + c2ϕ̂2 = 0 on ê1,

with c1 6= 0 or c2 6= 0. Let us say that c1 6= 0. We will show that proper-

ties (4.22), (4.23), and c1 6= 0 exclude each other.

By (4.23) and (4.22) it follows that

(c1 − c2)ϕ̂1 = −c2 on ê1.

Let c2 6= 0. Then ϕ̂1 = const 6= 0 on ê1. Since ϕ̂1 = 0 on ê2 by property

No. 3, it follows that there is a jump in the trace of ϕ̂1 at the point v̂2 and thus,

ϕ̂1 6∈ H1/2(∂T̂ ), which contradicts the trace theorem, as ‖ϕ̂1‖H1(T̂ ) 6 C <∞.
Consider now the case of c2 = 0. Then, by (4.23) c1ϕ̂1 = 0, hence by (4.22) it

follows that c1(1 − ϕ̂2) = 0 on ê1. Since c1 6= 0 by the assumption, it follows that

ϕ̂2 = 1 on ê1. Since ϕ̂2 = 0 on ê4, there is a jump in the trace of ϕ̂2 at the point v̂1,

hence ϕ̂2 6∈ H1/2(∂T̂ ), which contradicts the trace theorem. Thus, c1 6= 0 leads to

contradiction for any c2, hence c1 = 0.

Due to the double axial symmetry of T̂ (with respect to both x and y), it follows

that
4∑

i=1

ciϕ̂i = 0 implies c1 = c2 = c3 = c4 = 0 and therefore the basis functions ϕ̂i,

i = 1, . . . , 4, are linearly independent.

Since G is a Gram matrix corresponding to the linearly independent basis, the

functional

Φ(ϕ̂1, ϕ̂2, ϕ̂3, ϕ̂4) = λmin(G(ϕ̂1, ϕ̂2, ϕ̂3, ϕ̂4))
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is a positive functional on G. By the Cauchy-Schwarz inequality, entries gij =

(ϕ̂i, ϕ̂j)L2(T̂ ) are continuous bilinear forms on L2(T̂ ), hence continuous function-

als on G. At the same time, eigenvalues of G depend continuously on the entries gij .
Thus, Φ is a continuous, positive functional on [L2(T̂ )]

4. In the rest of the proof we

will show that the set G is compact in [L2(T̂ )]
4. Clearly, the set G is bounded in

[H1(T̂ )]4, hence weakly precompact. Further, the set G is convex. Indeed, for two
functions ϕ̂i, ϕ̂

′
i such that

‖ϕ̂i‖H1(T̂ ) 6 C, ‖ϕ̂′
i‖H1(T̂ ) 6 C

and α, β non-negative numbers such that α+ β = 1, it holds that

‖αϕ̂i + βϕ̂′
i‖H1(T̂ ) 6 α‖ϕ̂i‖H1(T̂ ) + β‖ϕ̂i‖H1(T̂ ) 6 (α+ β)C = C.

For two quadruples of functions {(ϕ̂1, ϕ̂2, ϕ̂3, ϕ̂4)
T} and {(ϕ̂′

1, ϕ̂
′
2, ϕ̂

′
3, ϕ̂

′
4)

T} satisfying
equality constraints No. 2 and No. 3, their convex combination {αϕ̂i + βϕ̂′

i}4i=1,

α + β = 1, α, β ∈ R
+
0 , satisfies conditions No. 2 and No. 3, too. Thus, G is convex

and weakly precompact. Since G is closed in [H1(T̂ )]4 and convex, it is weakly closed,

hence weakly compact in [H1(T̂ )]4. By Rellich’s theorem, G is compact in [L2(T̂ )]
4.

Summing up, Φ is a continuous positive functional on G ⊂ [L2(T̂ )]
4, with G being

a compact set. Thus, Φ attains its positive minimum on G, proving our statement.
�

R em a r k 4.8. Let ϕ̂i, i = 1, . . . , 4, be basis functions satisfying assumptions

of Lemma 4.7, G the corresponding L2(T̂ )-Gram matrix, and û =
4∑

i=1

uiϕ̂i, u =

(u1, u2, u3, u4)
T ∈ R

4. Then,

(4.24) ‖û‖2
L2(T̂ )

=

( 4∑

i=1

uiϕ̂i,

4∑

j=1

ujϕ̂j

)

L2(T̂ )

=

4∑

i=1

4∑

j=1

(ϕ̂i, ϕ̂j)L2(T̂ )uiuj = 〈Gu,u〉.

Hence, by Lemma 4.7 it follows that

(4.25) ‖û‖2
L2(T̂ )

= ‖u‖2G > λmin(G)‖u‖2 > c‖u‖2.

At the same time, (4.24) gives

(4.26) ‖û‖2
L2(T̂ )

6 λmax(G)‖u‖2,

where

|gij | = (ϕ̂i, ϕ̂j)L2(T̂ ) 6 ‖ϕ̂i‖L2(T̂ )‖ϕ̂j‖L2(T̂ ) 6 ‖ϕ̂i‖H1(T̂ )‖ϕ̂j‖H1(T̂ ) 6 C.
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Thus, by Gershgorin’s theorem,

λmax(G) 6 C.

This bound, (4.26), and the coercivity estimate (4.25) yield uniform norm equivalence

c‖u‖2 6 ‖û‖2
L2(T̂ )

6 C‖u‖2

with constants C > c > 0 dependent exclusively on the constant C in (4.20).

Lemma 4.9. Consider the affine mapping ϕ(·) : R
2 → R

2 that maps unit square

T̂ onto square T with the side length H and the left lower vertex located at b ∈ R
2.

The mapping is given by

(4.27) ϕ(x̂) =

[
H 0

0 H

]
x̂+ b.

See Fig. 4.4. Let u ∈ H1(T ). Define the transformed function û ∈ H1(T̂ ) by

(4.28) û(x̂) = u(ϕ(x̂)).

Then it holds that

‖û‖L2(T̂ ) = H−1‖u‖L2(T ),(4.29)

|û|H1(T̂ ) = |u|H1(T ).(4.30)

T̂ Tϕ

Fig. 4.4. The macroelement transformation.

P r o o f. The proof follows by the elementary transformation of the integrals. �

R em a r k 4.10. Let T l
i be an interior macroelement. From Lemma 4.6 and

Lemma 4.9 it follows that the associated basis functions ϕl
ij
, j = 1, . . . , 4, transformed

by the mapping (4.27) via (4.28) (that is, resulting functions ϕ̂j , j = 1, . . . , 4) sat-

isfy the assumptions of Lemma 4.7. Indeed, by Lemma 4.6 we get ‖ϕl
ij
‖H1(T l

i
) 6 C.

Hence, by Lemma 4.9 it follows that ‖ϕ̂j‖H1(T̂ ) 6 C. Assumptions No. 2 and No. 3

of Lemma 4.7 follow from properties No. 2 and No. 3 proved in Lemma 4.6.

241



Lemma 4.11. Define the level l interpolation operator

(4.31) πl : x ∈ R
nl 7→

nl∑

i=1

xiϕ
l
i, l = 1, . . . , L.

There are positive constants C > c independent of the mesh size h and level l such

that for every level l = 1, . . . , L and every u ∈ R
nl , the following norm equivalence

holds:

(4.32) chl‖u‖ 6 ‖πlu‖L2(Ω) 6 Chl‖u‖.

P r o o f. Let us prove first the left inequality of (4.32). Define Ωl
int to be the union

of all macroelements T l
i that are not adjacent to the boundary with the essential

boundary condition, and T l
i to be the set of indices of basis functions associated

with macroelement T l
i . Assume T

l
i is an interior macroelement. The entries of the

set T l
i = {j1, j2, j3, j4} are ordered in the same way as the vertices in Fig. 4.3.

Let us consider the affine mapping ϕl
i that maps the unit square T̂ onto T

l
i as in

Lemma 4.9. Consider a function u = πlu, u ∈ R
nl . Clearly,

u =
∑

j∈T l
i

ujϕ
l
j on T l

i .

Define the transformed function

û(x̂) = u(ϕl
i(x̂)), x̂ ∈ T̂ .

Further, define the transformed basis

ϕ̂k(x̂) = ϕl
jk
(ϕl

i(x̂)), k = 1, . . . , 4.

Then,

(4.33) û(x̂) =
4∑

k=1

ujk ϕ̂k(x̂).

By Remark 4.10, the transformed basis functions {ϕ̂k}4k=1 satisfy the assumptions

of Lemma 4.7. Hence, denoting G = {(ϕ̂i, ϕ̂j)L2(T̂ )}4i,j=1, the Gram matrix corre-

sponding to the transformed basis, we have the estimate

∥∥∥∥
4∑

i=1

wiϕ̂i

∥∥∥∥
2

L2(T̂ )

= 〈Gw,w〉 > λmin(G)‖w‖2 > c

4∑

i=1

w2
i ∀w ∈ R

4.
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See Remark 4.8. By this inequality, (4.33), and Lemma 4.9, it follows that

‖u‖2L2(T l
i
) = h2

l ‖û‖2L2(T̂ )
= h2

l

∥∥∥∥
4∑

k=1

ujk ϕ̂k

∥∥∥∥
2

L2(T̂ )

> ch2
l

4∑

k=1

u2
jk

= ch2
l

∑

j∈T l
i

u2
j .

Since each degree of freedom i belongs to at least one set T l
j , the previous inequality

gives

‖u‖2 6
∑

T l
i
⊂Ωl

int

∑

j∈T l
i

u2
j 6 C−1h−2

l

∑

T l
i
⊂Ωl

int

‖u‖2L2(T l
i )

6 C−1h−2
l ‖u‖2L2(Ω),

completing the proof.

The second inequality of (4.32) is more or less trivial. Define the global Gram

matrix

Gl = {(ϕl
i, ϕ

l
j)L2(Ω)}nl

i,j=1.

The (minimal) constant C in the second inequality of (4.32) is then
√
λmax(Gl).

(See Remark 4.8.) The matrix Gl contains at most 9 non-zeroes per row and the

non-zeroes can be estimated by the Cauchy-Schwarz inequality and Lemma 4.6 by

|glij | 6 ‖ϕl
i‖L2(Ω)‖ϕl

j‖L2(Ω) 6 Ch2
l .

By Gershgorin’s theorem, λmax(G
l) 6 Ch2

l and the proof follows. �

Corollary 4.12. For the Gram matrixMl = (I1l )
TI1l , l = 1, . . . , L, corresponding

to the discrete basis {I1l eli}nl

i=1, the diagonal matrix Dl = diag(Ml) is uniformly

spectrally equivalent in the sense that the equivalence

(4.34) c‖x‖Ml
6 ‖x‖Dl

6 C‖x‖Ml
∀x ∈ R

nl

holds with constants C > c > 0 independent of h and l. As a consequence, assump-

tion (2.5) holds for Q̃l = Q̃l and Ql = Ql given by (2.10) and (2.11).

P r o o f. From (4.32) follows the uniform norm equivalence

c3l−1‖x‖ 6 ‖I1l x‖ = ‖x‖Ml
6 C3l−1‖x‖ ∀x ∈ R

nl .

Hence, Ml is well-conditioned. The eigenvalues of Dl satisfy

λi(Dl) ≡ (Dl)ii = ‖eli‖2Ml
=
‖eli‖2Ml

‖eli‖2
∈ [λmin(Ml), λmax(Ml)] ⊂ [c3l−1, C3l−1],

proving (4.34).
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From (4.34) follows C−1‖·‖M−1

l
6 ‖·‖D−1

l
6 c−1‖·‖M−1

l
and therefore,

C−1〈Qlu,u〉 = C−1〈M−1
l (I1l )

Tu, (I1l )
Tu〉 6 〈D−1

l (I1l )
Tu, (I1l )

Tu〉
= 〈Q̃lu,u〉 6 c−1〈M−1

l (I1l )
Tu, (I1l )

Tu〉 = c−1〈Qlu,u〉 ∀u ∈ U

with constants C > c > 0 from (4.34), proving assumption (2.5) of Theorem 2.1. �

Lemma 4.13 (Scaled Poincaré and Friedrichs’ inequality). Let T be a square

domain with side of length H . Then there is a constant C > 0 independent of H

(and, characteristic for a square) such that (Poincaré inequality)

(4.35) inf
c∈R

‖u− c‖L2(T ) 6 CH |u|H1(T ) ∀u ∈ H1(T ),

and (Friedrichs’ inequality)

(4.36) ‖u‖L2(T ) 6 CH |u|H1(T ) ∀u ∈ H1
0,Γ(T ) ≡ {u ∈ H1(T ) : tr u = 0 on Γ},

if Γ ⊂ ∂T contains at least one edge of T .

P r o o f. The proof follows from Poincaré and Friedrichs’ inequalities on a unit

square by scaling, using Lemma 4.9. �

For each vertex vl
i we introduce a ball B

l
i ⊂ Ω with center in vl

i that has measure

about µ(T l
j), in the sense that there are constants C > c > 0 independent of the

mesh size h, level l, and basis function number i such that

(4.37) ch2
l 6 µ(Bl

i) 6 Ch2
l ,

see Fig. 4.5. For convenience, we assume that the balls Bl
i do not intersect each

other. We encapsulate each domain

T l
j ∪

⋃

i∈T l
j

Bl
i

into (the nearly smallest possible) square T̃ l
j . Clearly, the intersections of the ex-

tended macroelements T̃ l
j are bounded, that is, there is a finite integer N independent

of level such that each x ∈ Ω belongs to at most N extended macroelements T̃ l
i .
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T̃ l
i

T l
i

Bl
j1

Bl
j2

Bl
j3

Bl
j4

T̃ l
i

T l
i

Bl
j1

Bl
j2

∂Ω

Fig. 4.5. Extended macroelement.

Both for the interior and for the boundary macroelement, define the local inter-

polation operator Πl
i : L2(T̃

l
i )→ L2(T

l
i ) by

(4.38) Πl
iu =

∑

j∈T l
i

( 1

µ(Bl
j)

∫

Bl
j

u dx
)
ϕl
j .

Here, T l
i is an index set of the numbers of basis functions associated with T l

i .

Next we prove L2(Ω)-stability of the local interpolation operator.

Lemma 4.14. Both for the interior and for the boundary macroelement T l
i , the

mapping Πl
i is stable in the L2-norm, in the sense that

(4.39) ‖Πl
iu‖L2(T l

i
) 6 C‖u‖L2(T̃ l

i
) ∀u ∈ L2(T̃

l
i )

with a positive constant C independent of the level l, mesh size h, and macroelement

number i.

P r o o f. We estimate using the definition of Πl
i in (4.38), the triangle inequality,

the Cauchy-Schwarz inequality, L2-bound (4.2), and (4.37). We have

‖Πl
iu‖L2(T l

i
) =

∥∥∥∥
∑

j∈T l
i

(
1

µ(Bl
j)

∫

Bl
j

u dx

)
ϕl
j

∥∥∥∥
L2(T l

i
)

6
∑

j∈T l
i

( 1

µ(Bl
j)

∫

Bl
j

u dx
)
‖ϕl

j‖L2(T l
i
)

6 Chl

∑

j∈T l
i

1

µ(Bl
j)
(u, 1)L2(Bl

j
)

6 Chl

∑

j∈T l
i

1

µ(Bl
j)
‖u‖L2(Bl

j
)‖1‖L2(Bl

j
)

6 C
∑

j∈T l
i

‖u‖L2(Bl
i
).
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Further, by the Cauchy-Schwarz inequality,

∑

j∈T l
i

‖u‖L2(Bl
j
) 6

(∑

j∈T l
i

‖u‖2L2(Bl
j
)

)1/2(∑

j∈T l
i

12
)1/2

6 2‖u‖L2(T̃ l
i
).

The proof follows from the last two estimates. �

The proof of the following lemma uses the key argument of finite element approx-

imation theory.

Lemma 4.15. For both the interior and the boundary macroelement T l
i , the

interpolation operator Πl
i defined in (4.38) satisfies the estimate

(4.40) ‖u−Πl
iu‖L2(T l

i
) 6 Chl|u|H1(T̃ l

i
) ∀u ∈ H1

0,∂T̃ l
i
∩∂Ω

(T̃ l
i )

with constant C > 0 independent of h, l, and i. In addition, the interpolation

operator

(4.41) Πl : u ∈ H1(Ω) 7→
nl∑

i=1

( 1

µ(Bl
1)

∫

Bl
i

u dx
)
ϕl
i

satisfies

(4.42) ‖u−Πlu‖L2(Ω) 6 Chl|u|H1(Ω) ∀u ∈ H1
0 (Ω)

with constant C > 0 independent of h and l.

P r o o f. By Lemma 4.14 it follows that

(4.43) ‖I −Πl
i‖L2(T̃ l

i )→L2(T l
i )

6 ‖I‖L2(T̃ l
i )→L2(T l

i )
+ ‖Πl

i‖L2(T̃ l
i )→L2(T l

i )
6 C.

Let T l
i be an interior macroelement and T l

i the set of basis functions associated

with T l
i . By Lemma 4.6 we obtain

∑

j∈T l
i

ϕl
i = 1 on T l

i .

Hence, for any constant function c defined on T̃ l
i it holds that

(4.44) Πl
ic =

∑

j∈T l
i

(
1

µ(Bl
i)

∫

Bl
i

c dx

)
ϕl
j = c

∑

j∈T l
i

ϕl
j = c on T l

i .
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Let u ∈ H1(T̃ l
i ). By (4.44) and (4.43), for any constant c we get

‖u−Πl
iu‖L2(T l

i
) = ‖u− c− (Πl

iu− c)‖L2(T l
i
)

= ‖u− c− (Πl
iu−Πl

ic)‖L2(T l
i
)

= ‖(I −Πl
i)(u − c)‖L2(T l

i
)

6 ‖I −Πl
i‖L2(T̃ l

i
)→L2(T l

i
)‖u− c‖L2(T̃ l

i
)

6 C‖I −Πl
i‖L2(T̃ l

i
)→L2(T l

i
)‖u− c‖L2(T̃ l

i
).

In the above estimate we choose

c = argmin
q∈R

‖u− q‖L2(T̃ l
i
).

Hence, by the previous inequality and the scaled Poincaré inequality (4.35), (4.40)

follows.

To prove (4.40) for a boundary macroelement is even simpler.

Let u ∈ H1
0,∂Ω∩∂T̃ l

i

(Ω). We use (4.43) and the scaled Friedrichs’ inequality (4.36)

to estimate

‖u−Πl
iu‖L2(T l

i
) 6 ‖I −Πl

i‖L2(T̃ l
i
)→L2(T l

i
)‖u‖L2(T̃ l

i
) 6 Chl|u|2H1(T̃ l

i )
.

This completes the proof of (4.40).

To prove (4.42) we use the obvious identity

‖u−Πlu‖L2(T l
i
) = ‖u−Πl

iu‖L2(T l
i
),

the local estimate (4.40), and the fact that every point x ∈ Ω belongs to at most

N <∞ extended macroelements T̃ l
i . Thus,

‖u−Πlu‖2L2(Ω) =
∑

T l
i
⊂Ω

‖u−Πlu‖2L2(T l
i
) =

∑

T l
i
⊂Ω

‖u−Πl
iu‖2L2(T l

i
)

6 C
∑

T l
i
⊂Ω

h2
l |u|2H1(T̃ l

i
)
6 Ch2

l |u|2H1(Ω).

�
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Lemma 4.16. There is a constant cσ > 0 independent of h, l and L such that

(4.45) σl ≡
cσ
9l−1

> σl

for all l = 1, . . . , L. In addition, there is a constant C > 0 independent of h, l, and L

such that for every u ∈ U = R
n1 , the exact orthogonal projectionsQl = Ql : U → Ul,

UL+1 = ∅, QL+1 = 0, satisfy

(4.46) ‖u−Ql+1u‖ 6
C√
σl
‖u‖A, l = 1, . . . , L.

P r o o f. To estimate the spectral bound (4.45) we use the norm equivalence

proved in Lemma 4.11. By (2.13),

σl = sup
x∈R

nl\{0}

〈AI1l x, I1l x〉
‖I1l x‖2

= sup
x∈R

nl\{0}

〈Alx,x〉
‖I1l x‖2

,

where by (4.32) and πl = π1I
1
l ,

(4.47) ‖I1l x‖2 > ch−2
1 ‖π1I

1
l x‖2 = ch−2

1 ‖πlx‖2L2(Ω) > c
( hl

h1

)2
‖x‖2 ∀x ∈ R

nl .

The previous two inequalities, together with (4.3), give

σl 6 C
(h1

hl

)2
sup

x∈Rnl\{0}

〈Alx,x〉
‖x‖2 6 C

(h1

hl

)2
λmax(Al) 6 C

(h1

hl

)2
,

proving (4.45).

We will prove (4.46) for approximate projections Ql : U → Ul defined by Ql =

π−1
1 Πlπ1, l = 2, . . . , L, and QL+1 = 0. The result for the exact projection then

follows by the minimizing property of the orthogonal projection.

Let l < L and u ∈ U . We estimate using Lemma 4.15, norm equivalence (4.7),

and hl+1 = 3hl,

(4.48) ‖u−Ql+1u‖ = ‖(I − π−1
1 Πl+1π1)u‖

6 Ch−1
1 ‖π1(I − π−1

1 Πl+1π1)u‖L2(Ω)

= Ch−1
1 ‖(I −Πl+1)π1u‖L2(Ω)

6 C
hl+1

h1
|π1u|H1(Ω) 6 C

hl

h1
|π1u|H1(Ω)

= C
hl

h1
‖u‖A.
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For l = L, we have by hL = 1/2 (since there is only one degree of freedom located

in the center of Ω), and by Friedrichs’ inequality (4.36) for T = Ω,

‖u−QL+1u‖ = ‖u‖ 6 Ch−1
1 ‖π1u‖L2(Ω) 6 h−1

1 C|π1u|H1(Ω) 6 C
hL

h1
‖u‖A,

proving (4.48) for l = L.

Statement (4.46) follows from (4.45) and estimate (4.48). �

Now we are ready to formulate the final convergence theorem.

Theorem 4.17. For model problem (3.1) and smoothed aggregation based coarse-

spaces Ul = Range(I1l ) with prolongators I
l
l+1 as defined in Section 3, the BPX

preconditionerB = B given by Algorithm 1 (and Algorithm 2) satisfies the estimate

(4.49)
c

L
‖u‖2A 6 〈BAu,u〉A 6 CL‖u‖2A ∀u ∈ U

with constants C > c > 0 independent of h and L.

P r o o f. The proof consists in the verification of the assumptions of Theorem 2.1.

Assumption (2.4) follows from Lemma 4.16. Assumption (2.5) holds by virtue of

Corollary 4.12. �

R em a r k 4.18 (Choice of σl). In practice, it is relatively difficult to determine

upper bounds σl > σl in (2.13) computationally. From Lemma 4.16, we know that

there is a constant cσ > 0 independent of h, l, and L such that

σl ≡
cσ
9l−1

> σl, l = 1, . . . , L.

To get an efficient preconditioner, it is not neccessary to determine the constant cσ.

In (2.12), it is sufficient to use

σ̃l =
1

9l−1
, l = 1, . . . , L,

in the place of σl = cσ/9
l−1. Obviously, this leads to the scalar multiple B̃ = c−1

σ B.

This simplification does not alter the convergence estimate since

cond(A, B̃) = cond(A, c−1
σ B) = cond(A,B) 6

C

c
L2.

Here, C, c are the constants from (4.49).
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R em a r k 4.19. By means very similar to those used in Section 4, for operators Q̃l,

it is possible to verify assumptions of the abstract convergence result of [1] with

uniform constants. Then, for a standard multiplicative multigrid, we get the estimate

of the convergence rate in the energy norm in the form 1 − C/L. Compared to the

former result of [7], where the convergence rate deteriorates with the power of 3 of L,

this is an improvement.
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