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2-FACTORS IN CLAW-FREE GRAPHS WITH LOCALLY

DISCONNECTED VERTICES

Mingqiang An, Tianjin, Liming Xiong, Beijing, Runli Tian, Changsha

(Received February 19, 2014)

Abstract. An edge of G is singular if it does not lie on any triangle of G; otherwise, it is
non-singular. A vertex u of a graph G is called locally connected if the induced subgraph
G[N(u)] by its neighborhood is connected; otherwise, it is called locally disconnected.
In this paper, we prove that if a connected claw-free graph G of order at least three

satisfies the following two conditions: (i) for each locally disconnected vertex v of degree
at least 3 in G, there is a nonnegative integer s such that v lies on an induced cycle of
length at least 4 with at most s non-singular edges and with at least s−5 locally connected
vertices; (ii) for each locally disconnected vertex v of degree 2 in G, there is a nonnegative
integer s such that v lies on an induced cycle C with at most s non-singular edges and with
at least s− 3 locally connected vertices and such that G[V (C)∩V2(G)] is a path or a cycle,
then G has a 2-factor, and it is the best possible in some sense. This result generalizes
two known results in Faudree, Faudree and Ryjáček (2008) and in Ryjáček, Xiong and
Yoshimoto (2010).
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1. Introduction

All graphs considered are simple finite undirected graphs and we refer to [2] for

terminology and notation not defined here.

Specifically, Ck denotes the cycle on k vertices and Pk the path on k vertices (i.e.

of length k − 1). We denote the set of all vertices of degree k in G by Vk(G) and

denote V>k(G) =
⋃

i>k

Vi(G). The distance in G of two vertices x, y ∈ V (G) is denoted

The research has been supported by the Natural Science Funds of China (Nos. 11471037,
11171129 and 11426222), Specialized Research Fund for the Doctoral Program of Higher
Education (No. 20131101110048) and by the Innovation Fund for Young Teachers of
Tianjin University of Science and Technology (No. 2014CXLG21).
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dG(x, y), and for two subgraphs F1, F2 ⊂ G we denote dG(F1, F2) = min{dG(x, y) :

x ∈ V (F1), y ∈ V (F2)}. A clique is a (not necessarily maximal) complete subgraph

of a graph G, and, for an edge e ∈ E(G), ωG(e) denotes the largest order of a clique

containing e. The line graph of H, denoted by L(H), is the graph with E(H) as

the vertex set, in which two vertices are adjacent if and only if the corresponding

edges have a vertex in common. Given a graph F, a graph G is said to be F -free if

there is no induced subgraph of G that is isomorphic to F. The graph F is generally

called a forbidden subgraph of G. Specifically, the four-vertex star K1,3 will be called

the claw, and a K1,3-free graph will be also said to be claw-free. It is a well-known

fact that every line graph is claw-free, hence the class of claw-free graphs can be

considered a natural generalization of the class of line graphs.

A cycle in G of length |V (G)| is called a hamiltonian cycle, and a graph containing

a hamiltonian cycle is said to be hamiltonian. A 2-factor of a graph G is a spanning

subgraph of G in which every vertex has the same degree 2. Thus, a hamiltonian

cycle is a connected 2-factor.

It follows from either [3] or [4] that every claw-free graph G with δ(G) > 4 has

a 2-factor. Yoshimoto [15] showed that a claw-free graph G with δ(G) > 3 has

also a 2-factor if additionally G is 2-connected. Later, Faudree et al. [5] proved

the following theorem on forbidden subgraph conditions that imply the existence of

2-factors.

Theorem 1 (Faudree, Faudree, Ryjáček, [5]). If G is a 2-connected graph of

order at least three which is claw-free and Ci-free for all i > 6, then G has a 2-factor.

Let Ck be a cycle of even length k > 4. Two edges e1, e2 ∈ E(G) are said to

be antipodal in Ck, if they are at maximum distance in Ck (i.e. dCk
(e1, e2) =

k/2 − 1). An even cycle Ck in a graph G is said to be edge-antipodal, abbreviated

EA, if min{ωG(e1), ωG(e2)} = 2 for any two antipodal edges e1, e2 ∈ E(Ck). In 2010,

Ryjáček et al. introduced a closure for 2-factors, and using this concept, they proved

the following theorem.

Theorem 2 (Ryjáček, Xiong, Yoshimoto, [13]). Let G be a claw-free graph in

which every locally disconnected vertex is in an induced cycle of length 4 or 5, or in

an induced EA-C6. Then G has a 2-factor.

The neighborhood of a vertex v in G is denoted by NG(v). A vertex v of G is

locally connected if G[NG(v)] is connected; otherwise, it is locally disconnected. Let

LC(G) denote the set of all locally connected vertices of G. A graph G is called

locally connected if every vertex of G is locally connected, i.e. LC(G) = V (G).

An edge e of G is singular if it does not lie on any triangle of G; otherwise, it is
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non-singular. Recently, the last two authors proved the following result, which is

a common extension of two known results in [1] and [7], hence also of the results in

[8] and [11].

Theorem 3 (Tian, Xiong, [14]). Let G be a connected claw-free graph of order

at least three such that

(i) for each locally disconnected vertex v of degree at least 3 in G, there is a non-

negative integer s such that v lies on an induced cycle of length at least 4 with

at most s non-singular edges and with at least s− 3 locally connected vertices;

(ii) for each locally disconnected vertex v of degree 2 in G, there is a nonnegative

integer s such that v lies on an induced cycle C with at most s non-singular edges

and with at least s−2 locally connected vertices and such that G[V (C)∩V2(G)]

is a path or a cycle.

Then G is Hamiltonian.

Motivated by an extension of Theorems 1 and 2, we use a condition similar to

that in Theorem 3 and obtain the following sufficient condition for a claw-free graph

to have a 2-factor that is an extension of Theorems 1 and 2.

Theorem 4. Let G be a connected claw-free graph of order at least three such

that

(i) for each locally disconnected vertex v of degree at least 3 in G, there is a non-

negative integer s such that v lies on an induced cycle of length at least 4 with

at most s non-singular edges and with at least s− 5 locally connected vertices;

(ii) for each locally disconnected vertex v of degree 2 in G, there is a nonnegative

integer s such that v lies on an induced cycle C with at most s non-singular edges

and with at least s−3 locally connected vertices and such that G[V (C)∩V2(G)]

is a path or a cycle.

Then G has a 2-factor.

The following corollary is a direct consequence of Theorem 4, because it is the

special case of Theorem 4 for s = 5 in condition (i) and for s = 3 in condition (ii).

Corollary 5. Let G be a connected claw-free graph of order at least three such

that

(i) every locally disconnected vertex of degree at least 3 lies on an induced cycle of

length at least 4 with at most 5 non-singular edges;

(ii) every locally disconnected vertex of degree 2 lies on an induced cycle C with at

most 3 non-singular edges such that G[V (C) ∩ V2(G)] is a path or a cycle.

Then G has a 2-factor.

319



In Section 2, we shall present Ryjáček’s closure concept in claw-free graphs and

some auxiliary results, which are then applied to the proof of our main result in

Section 3. We prove that Theorem 4 is an extension of Theorems 1 and 2 in Sections 4

and 5, respectively. In the last section, we discuss the sharpness of Theorem 4, point

out that there exist many graphs which satisfy the conditions in Corollary 5 but not

the ones in Theorems 1 or 2, and propose an open problem.

2. The closure of a claw-free graph

A locally connected vertex v is said to be eligible if G[NG(v)] is not complete.

For a vertex x of a graph G, the graph G∗

x with V (G∗

x) = V (G) and E(G∗

x) =

E(G) ∪ {uv : u, v ∈ NG(x)} is called the local completion of G at x. For a claw-free

graph G, let G1 = G. For i > 1, if Gi is defined and has an eligible vertex xi, then let

Gi+1 = (Gi)
∗

xi
. If Gs = (Gs−1)

∗

xs−1
has no eligible vertex, then let cl(G) = Gs and

let us call it the closure of G. Ryjáček [10] showed that the closure of G is uniquely

determined and G is hamiltonian if and only if cl(G) is hamiltonian. The latter result

was extended to 2-factors as follows.

Theorem 6 (Ryjáček, Saito, Schelp, [12]). If G is a claw-free graph, then G has

a 2-factor if and only if cl(G) has a 2-factor.

Ryjáček [10] also established the following relationship between claw-free graphs

and triangle-free graphs.

Theorem 7 (Ryjáček, [10]). If G is a claw-free graph, then there is a triangle-free

graph H such that L(H) = cl(G).

In a claw-free graph G, the locally disconnected vertices can be partitioned into

three classes, depending on the structure of the graphs G[N(v)]: Let LD0(G) denote

the class of all vertices v for which G[N(v)] is disconnected with two components

of order one, let LD1(G) denote the class of all vertices v for which G[N(v)] is

disconnected with exactly one component of order one, and let LD2(G) denote the

class of all vertices v for which G[N(v)] is disconnected with no component of order

one. Note that for a locally disconnected vertex v in a claw-free graph G, G[N(v)]

consists of exactly two complete subgraphs of G. Pfender proved the following result.

Lemma 8 (Pfender, [9]). (LD0(cl(G))∪LD1(cl(G))) ⊆ (LD0(G)∪LD1(G)) and

LD2(cl(G)) ⊆ LD2(G) for every claw-free graph G.

Recently, Tian and Xiong extended Lemma 8 as follows.
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Lemma 9 (Tian, Xiong, [14]). For i ∈ {0, 1, 2}, LDi(cl(G)) ⊆ LDi(G) for every

claw-free graph G.

For the proof of our main result, we need the following proposition, showing that

if a graph G satisfies the assumptions of Theorem 4, then its closure cl(G) satisfies

the assumptions of Corollary 5.

Proposition 10. Let G be a graph satisfying the assumptions of Theorem 4.

Then cl(G) is a connected claw-free graph of order at least three such that

(1) every locally disconnected vertex of degree at least 3 in cl(G) lies on an induced

cycle of length at least 4 with at most 5 non-singular edges;

(2) every locally disconnected vertex of degree 2 in cl(G) lies on an induced cycle C′

with at most 3 non-singular edges such that cl(G)[V (C′) ∩ V2(cl(G))] is a path

or a cycle.

In order to prove Proposition 10, we need the following lemmas. A branch in G is

a nontrivial path with end vertices that do not lie in V2(G) and with internal vertices

of degree 2 (if such exist). If a branch has length 1, then it has no internal vertices of

degree 2. We use B(G) to denote the set of branches in G.

Lemma 11 (Tian, Xiong, [14]). Let G be a claw-free graph. If the length of

L ∈ B(G) is at least 3 in G, then L ∈ B(cl(G)).

Lemma 12. Let G be a claw-free graph and C an induced cycle in G with at most

s non-singular edges and with at least s − l locally connected vertices, where s and

l are nonnegative integers and l 6 s. If x ∈ V (C) is locally disconnected in cl(G),

then there is an induced cycle C′ of length at least 4 in cl(G) with x ∈ V (C′) ⊆ V (C)

and with at most l non-singular edges.

P r o o f of Lemma 12. Since x ∈ V (C) is locally disconnected in cl(G), there

is an induced cycle C′ in cl(G) such that x ∈ V (C′) ⊆ V (C) and |V (C)| > 4. It

remains to prove that C′ has at most l non-singular edges in cl(G).

Note that every vertex of C′ is locally disconnected in cl(G). By Lemma 9, V (C′)∩

LDi(cl(G)) ⊆ V (C)∩LDi(G) for i = 0, 1, 2. Hence the number of non-singular edges

in C′ is no more than the number s of non-singular edges in C. If C has no locally

connected vertices in G, then s = l, hence we are done. Now we consider s 6= l.

Suppose {u1, u2, . . . , us−l} ⊆ V (C) ∩ LC(G). As mentioned before, cl(G) is

uniquely determined by the graph G, i.e., cl(G) is independent of the order of eligible

vertices during the construction. Note that each ui is an eligible vertex in G by the

hypothesis that C is an induced cycle. Let G1 = G∗

u1
and NG(u1)∩V (C) = {v1, v2}.

Then there exists an induced cycle C1 in G1 with V (C1) = V (C)\{u1} and E(C1) =
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(E(C)\{u1v1, u1v2})∪{v1v2}. Since u1v1, u1v2, v1v2 are non-singular, C1 has at most

s−1 non-singular edges. Notice that C1 is an induced cycle and that ui is an eligible

vertex in G1 for i = 2, . . . , s− l. By recursively performing the local completion on ui

for i = 1, . . . , s− l, we can obtain an induced cycle Cs−l in Gs−l such that Cs−l has

at most s− (s− l) = l non-singular edges and V (Cs−l) = V (C) \ {u1, u2, . . . , us−l}.

By Lemma 9, V (C′) ∩ LDi(cl(G)) ⊆ V (Cs−l) ∩ LDi(Gs−l) for i = 0, 1, 2. Hence the

number of non-singular edges in C′ is no more than the number l of non-singular

edges in Cs−l. �

Now we present the proof of Proposition 10.

P r o o f of Proposition 10. First suppose that x is a locally disconnected vertex

of degree at least 3 in cl(G). Then x ∈ LD1(cl(G)) or x ∈ LD2(cl(G)). By Lemma 9,

x ∈ LD1(G) or x ∈ LD2(G). This implies that x is a locally disconnected vertex

in G and dG(x) > 3. By assumption (i) of Theorem 4, x lies on an induced cycle

of length at least 4 in G with at most s non-singular edges and with at least s − 5

locally connected vertices. By Lemma 12, x satisfies condition (1) of Proposition 10.

Next suppose that x is a locally disconnected vertex of degree 2 in cl(G). Then x

is a locally disconnected vertex of degree 2 in G. By assumption (ii) of Theorem 4,

x lies on an induced cycle C with at most s non-singular edges and with at least

s− 3 locally connected vertices such that G[V (C) ∩ V2(G)] is a path or a cycle. By

Lemma 12, x lies on an induced cycle C′ with V (C′) ⊆ V (C) and with at most 3

non-singular edges.

If G[V (C) ∩ V2(G)] is a cycle, then, since G is connected, G is a cycle. Hence

cl(G) is a cycle and we are done. If G[V (C)∩V2(G)] = {x}, then since x ∈ V (C′) ⊆

V (C) and x ∈ V2(cl(G)) ⊆ V2(G), we have V (C′) ∩ V2(cl(G)) = {x} and we are

also done. Thus, suppose that |V (C) ∩ V2(G)| > 2 and L is the branch such that

(V (C) ∩ V2(G)) ⊇ V (L). By assumption (ii) of Theorem 4, L ∈ B(G) is the unique

branch in C. By Lemma 11, L ∈ B(cl(G)) is the unique branch in C′. This implies

that cl(G)[V (C′) ∩ V2(cl(G))] ⊆ V (L) is a path. �

3. Proof of Theorem 4

In this section we present the proof of the main result of this paper. An even

graph is a graph in which every vertex has a positive even degree. A connected even

subgraph is called a circuit. For m > 2, a star K1,m is a complete bipartite graph

with independent sets A = {c} and B with |B| = m; the vertex c is called the center

and the vertices in B are called the leaves of K1,m.

Let S be a set of edge-disjoint circuits and stars with at least three edges in

a graph H . We call S a system that dominates H or simply a dominating system if
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every edge ofH is either contained in one of the circuits or stars ofS or is adjacent to

one of the circuits. Gould and Hynds gave the following characterization of a graph

H with L(H) that has a 2-factor.

Theorem 13 (Gould, Hynds, [6]). Let H be a graph. Then L(H) has a 2-factor

with c components if and only if there is a system with c elements that dominates H .

The following result, which is also necessary for our proof, follows immediately

from Proposition 10 (2).

Lemma 14. Let G be a graph satisfying the assumptions of Theorem 4. Then

every branch L ∈ B(G) of length at least 2 lies on an induced cycle C such that C

has at most 3 non-singular edges and L is the unique branch of length at least 2

in C.

Let M and M ′ be two sets of edges of a graph G. We use M∆M ′ to denote the

symmetric difference of M and M ′, i.e. M∆M ′ = (M ∪M ′) \ (M ∩M ′). An edge

e is called a pendant edge if the degree of the end vertex of e is 1; otherwise, it is

non-pendant. If G is a line graph, then the graph H for which L(H) = G will be

called the preimage of G and denoted H = L−1(G). For any subgraph C of a line

graph G, we let L−1(C) denote the preimage of C.

Lemma 15. Let G be a graph satisfying the assumptions of Theorem 4 and H

a graph such that cl(G) = L(H). If B is a 2-connected block of H that is not a cycle

and e = uv ∈ E(B), then e lies on a cycle C such that either

(3) C has at most 5 vertices of degree greater than 2 in H and C has no branch of

length at least 3 in H ; or

(4) C has at most 3 vertices of degree greater than 2 in H and C has exactly one

branch of length at least 3 in H.

P r o o f of Lemma 15. By Proposition 10, every locally disconnected vertex in

cl(G) satisfies condition (1) or (2) of Proposition 10.

Claim 1. Every branch L ∈ B(H) of length at least 3 lies on a cycle C such that

C has at most 3 vertices of degree greater than 2 in H and L is the unique branch

of length at least 3 in C.

P r o o f of Claim 1. Let L′ ∈ B(cl(G)) be a branch corresponding to L ∈ B(H).

Note that |E(L′)| = |E(L)| − 1 > 2. By Lemma 14, there exists an induced cycle C′

such that C′ has at most 3 non-singular edges and L′ is the unique branch of length

at least 2 in C′.

By the fact that cl(G) = L(H), L−1(C′) is a cycle in H such that L−1(C′) has at

most 3 vertices of degree greater than 2 in H and L is the unique branch of length

at least 3 in H. �
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If e lies on a branch L ∈ B(H) of length at least 3, then e lies on a cycle sat-

isfying (4) by Claim 1. Now suppose that e lies on a branch L ∈ B(H) of length

1 or 2. Let ve ∈ V (cl(G)) be the vertex corresponding to the edge e in E(H).

Then dcl(G)(ve) > 3. Since H is triangle-free, NH(u) ∩ NH(v) = ∅. By the fact

that B is 2-connected, NH(u) 6= ∅ and NH(v) 6= ∅. Further, since cl(G) is claw-free,

cl(G)[Ncl(G)(ve)] consists of two vertex-disjoint cliques, i.e., ve is locally disconnected

in cl(G).

By Proposition 10, ve lies on an induced cycle Ce of length at least 4 in cl(G)

with at most 5 non-singular edges. By the fact that cl(G) = L(H), L−1(Ce) is

a cycle in H such that e ∈ E(L−1(Ce)) and |V (L−1(Ce)) ∩ V>3(H)| 6 5. Since

B is not a cycle, |V (L−1(Ce)) ∩ V>3(H)| > 2. Note that L−1(Ce) has a branch

of length 1 or 2. Therefore, if |V (L−1(Ce)) ∩ V>3(H)| = 2, then L−1(Ce) has at

most one branch of length at least 3, which implies that L−1(Ce) satisfies (3) or

(4); if |V (L−1(Ce)) ∩ V>3(H)| = 3, then L−1(Ce) has at most t (t 6 2) branches of

length at least 3. Suppose that L1 and L2 are the two possible branches of length at

least 3 in L−1(Ce) (L1 = L2 if t = 1). By Claim 1, Li lies on a cycle Ci satisfying

(4) for i = 1, 2. Thus, either C = H [E(L−1(Ce))∆E(C1)∆E(C2)] (if t = 2), or

C = H [E(L−1(Ce))∆E(C1)] (if t = 1), or C = Ce (if t = 0) is a cycle such that

e ∈ E(C) and such that C satisfies (3).

If |V (L−1(C)) ∩ V>3(H)| = 4 or 5, we can use the same method as above and

finally obtain a cycle C that satisfies (3). �

Now we present the proof of our main result.

P r o o f of Theorem 4. We choose an even subgraph X of H such that

(a) X contains a maximum number of branches of length at least 3;

(b) subject to condition (a), X contains a maximum number of vertices of degree

greater than 2 in H ;

(c) subject to conditions (a) and (b), X contains a maximum number of edges

of H.

Let F = H −X. Then we have

Claim 2. Each of the following conditions holds:

(5) X contains all branches of length at least 3 in H ;

(6) every component of F has at most one vertex of degree greater than 2 in H ;

(7) F is a forest.

P r o o f of Claim 2. (5) Suppose, on the contrary, that there exists a branch B

of H with length at least 3 such that B does not lie on X. Then by Lemma 15, B lies

on a cycle C satisfying (4). Let X ′ be the graph with E(X ′) = E(X)∆E(C) (and

with the corresponding set of vertices). Then X ′ contains more branches of length

at least 3 in H than X, which contradicts (a).
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(6) Suppose, on the contrary, that there exists a component F ′ of F such that F ′

has at least two vertices of degree greater than 2 in H. Since F ′ is connected, there

exists a path connecting any two of these vertices. We choose two of the vertices

x1, x2 such that x1, x2 ∈ V (F ′)∩V>3(H) and dF ′(x1, x2) is as small as possible. Let

P be a path connecting x1 and x2.We claim that |E(P )| 6 2: For otherwise, suppose

that |E(P )| > 3. By our choice of x1 and x2, all of the inner vertices of P are of

degree 2 in H. Thus P is a branch of length at least 3 in H. This contradicts (5).

If |E(P )| = 1, then NF ′(x1) ∩NF ′(x2) = ∅. Since the edge x1x2 is not a pendant

edge, by Lemma 15 (3), the edge x1x2 lies on an induced cycle C of length at least 4

with at most 5 vertices of degree greater than 2 in H.

If |E(P )| = 2, then let NF ′(x1) ∩ NF ′(x2) = {x}. Since the edge x1x is not

a pendant edge, by Lemma 15 (3), the edge x1x lies on an induced cycle C of length

at least 4 with at most 5 vertices of degree greater than 2 in H. Since dF ′(x) = 2,

the edge xx2 also lies on C.

Thus, in any case, x1 and x2 lie on a common induced cycle C of length at least 4

with at most 5 vertices of degree greater than 2 in H.

We first suppose that |V (X) ∩ V (C) ∩ V>3(H)| = 1. Let X ′ be the graph with

E(X ′) = E(X) ∪ E(C) (and with the corresponding set of vertices). Then X ′ is an

even subgraph of H satisfying (a), but X ′ has more vertices of degree greater than 2

in H in comparison with X, contradicting (b).

Now we suppose that |V (X) ∩ V (C) ∩ V>3(H)| > 2. Let X ′ be the graph with

E(X ′) = E(X)∆E(C) (and with the corresponding set of vertices). Then it is easy to

see that X ′ satisfies (a), but |V (X ′)∩V>3(H)| > |V (X)∩V>3(H)|, contradicting (b).

(7) Suppose, otherwise, that there exists a cycle C′ in F. Let X ′ be the graph

with E(X ′) = E(X) ∪ E(C′) (and with the corresponding set of vertices). Then X ′

is an even subgraph of H satisfying (a) and (b), but X ′ has more edges than X,

contradicting (c). �

Claim 3. Every component of F has exactly one vertex of degree greater than 2

in H.

P r o o f of Claim 3. By (6), we only need to prove that every component of F

has at least one vertex of degree greater than 2 in H.

Suppose, on the contrary, that there exists a component F0 of F such that F0 has

no vertex of degree greater than 2 in H. Since F0 is connected, there exists a path

P in F0. By (5), |E(P )| 6 2.

Let P = x1x2xi, 2 6 i 6 3. Without loss of generality, we suppose that dH(x1) >

dH(xi). By (6) and our hypothesis, 2 > dH(x1) > dH(xi). Then we claim that

dH(x1) = 2 (otherwise, if dH(x1) = 1, then dH(xi) = 1, i = 2 or 3, hence |E(H)| 6 2,

contradicting the fact that cl(G) = L(H) has at least three vertices), i = 2 (if
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i = 3, then, since dH(x1) = 2, F0 has a branch of length at least three in H,

contradicting (5)), and dH(x2) = 1 (if dH(x2) = 2, then F0 has a branch of length

at least three in H, contradicting (5)). Thus, let x′

1 ∈ NH(x1). Since x
′

1x1 ∈ E(H)

is not a pendant edge, by Lemma 15, x′

1x1 lies on a cycle C of H. Since dH(x1) = 2,

x1x2 also lies on C, but this is impossible since dH(x2) = 1. �

By Claim 3, every component Fi of F is a star Si with at least three edges. So

X ∪
(

⋃

i=1

Si

)

is a dominating system of H. Thus L(H) has a 2-factor by Theorem 13.

Therefore, by Theorems 7 and 6, G has a 2-factor. �

4. Theorem 4 is an extension of Theorem 1.

P r o o f. In order to prove that Theorem 4 is an extension of Theorem 1, it

is sufficient to prove that Corollary 5 is an extension of Theorem 1. Thus we only

need to prove that a graph satisfying the conditions of Theorem 1, must also satisfy

condition (i) and (ii) in Corollary 5.

Let G be a graph satisfying the conditions of Theorem 1, and v any locally dis-

connected vertex in G. Since G is 2-connected, v is not a cut vertex. Then v lies on

an induced cycle C. By the assumption of v, the length of C is at least 4. Since G is

Ci-free (i > 6), the length of C is at most 5.

First suppose that dG(v) > 3. Then C has at most 5 non-singular edges. So v

satisfies condition (i) in Corollary 5. Thus G satisfies condition (i) in Corollary 5.

Next suppose that dG(v) = 2. Then C has at most 3 non-singular edges. If C

has only one non-singular edge, then G[V (C) ∩ V2(G)] = P3; if C has two non-

singular edges which are adjacent in G, then G[V (C) ∩ V2(G)] = P2; if C has two

non-singular edges which are non-adjacent in G, or C has three non-singular edges,

then G[V (C)∩V2(G)] is an isolated vertex. In all these cases, v satisfies condition (ii)

in Corollary 5. Thus G satisfies condition (ii) in Corollary 5. �

5. Theorem 4 is an extension of Theorem 2

P r o o f. In order to prove that Theorem 4 is an extension of Theorem 2, it

is sufficient to prove that Corollary 5 is an extension of Theorem 2. Thus we only

need to prove that a graph satisfying the conditions of Theorem 2, must also satisfy

condition (i) and (ii) in Corollary 5.

Let G be a graph satisfying the conditions of Theorem 2, and v any locally dis-

connected vertex in G. Then v is in an induced cycle C with |E(C)| = 4 or 5, or in

an induced EA-C6.
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First suppose that v is in an induced cycle C with |E(C)| = 4 or 5. By an argument

similar to the proof in Section 4, we could prove that v satisfies condition (i) or (ii)

in Corollary 5. Thus, G satisfies condition (i) or (ii) in Corollary 5.

Next suppose that v is in an induced EA-C6. If dG(v) > 3, then EA-C6 has

at most 5 non-singular edges (if EA-C6 has 6 non-singular edges, then there exist

two antipodal edges e1, e2 ∈ E(EA-C6), such that min{ωG(e1), ωG(e2)} > 3; this

contradicts the definition of EA-C6). So v satisfies condition (i) in Corollary 5.

Thus G satisfies condition (i) in Corollary 5.

If dG(v) = 2, then EA-C6 has at most 3 non-singular edges (if EA-C6 has 4 non-

singular edges, then there exist two antipodal edges e1, e2 ∈ E(EA-C6), such that

min{ωG(e1), ωG(e2)} > 3; this contradicts the definition of EA-C6). It is straight-

forward to check that G[V (EA-C6) ∩ V2(G)] is a path. So v satisfies condition (ii)

in Corollary 5. Thus G satisfies condition (ii) in Corollary 5. �

6. Concluding remarks

6.1. Sharpness. In this subsection, we discuss the sharpness and show that all

the conditions of Theorem 4 are the best possible in some sense.

⊲ The condition “s − 5 locally connected vertices” in Theorem 4 (i) cannot be

replaced by “s− 6 locally connected vertices”. The graph L(H1), where H1 is

illustrated in Figure 1, is a graph such that every locally disconnected vertex of

degree at least 3 lies on an induced cycle of length 6 with 6 non-singular edges

and without a locally connected vertex. However, the line graph L(H1) has no 2-

factor: otherwise, by Theorem 13, H1 has a dominating system, a contradiction.

Figure 1. H1.

⊲ The condition “s − 3 locally connected vertices” in Theorem 4 (ii) cannot be

replaced by “s− 4 locally connected vertices”. The graph L(H2), where H2 is

illustrated in Figure 2, is a graph such that every locally disconnected vertex

of degree 2 lies on an induced cycle C with 4 non-singular edges and without

a locally connected vertex such that G[V (C) ∩ V2(G)] is a path or a cycle.
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However, the line graph L(H2) has no 2-factor: otherwise, by Theorem 13,

H2 has a dominating system, a contradiction.

Figure 2. H2.

⊲ The condition “G[V (C) ∩ V2(G)] is a path or a cycle” in Theorem 4 (ii) is

necessary. The graph H3 in Figure 3 is a graph satisfying condition (i) but

not (ii) since the three locally disconnected vertices of degree two do not satisfy

Condition (ii) of Theorem 4 (although any two of them lie on an induced cycle

with only two non-singular edges). It is straightforward to check that H3 has no

2-factor. One can obtain many such graphs of arbitrarily large order by joining

a clique of arbitrary order to any nontrivial maximal clique of H3.

Figure 3. H3.

6.2. There exist many graphs which satisfy the conditions in Corollary 5

but not the ones in Theorems 1 and 2. In fact, let k > 7 be an integer and G

a connected graph obtained from a cycle Ck and some isolated vertices, by joining

the isolated vertices with the vertices on the cycle Ck so that there are at most 3

non-singular edges on Ck and G[V (Ck)∩V2(G)] is a path or a cycle. Then G satisfies

condition (ii) in Corollary 5, but does not satisfy the conditions of Theorems 1 and 2,

respectively.

6.3. Open problem. At the end of this section, we propose the following problem

for further study.

Problem 16. Does every connected claw-free graph G of order n > 3 with

conditions (i) and (ii) of Theorem 4 have a 2-factor with at most n/9+1 components?

If Problem 16 has a positive solution, then the upper bound is sharp in the fol-

lowing sense. We use K ′

2,3 to denote the graph obtained from K2,3 by attaching

one pendant edge to every vertex of degree two. Let s be an integer and F1(x1, y1),
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F2(x2, y2), . . . , Fs(xs, ys) (s > 3) s copies of K ′

2,3, where xi, yi are two noncutver-

tices of degree 3 of Fi(xi, yi), 1 6 i 6 s. Then the graph H4 is obtained from these s

Fi(xi, yi) by identifying yi and xi+1 for all i ∈ {1, 2, . . . , s−1}. For an example in the

case when s = 5, see Figure 4. Therefore |E(H4)| = n = 9s and n/9+1 = s+1. Be-

cause three cutvertices of degree 3 of Fi(xi, yi) do not lie on a common circuit in any

possible dominating system, H4 has a dominating system with n/9+ 1 components.

By Theorem 13, L(H4) has a 2-factor with exactly n/9 + 1 components.

Figure 4. H4.
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