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Abstract. Given a sequence of real or complex numbers, we construct a sequence of
nested, symmetric matrices. We determine the LU - and QR-factorizations, the determi-
nant and the principal minors for such a matrix. When the sequence is real, positive and
strictly increasing, the matrices are strictly positive, inverse M -matrices with symmetric,
irreducible, tridiagonal inverses.
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1. Basic results for nested matrices

For a positive integer n, and a sequence of complex numbers a1, a2, . . . , an, the

n× n nested matrix M = M(a1, a2, . . . , an) is defined by

M =

























a1 a1 a1 a1 . . . a1 a1
a1 a2 a2 a2 . . . a2 a2

a1 a2 a3 a3 . . . a3 a3
a1 a2 a3 a4 a4 a4
...
...
...
...
. . .

...
...

a1 a2 a3 a4 . . . an−1 an−1

a1 a2 a3 a4 . . . an−1 an

























.

We observe that M is symmetric, so that when all of the aj are real, the spectrum

of M must be real.
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Theorem 1. The n×nmatrixM(a1, a2, . . . , an) has an LU -factorization in which

L does not depend on the sequence a1, a2, . . . , an.

L =

























1 0 0 0 . . . 0 0

1 1 0 0 . . . 0 0

1 1 1 0 . . . 0 0

1 1 1 1 0 0
...
...
...
...
. . .

...
...

1 1 1 1 . . . 1 0

1 1 1 1 . . . 1 1

























U =

























a1 a1 a1 a1 . . . a1 a1

0 a2 − a1 a2 − a1 a2 − a1 . . . a2 − a1 a2 − a1
0 0 a3 − a2 a3 − a2 . . . a3 − a2 a3 − a2

0 0 0 a4 − a3 . . . a4 − a3 a4 − a3
...

...
...

...
. . .

...
...

0 0 0 0 . . . an−1 − an−2 an−1 − an−2

0 0 0 0 . . . 0 an − an−1

























.

P r o o f. The result follows directly from the fact that for 2 6 k 6 n,

a1 + (a2 − a1) + (a3 − a2) + . . .+ (ak − ak−1) = ak.

�

Corollary 2. The n × n matrix M(a1, a2, . . . , an) has an LDLT-factorization

where L is given in Theorem 1 andD is the n×n diagonal matrixD = diag(a1, a2−a1,

a3 − a2, . . . , an − an−1).

P r o o f. By direct computation, DLT = U where U is given in Theorem 1. �

2. Determinants of nested matrices

The next theorem follows immediately from Theorem 1.

Theorem 3. The determinant of M(a1, a2, . . . , an) is

detM(a1, a2, . . . , an) = a1(a2 − a1)(a3 − a2) . . . (an − an−1).
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Corollary 4. Let c be a real or complex number, and let the real or complex

sequence a0, a1,, a2, . . . , an satisfy the second order recursion an = an−1 + can−2 for

n > 2. Then

detM(a1, a2, . . . , an) = a1 c
n−1

n−2
∏

j=0

aj .

In particular, when n > 2 and c = a0 = a1 = 1, each aj is the jth Fibonacci

number Fj , which yields,

detM(F1, F2, . . . , Fn) =

n−2
∏

j=1

Fj .

The product of the first n + 1 Fibonacci numbers, F0F1 . . . Fn−1Fn is sometimes

called the nth Fibonacci generalized factorial, the nth fibotorial, or the nth fibonorial.

(See [3], and also the sequence A003266 in [2].)

Corollary 5. Let k be a positive integer, and let Mn,k be the n × n matrix

Mn,k = M
((

k
k

)

,
(

k+1
k

)

, . . . ,
(

k+n−1
k

))

. Then

dn,k = detMn,k =

k+n−2
∏

j=k

(

j

k − 1

)

.

P r o o f. By the previous theorem,

detMn,k =

(

k

k

) k+n−2
∏

j=k

((

j + 1

k

)

−
(

j

k

))

=
k+n−2
∏

j=k

(

j

k − 1

)

using the basic binomial coefficient recursion,

(

j + 1

k

)

=

(

j

k − 1

)

+

(

j

k

)

.

�

Example 6. For k = 1 and n > 1, Mn,1 = M
(

1, 2, 3, . . . ,
(

n
1

))

and dn,1 = 1. For

k = 2 and n > 1, Mn,2 = M
(

1, 3, 6, 10, . . . ,
(

n+1
2

))

and dn,2 = n!. For k = 3 and

n > 1, Mn,3 = M
(

1, 4, 10, 20, . . . ,
(

n+2
3

))

and dn,3 = n!(n+ 1)!/(2!)n.
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Proposition 7. For k > 4 and n > 1, if dn,k = detMn,k, then

dn,k =
n!(n+ 1)! . . . (n+ k − 2)!

((n− 1)!)n
k−2
∏

j=2

j!

.

P r o o f. Use Corollary 5, substitute using the equivalence
(

p
q

)

= p!/q!(p− q)!,

and cancel factorials that obviously appear in both the numerator and denominator.

�

3. The inverse of a nested matrix

Theorem 8. WhenM = M(a1, a2, . . . , an) is invertible, its inverse is tridiagonal.

Further,

(M−1)ij =































































a2
a1(a2 − a1)

when i = j = 1,

aj+1 − aj−1

(aj+1 − aj)(aj − aj−1)
when 1 < i = j < n,

1

an − an−1
when i = j = n,

−1

aj+1 − aj
when |i− j| = 1,

0 when |i− j| > 1.

P r o o f. The tridiagonality of M−1 arises from the fact that the (i, j)-cofactors

have a repeated row or column when |j − i| > 1. For 1 < j < n, the (j, j)-cofactor

is detM(a1, a2, . . . , aj−1, aj+1, . . . , an). The (1, 1)-cofactor is detM(a2, a3, . . . , an).

The (n, n)-cofactor is detM(a1, a2, . . . , an−1). For 1 6 j < n, the the (j, j+1)-minor

is the determinant of































a1 . . . a1 a1 a1 . . . a1 a1

a1
. . .

...
...

...
...

...
...

a1 . . . aj−1 aj−1 aj−1 . . . aj−1 aj−1

a1 . . . aj−1 aj aj+1 . . . aj+1 aj+1

a1 . . . aj−1 aj aj+2 . . . aj+2 aj+2

...
...

...
...

...
. . .

...
...

a1 . . . aj−1 aj aj+2 . . . an−1 an−1

a1 . . . aj−1 aj aj+2 . . . an−1 an































.

540



So by iteratively subtracting the first j − 1 rows from each of the following rows, we

obtain









































a1 a1 . . . a1 a1 . . . . . . a1 a1

0 a2−a1 . . . a2−a1 a2−a1 . . . . . . a2−a1 a2−a1

0 0
. . .

...
...

...
...

...
...

...
...

. . . aj−1−aj−2 aj−1−aj−2 aj−1−aj−2 . . . aj−1−aj−2 aj−1−aj−2

0 0 . . . 0 aj−aj−1 aj+1−aj−1 . . . aj+1−aj−1 aj+1−aj−1

0 0 . . . 0 aj−aj−1 aj+2−aj−1 . . . aj+2−aj−1 aj+2−aj−1
...

...
...

...
...

. . .
...

...

0 0 . . . 0 aj−aj−1 . . . an−1−aj−1 an−1−aj−1

0 0 . . . 0 aj−aj−1 . . . an−1−aj−1 an−aj−1









































.

Now subtracting the jth row from the all of the subsequent rows yields









































a1 a1 . . . a1 a1 . . . . . . a1 a1

0 a2−a1 . . . a2−a1 a2−a1 . . . . . . a2−a1 a2−a1

0 0
. . .

...
...

...
...

...
...

...
...

. . . aj−1−aj−2 aj−1−aj−2 aj−1−aj−2 . . . aj−1−aj−2 aj−1−aj−2

0 0 . . . 0 aj−aj−1 aj+1−aj−1 . . . aj+1−aj−1 aj+1−aj−1

0 0 . . . 0 0 aj+2−aj+1 . . . aj+2−aj+1 aj+2−aj+1
...

...
...

...
...

...
. . .

...
...

0 0 . . . 0 0 aj+2−aj+1 . . . an−1−aj+1 an−1−aj+1

0 0 . . . 0 0 aj+2−aj+1 . . . an−1−aj+1 an−aj+1









































.

Thus the (j, j + 1)-minor is the product

a1(a2 − a1)(a3 − a2) . . . (aj − aj−1) · detM(aj+2 − aj+1, aj+3 − aj+1, . . . , an − aj+1)

= a1(a2 − a1)(a3 − a2) . . . (aj − aj−1) · (aj+2 − aj+1)(aj+3 − aj+2) . . . (an − an−1)

=
detM(a2, a3, . . . , an)

aj+1 − aj
.

Since the matrix is symmetric, the (j, j + 1)-cofactor is

(−1)j+j+1 detM(a2, a3, . . . , an)

aj+1 − aj
.

Now use the fact that (M−1)ij is the ratio of the (i, j)-cofactor of M to the deter-

minant of M , and apply Corollary 3. �
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4. The QR-factorization of a nested matrix

Lemma 9. The n × n matrix L in Theorem 1 has QR-factorization L = QLRL

where

QL =







































1
√
n

−
√

n−1
n 0 0 . . . 0 0

1
√
n

1√
(n−1)n

−
√

n−2
n−1 0 . . . 0 0

1
√
n

1√
(n−1)n

1√
(n−2)(n−1)

−
√

n−3
n−2 . . . 0 0

1
√
n

1√
(n−1)n

1√
(n−2)(n−1)

1√
(n−3)(n−2)

. . .
...

...

...
...

...
...

. . . −
√

2
3 0

1
√
n

1√
(n−1)n

1√
(n−2)(n−1)

1√
(n−3)(n−2)

. . . 1
√

2·3
−
√

1
2

1
√
n

1√
(n−1)n

1√
(n−2)(n−1)

1√
(n−3)(n−2)

. . . 1
√

2·3
1

√

1·2







































and

(RL)ij =



























0 if i > j,

n− j + 1√
n

if j > i = 1,

n− j + 1
√

(n− i+ 1)(n− i+ 2)
if j > i > 2.

P r o o f. Clearly, the columns ofQL are pairwise orthogonal, unit vectors. A sim-

ple induction shows that the jth column of L is a linear combination of the first j

columns of QL for 1 6 j 6 n. Since (QL)
−1 = (QL)

T, RL = (QL)
TL, so the entries

of RL are obtained as unweighted sums of entries from the columns of QL. Specif-

ically, (RL)ij is the sum of the entries in column i of QL from max{i − 1, j} to n

for 2 6 i 6 n, and from j to n for i = 1. The orthogonality of the all 1’s column

(parallel to the first column of QL) to all of the other columns of QL, and the fact

that the entries in each column of QL are constant on and below the diagonal, leads

directly to the formula stated. �

Theorem 10. The n × n matrix M(a1, a2, . . . , an) has a QR-factorization in

which Q = QL, and hence, does not depend on the sequence a1, a2, . . . , an. For

this choice of Q, the corresponding R is RLU where U is the upper triangular ma-

trix in Theorem 1. Equivalently, R = RLDLT where D is the diagonal matrix in

Corollary 2.

P r o o f. M = M(a1, a2, . . . , an) has an LU -decomposition as M = LU where

L and U are given in Theorem 1. By Lemma 9, L = QLRL, so M = (QLRL)U =
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QL(RLU). Since RL and U are both upper triangular, their product is upper trian-

gular. �

5. Strictly increasing, positive sequences and inverse M -matrices

Theorem 11. When the aj are real with 0 < a1 < a2 < . . . < an, M =

M(a2, a3, . . . , an) has all principal minors positive. Further, M
−1 an irreducible,

tridiagonal M -matrix. That is, M is an entrywise positive, inverse M -matrix.

P r o o f. The positive, increasing values of the aj together with Theorem 3

guarantee that the principal minors are all positive and thatM is entrywise positive.

Theorem 8 and the positive, increasing values of the aj guarantee that the inverse is

an irreducible Z-matrix. An invertible Z-matrix with an entrywise positive inverse

is an M -matrix, see [1], Theorem 6.2.3, Condition N38. �

Example 12. When M = M(1, 2, 3, . . . , n), M−1 is the symmetric, irreducible,

tridiagonal M -matrix

M−1 =





























2 −1 0 0 . . . 0 0

−1 2 −1 0
. . . 0 0

0 −1 2 −1
. . .

. . .
...

0 0 −1 2
. . . 0 0

...
. . .

. . .
. . .

. . . −1 0

0 0
. . . 0 −1 2 −1

0 0 . . . 0 0 −1 1





























.

Theorem 13. When the aj are real with 0 < a1 < a2 < . . . < an, M =

M(a2, a3, . . . , an) has Cholesky factorizationM = CCT with C = LD1/2 where L is

given in Theorem 1 and where

D1/2 = diag(
√
a1,

√
a2 − a1,

√
a3 − a2, . . . ,

√

an − an−1).

P r o o f. Since the aj are positive and strictly increasing, the entries of D
1/2 are

well-defined. Clearly, CCT = (LD1/2)(LD1/2)T = LDLT = M by Corollary 2. �
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6. Related matrices

Consider the nested matrix M given by

M =





a a a

a b b

a b c





and the related matrices

N =





c b a

b b a

a a a



 , S =





a a a

b b a

c b a



 and T =





a b c

a b b

a a a



 .

Let J be

J =





0 0 1

0 1 0

1 0 0



 ,

so J−1 = J . Then N = JMJ , S = MJ and T = JM . Since det(J) = −1,

det(N) = det(M), and det(S) = det(T ) = − det(M). Interestingly, although N is

permutation similar to M , the LU -decomposition and QR-decomposition of N do

not have the simple structure that the corresponding decompositions of M have.

Less surprisingly, neither S nor T has the nice decomposition properties that M

possesses.
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