Czechoslovak Mathematical Journal

Jeffrey L. Stuart

Nested matrices and inverse M-matrices

Czechoslovak Mathematical Journal, Vol. 65 (2015), No. 2, 537-544
Persistent URL: http://dml.cz/dmlcz/144286

Terms of use:

© Institute of Mathematics AS CR, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

NESTED MATRICES AND INVERSE M-MATRICES

Jeffrey L. Stuart, Tacoma

(Received September 5, 2014)

Abstract. Given a sequence of real or complex numbers, we construct a sequence of nested, symmetric matrices. We determine the $L U$ - and $Q R$-factorizations, the determinant and the principal minors for such a matrix. When the sequence is real, positive and strictly increasing, the matrices are strictly positive, inverse M-matrices with symmetric, irreducible, tridiagonal inverses.

Keywords: nested matrix; tridiagonal matrix; inverse M-matrix; principal minor; determinant; $Q R$-factorization

MSC 2010: 15A15, 15A09, 15B05

1. BASIC RESULTS FOR NESTED MATRICES

For a positive integer n, and a sequence of complex numbers $a_{1}, a_{2}, \ldots, a_{n}$, the $n \times n$ nested matrix $M=M\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is defined by

$$
M=\left[\begin{array}{ccccccc}
a_{1} & a_{1} & a_{1} & a_{1} & \ldots & a_{1} & a_{1} \\
a_{1} & a_{2} & a_{2} & a_{2} & \ldots & a_{2} & a_{2} \\
a_{1} & a_{2} & a_{3} & a_{3} & \ldots & a_{3} & a_{3} \\
a_{1} & a_{2} & a_{3} & a_{4} & & a_{4} & a_{4} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
a_{1} & a_{2} & a_{3} & a_{4} & \ldots & a_{n-1} & a_{n-1} \\
a_{1} & a_{2} & a_{3} & a_{4} & \ldots & a_{n-1} & a_{n}
\end{array}\right] .
$$

We observe that M is symmetric, so that when all of the a_{j} are real, the spectrum of M must be real.

Theorem 1. The $n \times n$ matrix $M\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ has an $L U$-factorization in which L does not depend on the sequence $a_{1}, a_{2}, \ldots, a_{n}$.

$$
\begin{gathered}
L=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & \ldots & 0 & 0 \\
1 & 1 & 0 & 0 & \ldots & 0 & 0 \\
1 & 1 & 1 & 0 & \ldots & 0 & 0 \\
1 & 1 & 1 & 1 & & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & 1 & 1 & \ldots & 1 & 0 \\
1 & 1 & 1 & 1 & \ldots & 1 & 1
\end{array}\right] \\
U=\left[\begin{array}{ccccccc}
a_{1} & a_{1} & a_{1} & a_{1} & \ldots & a_{1} & a_{1} \\
0 & a_{2}-a_{1} & a_{2}-a_{1} & a_{2}-a_{1} & \ldots & a_{2}-a_{1} & a_{2}-a_{1} \\
0 & 0 & a_{3}-a_{2} & a_{3}-a_{2} & \ldots & a_{3}-a_{2} & a_{3}-a_{2} \\
0 & 0 & 0 & a_{4}-a_{3} & \ldots & a_{4}-a_{3} & a_{4}-a_{3} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & a_{n-1}-a_{n-2} & a_{n-1}-a_{n-2} \\
0 & 0 & 0 & 0 & \ldots & 0 & a_{n}-a_{n-1}
\end{array}\right] .
\end{gathered}
$$

Proof. The result follows directly from the fact that for $2 \leqslant k \leqslant n$,

$$
a_{1}+\left(a_{2}-a_{1}\right)+\left(a_{3}-a_{2}\right)+\ldots+\left(a_{k}-a_{k-1}\right)=a_{k} .
$$

Corollary 2. The $n \times n$ matrix $M\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ has an $L D L^{\mathrm{T}}$-factorization where L is given in Theorem 1 and D is the $n \times n$ diagonal matrix $D=\operatorname{diag}\left(a_{1}, a_{2}-a_{1}\right.$, $\left.a_{3}-a_{2}, \ldots, a_{n}-a_{n-1}\right)$.

Proof. By direct computation, $D L^{\mathrm{T}}=U$ where U is given in Theorem 1 .

2. Determinants of nested matrices

The next theorem follows immediately from Theorem 1.

Theorem 3. The determinant of $M\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is

$$
\operatorname{det} M\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1}\left(a_{2}-a_{1}\right)\left(a_{3}-a_{2}\right) \ldots\left(a_{n}-a_{n-1}\right)
$$

Corollary 4. Let c be a real or complex number, and let the real or complex sequence $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ satisfy the second order recursion $a_{n}=a_{n-1}+c a_{n-2}$ for $n \geqslant 2$. Then

$$
\operatorname{det} M\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1} c^{n-1} \prod_{j=0}^{n-2} a_{j}
$$

In particular, when $n \geqslant 2$ and $c=a_{0}=a_{1}=1$, each a_{j} is the $j^{\text {th }}$ Fibonacci number F_{j}, which yields,

$$
\operatorname{det} M\left(F_{1}, F_{2}, \ldots, F_{n}\right)=\prod_{j=1}^{n-2} F_{j}
$$

The product of the first $n+1$ Fibonacci numbers, $F_{0} F_{1} \ldots F_{n-1} F_{n}$ is sometimes called the $n^{\text {th }}$ Fibonacci generalized factorial, the $n^{\text {th }}$ fibotorial, or the $n^{\text {th }}$ fibonorial. (See [3], and also the sequence A003266 in [2].)

Corollary 5. Let k be a positive integer, and let $M_{n, k}$ be the $n \times n$ matrix $M_{n, k}=M\left(\binom{k}{k},\binom{k+1}{k}, \ldots,\binom{k+n-1}{k}\right)$. Then

$$
d_{n, k}=\operatorname{det} M_{n, k}=\prod_{j=k}^{k+n-2}\binom{j}{k-1}
$$

Proof. By the previous theorem,

$$
\operatorname{det} M_{n, k}=\binom{k}{k} \prod_{j=k}^{k+n-2}\left(\binom{j+1}{k}-\binom{j}{k}\right)=\prod_{j=k}^{k+n-2}\binom{j}{k-1}
$$

using the basic binomial coefficient recursion,

$$
\binom{j+1}{k}=\binom{j}{k-1}+\binom{j}{k} .
$$

Example 6. For $k=1$ and $n \geqslant 1, M_{n, 1}=M\left(1,2,3, \ldots,\binom{n}{1}\right)$ and $d_{n, 1}=1$. For $k=2$ and $n \geqslant 1, M_{n, 2}=M\left(1,3,6,10, \ldots,\binom{n+1}{2}\right)$ and $d_{n, 2}=n$!. For $k=3$ and $n \geqslant 1, M_{n, 3}=M\left(1,4,10,20, \ldots,\binom{n+2}{3}\right)$ and $d_{n, 3}=n!(n+1)!/(2!)^{n}$.

Proposition 7. For $k \geqslant 4$ and $n \geqslant 1$, if $d_{n, k}=\operatorname{det} M_{n, k}$, then

$$
d_{n, k}=\frac{n!(n+1)!\ldots(n+k-2)!}{((n-1)!)^{n} \prod_{j=2}^{k-2} j!}
$$

Proof. Use Corollary 5, substitute using the equivalence $\binom{p}{q}=p!/ q!(p-q)!$, and cancel factorials that obviously appear in both the numerator and denominator.

3. The inverse of a nested matrix

Theorem 8. When $M=M\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is invertible, its inverse is tridiagonal. Further,

$$
\left(M^{-1}\right)_{i j}= \begin{cases}\frac{a_{2}}{a_{1}\left(a_{2}-a_{1}\right)} & \text { when } i=j=1 \\ \frac{a_{j+1}-a_{j-1}}{\left(a_{j+1}-a_{j}\right)\left(a_{j}-a_{j-1}\right)} & \text { when } 1<i=j<n, \\ \frac{1}{a_{n}-a_{n-1}} & \text { when } i=j=n \\ \frac{-1}{a_{j+1}-a_{j}} & \text { when }|i-j|=1, \\ 0 & \text { when }|i-j|>1 .\end{cases}
$$

Proof. The tridiagonality of M^{-1} arises from the fact that the (i, j)-cofactors have a repeated row or column when $|j-i|>1$. For $1<j<n$, the (j, j)-cofactor is $\operatorname{det} M\left(a_{1}, a_{2}, \ldots, a_{j-1}, a_{j+1}, \ldots, a_{n}\right)$. The (1,1)-cofactor is $\operatorname{det} M\left(a_{2}, a_{3}, \ldots, a_{n}\right)$. The (n, n)-cofactor is $\operatorname{det} M\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)$. For $1 \leqslant j<n$, the the $(j, j+1)$-minor is the determinant of

$$
\left[\begin{array}{cccccccc}
a_{1} & \ldots & a_{1} & a_{1} & a_{1} & \ldots & a_{1} & a_{1} \\
a_{1} & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{1} & \ldots & a_{j-1} & a_{j-1} & a_{j-1} & \ldots & a_{j-1} & a_{j-1} \\
a_{1} & \ldots & a_{j-1} & a_{j} & a_{j+1} & \ldots & a_{j+1} & a_{j+1} \\
a_{1} & \ldots & a_{j-1} & a_{j} & a_{j+2} & \ldots & a_{j+2} & a_{j+2} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
a_{1} & \ldots & a_{j-1} & a_{j} & a_{j+2} & \ldots & a_{n-1} & a_{n-1} \\
a_{1} & \ldots & a_{j-1} & a_{j} & a_{j+2} & \ldots & a_{n-1} & a_{n}
\end{array}\right] .
$$

So by iteratively subtracting the first $j-1$ rows from each of the following rows, we obtain

$$
\left[\begin{array}{ccccccccc}
a_{1} & a_{1} & \ldots & a_{1} & a_{1} & \ldots & \ldots & a_{1} & a_{1} \\
0 & a_{2}-a_{1} & \ldots & a_{2}-a_{1} & a_{2}-a_{1} & \ldots & \ldots & a_{2}-a_{1} & a_{2}-a_{1} \\
0 & 0 & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \ddots & a_{j-1}-a_{j-2} & a_{j-1}-a_{j-2} & a_{j-1}-a_{j-2} & \ldots & a_{j-1}-a_{j-2} & a_{j-1}-a_{j-2} \\
0 & 0 & \ldots & 0 & a_{j}-a_{j-1} & a_{j+1}-a_{j-1} & \ldots & a_{j+1}-a_{j-1} & a_{j+1}-a_{j-1} \\
0 & 0 & \ldots & 0 & a_{j}-a_{j-1} & a_{j+2}-a_{j-1} & \ldots & a_{j+2}-a_{j-1} & a_{j+2}-a_{j-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & & \vdots & \vdots \\
0 & 0 & \ldots & 0 & a_{j}-a_{j-1} & \ldots & & a_{n-1}-a_{j-1} & a_{n-1}-a_{j-1} \\
0 & 0 & \ldots & 0 & a_{j}-a_{j-1} & \ldots & & a_{n-1}-a_{j-1} & a_{n}-a_{j-1}
\end{array}\right] .
$$

Now subtracting the $j^{\text {th }}$ row from the all of the subsequent rows yields

$$
\left[\begin{array}{ccccccccc}
a_{1} & a_{1} & \ldots & a_{1} & a_{1} & \ldots & \ldots & a_{1} & a_{1} \\
0 & a_{2}-a_{1} & \ldots & a_{2}-a_{1} & a_{2}-a_{1} & \ldots & \ldots & a_{2}-a_{1} & a_{2}-a_{1} \\
0 & 0 & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \ddots & a_{j-1}-a_{j-2} & a_{j-1}-a_{j-2} & a_{j-1}-a_{j-2} & \ldots & a_{j-1}-a_{j-2} & a_{j-1}-a_{j-2} \\
0 & 0 & \ldots & 0 & a_{j}-a_{j-1} & a_{j+1}-a_{j-1} & \ldots & a_{j+1}-a_{j-1} & a_{j+1}-a_{j-1} \\
0 & 0 & \ldots & 0 & 0 & a_{j+2}-a_{j+1} & \ldots & a_{j+2}-a_{j+1} & a_{j+2}-a_{j+1} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0 & a_{j+2}-a_{j+1} & \ldots & a_{n-1}-a_{j+1} & a_{n-1}-a_{j+1} \\
0 & 0 & \ldots & 0 & 0 & a_{j+2}-a_{j+1} & \ldots & a_{n-1}-a_{j+1} & a_{n}-a_{j+1}
\end{array}\right] .
$$

Thus the $(j, j+1)$-minor is the product

$$
\begin{aligned}
& a_{1}\left(a_{2}-a_{1}\right)\left(a_{3}-a_{2}\right) \ldots\left(a_{j}-a_{j-1}\right) \cdot \operatorname{det} M\left(a_{j+2}-a_{j+1}, a_{j+3}-a_{j+1}, \ldots, a_{n}-a_{j+1}\right) \\
& =a_{1}\left(a_{2}-a_{1}\right)\left(a_{3}-a_{2}\right) \ldots\left(a_{j}-a_{j-1}\right) \cdot\left(a_{j+2}-a_{j+1}\right)\left(a_{j+3}-a_{j+2}\right) \ldots\left(a_{n}-a_{n-1}\right) \\
& =\frac{\operatorname{det} M\left(a_{2}, a_{3}, \ldots, a_{n}\right)}{a_{j+1}-a_{j}} .
\end{aligned}
$$

Since the matrix is symmetric, the $(j, j+1)$-cofactor is

$$
\frac{(-1)^{j+j+1} \operatorname{det} M\left(a_{2}, a_{3}, \ldots, a_{n}\right)}{a_{j+1}-a_{j}} .
$$

Now use the fact that $\left(M^{-1}\right)_{i j}$ is the ratio of the (i, j)-cofactor of M to the determinant of M, and apply Corollary 3 .

4. The $Q R$-factorization of a nested matrix

Lemma 9. The $n \times n$ matrix L in Theorem 1 has $Q R$-factorization $L=Q_{L} R_{L}$ where

$$
Q_{L}=\left[\begin{array}{ccccccc}
\frac{1}{\sqrt{n}} & -\sqrt{\frac{n-1}{n}} & 0 & 0 & \cdots & 0 & 0 \\
\frac{1}{\sqrt{n}} & \frac{1}{\sqrt{(n-1) n}} & -\sqrt{\frac{n-2}{n-1}} & 0 & \cdots & 0 & 0 \\
\frac{1}{\sqrt{n}} & \frac{1}{\sqrt{(n-1) n}} & \frac{1}{\sqrt{(n-2)(n-1)}} & -\sqrt{\frac{n-3}{n-2}} & \cdots & 0 & 0 \\
\frac{1}{\sqrt{n}} & \frac{1}{\sqrt{(n-1) n}} & \frac{1}{\sqrt{(n-2)(n-1)}} & \frac{1}{\sqrt{(n-3)(n-2)}} & \ddots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & -\sqrt{\frac{2}{3}} & 0 \\
\frac{1}{\sqrt{n}} & \frac{1}{\sqrt{(n-1) n}} & \frac{1}{\sqrt{(n-2)(n-1)}} & \frac{1}{\sqrt{(n-3)(n-2)}} & \cdots & \frac{1}{\sqrt{2 \cdot 3}} & -\sqrt{\frac{1}{2}} \\
\frac{1}{\sqrt{n}} & \frac{1}{\sqrt{(n-1) n}} & \frac{1}{\sqrt{(n-2)(n-1)}} & \frac{1}{\sqrt{(n-3)(n-2)}} & \cdots & \frac{1}{\sqrt{2 \cdot 3}} & \frac{1}{\sqrt{1 \cdot 2}}
\end{array}\right]
$$

and

$$
\left(R_{L}\right)_{i j}= \begin{cases}0 & \text { if } i>j \\ \frac{n-j+1}{\sqrt{n}} & \text { if } j \geqslant i=1 \\ \frac{n-j+1}{\sqrt{(n-i+1)(n-i+2)}} & \text { if } j \geqslant i \geqslant 2\end{cases}
$$

Proof. Clearly, the columns of Q_{L} are pairwise orthogonal, unit vectors. A simple induction shows that the $j^{\text {th }}$ column of L is a linear combination of the first j columns of Q_{L} for $1 \leqslant j \leqslant n$. Since $\left(Q_{L}\right)^{-1}=\left(Q_{L}\right)^{\mathrm{T}}, R_{L}=\left(Q_{L}\right)^{\mathrm{T}} L$, so the entries of R_{L} are obtained as unweighted sums of entries from the columns of Q_{L}. Specifically, $\left(R_{L}\right)_{i j}$ is the sum of the entries in column i of Q_{L} from $\max \{i-1, j\}$ to n for $2 \leqslant i \leqslant n$, and from j to n for $i=1$. The orthogonality of the all 1 's column (parallel to the first column of Q_{L}) to all of the other columns of Q_{L}, and the fact that the entries in each column of Q_{L} are constant on and below the diagonal, leads directly to the formula stated.

Theorem 10. The $n \times n$ matrix $M\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ has a $Q R$-factorization in which $Q=Q_{L}$, and hence, does not depend on the sequence $a_{1}, a_{2}, \ldots, a_{n}$. For this choice of Q, the corresponding R is $R_{L} U$ where U is the upper triangular matrix in Theorem 1. Equivalently, $R=R_{L} D L^{\mathrm{T}}$ where D is the diagonal matrix in Corollary 2.

Proof. $\quad M=M\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ has an $L U$-decomposition as $M=L U$ where L and U are given in Theorem 1. By Lemma $9, L=Q_{L} R_{L}$, so $M=\left(Q_{L} R_{L}\right) U=$
$Q_{L}\left(R_{L} U\right)$. Since R_{L} and U are both upper triangular, their product is upper triangular.
5. Strictly increasing, positive sequences and inverse M-matrices

Theorem 11. When the a_{j} are real with $0<a_{1}<a_{2}<\ldots<a_{n}, M=$ $M\left(a_{2}, a_{3}, \ldots, a_{n}\right)$ has all principal minors positive. Further, M^{-1} an irreducible, tridiagonal M-matrix. That is, M is an entrywise positive, inverse M-matrix.

Proof. The positive, increasing values of the a_{j} together with Theorem 3 guarantee that the principal minors are all positive and that M is entrywise positive. Theorem 8 and the positive, increasing values of the a_{j} guarantee that the inverse is an irreducible Z-matrix. An invertible Z-matrix with an entrywise positive inverse is an M-matrix, see [1], Theorem 6.2.3, Condition N_{38}.

Example 12. When $M=M(1,2,3, \ldots, n), M^{-1}$ is the symmetric, irreducible, tridiagonal M-matrix

$$
M^{-1}=\left[\begin{array}{ccccccc}
2 & -1 & 0 & 0 & \ldots & 0 & 0 \\
-1 & 2 & -1 & 0 & \ddots & 0 & 0 \\
0 & -1 & 2 & -1 & \ddots & \ddots & \vdots \\
0 & 0 & -1 & 2 & \ddots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & -1 & 0 \\
0 & 0 & \ddots & 0 & -1 & 2 & -1 \\
0 & 0 & \ldots & 0 & 0 & -1 & 1
\end{array}\right]
$$

Theorem 13. When the a_{j} are real with $0<a_{1}<a_{2}<\ldots<a_{n}, M=$ $M\left(a_{2}, a_{3}, \ldots, a_{n}\right)$ has Cholesky factorization $M=C C^{\mathrm{T}}$ with $C=L D^{1 / 2}$ where L is given in Theorem 1 and where

$$
D^{1 / 2}=\operatorname{diag}\left(\sqrt{a_{1}}, \sqrt{a_{2}-a_{1}}, \sqrt{a_{3}-a_{2}}, \ldots, \sqrt{a_{n}-a_{n-1}}\right) .
$$

Proof. Since the a_{j} are positive and strictly increasing, the entries of $D^{1 / 2}$ are well-defined. Clearly, $C C^{\mathrm{T}}=\left(L D^{1 / 2}\right)\left(L D^{1 / 2}\right)^{\mathrm{T}}=L D L^{\mathrm{T}}=M$ by Corollary 2.

6. Related matrices

Consider the nested matrix M given by

$$
M=\left[\begin{array}{lll}
a & a & a \\
a & b & b \\
a & b & c
\end{array}\right]
$$

and the related matrices

$$
N=\left[\begin{array}{ccc}
c & b & a \\
b & b & a \\
a & a & a
\end{array}\right], \quad S=\left[\begin{array}{lll}
a & a & a \\
b & b & a \\
c & b & a
\end{array}\right] \quad \text { and } \quad T=\left[\begin{array}{lll}
a & b & c \\
a & b & b \\
a & a & a
\end{array}\right]
$$

Let J be

$$
J=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

so $J^{-1}=J$. Then $N=J M J, S=M J$ and $T=J M$. Since $\operatorname{det}(J)=-1$, $\operatorname{det}(N)=\operatorname{det}(M)$, and $\operatorname{det}(S)=\operatorname{det}(T)=-\operatorname{det}(M)$. Interestingly, although N is permutation similar to M, the $L U$-decomposition and $Q R$-decomposition of N do not have the simple structure that the corresponding decompositions of M have. Less surprisingly, neither S nor T has the nice decomposition properties that M possesses.

References

[1] A. Berman, R. J. Plemmons: Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics 9, SIAM, Philadelphia, 1994.
[2] The On-Line Encyclopedia of Integer Sequences. http://oeis.org, 2010.
[3] E. W. Weisstein: Fibonorial. From MathWorld-A Wolfram Web Resource, http://mathworld.wolfram.com/Fibonorial.html.

Author's address: Jeffrey L.Stuart, Mathematics Department, Pacific Lutheran University, 258 Morken Center, Tacoma, Washington 98447, USA, e-mail: jeffrey.stuart @plu.edu.

