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Abstract. A positive integer n is called a square-free number if it is not divisible by
a perfect square except 1. Let p be an odd prime. For n with (n, p) = 1, the smallest

positive integer f such that nf
≡ 1 (mod p) is called the exponent of n modulo p. If the

exponent of n modulo p is p− 1, then n is called a primitive root mod p.

Let A(n) be the characteristic function of the square-free primitive roots modulo p. In
this paper we study the distribution

∑

n6x

A(n)A(n+ 1),

and give an asymptotic formula by using properties of character sums.
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1. Introduction

Let p be an odd prime. For any integer n with (n, p) = 1, the smallest positive

integer f such that nf ≡ 1 (mod p) is called the exponent of n modulo p. If the

exponent of n modulo p is p − 1, then n is called a primitive root mod p. On the

other hand, a positive integer n is called a square-free number if it is not divisible by
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a perfect square except 1. From [7] we know that the number of positive square-free

primitive roots modulo p not exceeding x equals

(1.1)
pϕ(p− 1)

(p2 − 1)ζ(2)
x+O(2ω(p−1)p1/4(log p)1/2x1/2),

where ϕ is Euler’s totient function, ζ is the Riemann zeta function, and ω(q) denotes

the number of the distinct prime factors of q.

H. Liu and W. Zhang [2] improved the error term in (1.1). They showed that the

number of positive square-free primitive roots modulo p that are less or equal x is

pϕ(p− 1)

(p2 − 1)ζ(2)
x+O(p9/44+εx1/2+ε),

where ε is any fixed positive number.

In this paper we study the distribution of consecutive square-free primitive roots

modulo p and give an asymptotic formula, by using properties of character sums.

Our main result is the following.

Theorem 1.1. Let p be an odd prime, and let A(n) be the characteristic function

of the square-free primitive roots modulo p. Then we have

∑

n6x

A(n)A(n+ 1) = x
ϕ2(p− 1)

(p− 1)2
p(p− 2)

p2 − 2

∏

p1

(

1−
2

p21

)

+O(4ω(p−1)p−1/2(log p)x+ 4ω(p−1)p1/4(log p)1/2x1/2 log x),

where the O-constant is absolute, and
∏

p1

denotes the product over all primes p1.

From Theorem 1.1 we immediately get a corollary.

Corollary 1.1. Let p be an odd prime, and let x > 1 be a real number with

p ≍ x2/3, i.e., p ≪ x2/3 and x ≪ p3/2. Then

∑

n6x

A(n)A(n + 1) = x
ϕ2(p− 1)

(p− 1)2
p(p− 2)

p2 − 2

∏

p1

(

1−
2

p21

)

+O(x2/3+ε).

We will study the distribution of consecutive square-free numbers coprime to p in

Section 2, and give some estimates for character sums over consecutive square-free

numbers in Section 3. Finally we will prove Theorem 1.1 in Section 4 by using the

results of Section 2 and Section 3.
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2. Consecutive square-free numbers coprime to p

Let E(n) be the characteristic function of the sequence of square-free numbers.

From [5] we know that
∑

n6x

E(n) =
6

π
2
x+O(x1/2).

L.Mirsky [3] studied the frequency of pairs of square-free numbers with a given

difference, and proved the asymptotic formula

∑

n6x

E(n)E(n+ r) = x
∏

p

(

1−
2

p2

)

∏

p2|r

(

1 +
1

p2 − 2

)

+Or(x
2/3(log x)4/3).

D.R.Heath-Brown [1] studied the number of consecutive square-free numbers not

greater than x, and obtained the following result:

∑

n6x

E(n)E(n+ 1) = x
∏

p

(

1−
2

p2

)

+O(x7/11(log x)7).

From [1] we have a lemma.

Lemma 2.1. Let x and y be real numbers with y = x7/11(log x)6. Then

xy−1 log y + y log y +
∑

j,k
jk>y

∑

n6x
j2|n

k2|n+1

1 ≪ x7/11(log x)7.

Now we study the mean value

E(n)E(n+ 1),

by using Heath-Brown’s method, and give an asymptotic formula.

Theorem 2.1. Let p be an odd prime. Then

∑

n6x
(n(n+1),p)=1

E(n)E(n+ 1) = x
p(p− 2)

p2 − 2

∏

p1

(

1−
2

p21

)

+O(x7/11(log x)7).

P r o o f. Let µ(n) be the Möbius function. It is not hard to show that

E(n) =
∑

j2|n
µ(j).
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We get

(2.1)
∑

n6x
(n(n+1),p)=1

E(n)E(n+ 1) =
∑

n6x
(n(n+1),p)=1

∑

j2|n
µ(j)

∑

k2|n+1

µ(k)

=
∑

j

∑

k

µ(j)µ(k)
∑

n6x
(n(n+1),p)=1

j2|n
k2|n+1

1 =
∑

j,k
(j,k)=1
(jk,p)=1
jk6y

µ(j)µ(k)
∑

n6x
(n(n+1),p)=1

j2|n
k2|n+1

1

=
∑

j,k
(j,k)=1
(jk,p)=1
jk6y

µ(j)µ(k)
∑

n6x
(n(n+1),p)=1

j2|n
k2|n+1

1 +
∑

j,k
(j,k)=1
(jk,p)=1
jk>y

µ(j)µ(k)
∑

n6x
(n(n+1),p)=1

j2|n
k2|n+1

1

= Σ1 +Σ2.

Note that

∑

n6x
(n(n+1),p)=1

j2|n
k2|n+1

1 =
∑

n6x
j2|n

k2|n+1

1−
∑

n6x
p|n
j2|n

k2|n+1

1−
∑

n6x
p|n+1

j2|n
k2|n+1

1

=
x

j2k2
−

x

j2k2p
−

x

j2k2p
+O(1)

=
x

j2k2

(

1−
2

p

)

+O(1).

Thus we have

Σ1 = x
(

1−
2

p

)

∑

j,k
(j,k)=1
(jk,p)=1
jk6y

µ(j)µ(k)

j2k2
+O

(

∑

jk6y

1

)

= x
(

1−
2

p

)

∑

j,k
(j,k)=1
(jk,p)=1

µ(j)µ(k)

j2k2
+O

(

x
∑

n>y

d(n)

n2

)

+O

(

∑

n6y

d(n)

)

,

where d(n) is the divisor function.

Noting that
∑

j,k
(j,k)=1
(jk,p)=1

µ(j)µ(k)

j2k2
=

p2

p2 − 2

∏

p1

(

1−
2

p21

)

,
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we get

(2.2) Σ1 = x
p(p− 2)

p2 − 2

∏

p1

(

1−
2

p21

)

+O(xy−1 log y) +O(y log y).

Now from (2.1), (2.2) and Lemma 2.1 we immediately get

∑

n6x
(n(n+1),p)=1

E(n)E(n+ 1) = x
p(p− 2)

p2 − 2

∏

p1

(

1−
2

p21

)

+O(x7/11(log x)7).

This proves Theorem 2.1. �

3. Character sums over consecutive square-free numbers

Let q > 2 be an integer, and let χ be a non-principal character modulo q. From

the classical inequality of Pólya-Vinogradov we know that

∑

n6x

χ(n) 6 6
√
q log q.

M.Munsch [4] studied character sums over square-free numbers, and gave the upper

bounds
∑

n6x

E(n)χ(n) ≪

{

x1/2q1/4(log q)1/2,

x1/2(log x)q3/16+ε.

Moreover, from Lemma 3 of [6] we know the following estimate for character sums

of polynomials.

Lemma 3.1. Suppose that p is a prime number, χ is a non-principal character

modulo p of order d, f(x) ∈ Fp[x] has s distinct zeros in Fp and is not a constant

multiple of the d-th power of a polynomial over Fp. Let X , Y be real numbers with

0 < Y 6 p. Then we have

∣

∣

∣

∣

∑

X<n6X+Y

χ(f(n))

∣

∣

∣

∣

< 9sp1/2 log p.

In this section we study character sums over consecutive square-free numbers, and

give some asymptotic formulas.
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Theorem 3.1. Let p be an odd prime, and let χ1, χ2 be non-principal characters

modulo p. Then we have

∑

n6x

E(n)χ1(n)E(n+ 1)χ2(n+ 1)(3.1)

≪
log p

p1/2
x+ p1/4(log p)1/2x1/2 log x+ x7/11(log x)7,

∑

n6x
(n+1,p)=1

E(n)χ1(n)E(n+ 1) ≪ p1/4(log p)1/2x1/2 log x+ x7/11(log x)7,(3.2)

∑

n6x
(n,p)=1

E(n)E(n+ 1)χ2(n+ 1) ≪ p1/4(log p)1/2x1/2 log x+ x7/11(log x)7.(3.3)

P r o o f. We only prove (3.1), since similarly we can get the other relations. Let

y and z be integers with
√

x/p < z <
√
x < y 6 x. It is not hard to show that

∑

n6x

E(n)χ1(n)E(n+ 1)χ2(n+ 1) =
∑

n6x

χ1(n)χ2(n+ 1)
∑

j2|n
µ(j)

∑

k2|n+1

µ(k)

=
∑

j

∑

k

µ(j)µ(k)
∑

n6x
j2|n

k2|n+1

χ1(n)χ2(n+ 1)

=
∑

j,k
(j,k)=1
(jk,p)=1

µ(j)µ(k)
∑

n6x
j2|n

k2|n+1

χ1(n)χ2(n+ 1)

=
∑

j,k
(j,k)=1
(jk,p)=1

jk6
√

x/p

µ(j)µ(k)
∑

n6x
j2|n

k2|n+1

χ1(n)χ2(n+ 1) +
∑

j,k
(j,k)=1
(jk,p)=1√
x/p<jk6z

µ(j)µ(k)
∑

n6x
j2|n

k2|n+1

χ1(n)χ2(n+ 1)

+
∑

j,k
(j,k)=1
(jk,p)=1
z<jk6

√
x

µ(j)µ(k)
∑

n6x
j2|n

k2|n+1

χ1(n)χ2(n+ 1)

+
∑

j,k
(j,k)=1
(jk,p)=1√
x<jk6y

µ(j)µ(k)
∑

n6x
j2|n

k2|n+1

χ1(n)χ2(n+ 1) +
∑

j,k
(j,k)=1
(jk,p)=1
jk>y

µ(j)µ(k)
∑

n6x
j2|n

k2|n+1

χ1(n)χ2(n+ 1).
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Suppose that n0 = n0(j, k) is the solution of the congruence equations

n ≡ 0 (mod j2), n ≡ −1 (mod k2)

satisfying 1 6 n0 6 j2k2. We have

∑

n6x
j2|n

k2|n+1

χ1(n)χ2(n+ 1) =
∑

n6x
n≡n0 (mod j2k2)

χ1(n)χ2(n+ 1)

=
∑

06m6(x−n0)/(j2k2)

χ1(mj2k2 + n0)χ2(mj2k2 + n0 + 1).

Let χ∗ be a character modulo p of order p − 1. Supposing that ord(χ1) = d1
and ord(χ2) = d2, we have χ1 = (χ∗)a1(p−1)/d1 for some a1 with (a1, d1) = 1 and

χ2 = (χ∗)a2(p−1)/d2 for some a2 with (a2, d2) = 1. Hence,

∑

06m6(x−n0)/j2k2

χ1(mj2k2 + n0)χ2(mj2k2 + n0 + 1)

=
∑

06m6(x−n0)/j2k2

χ∗((mj2k2 + n0)
a1(p−1)/d1(mj2k2 + n0 + 1)a2(p−1)/d2)

=
∑

06m6(x−n0)/(j2k2)

χ∗(f(m)),

where f(m) = (mj2k2 + n0)
a1(p−1)/d1(mj2k2 + n0 + 1)a2(p−1)/d2 . Therefore

∑

n6x

E(n)χ1(n)E(n+ 1)χ2(n+ 1)

≪
∑

j,k
(j,k)=1
(jk,p)=1

jk6
√

x/p

∣

∣

∣

∣

∑

06m6(x−n0)/j2k2

χ∗(f(m))

∣

∣

∣

∣

+
∑

j,k
(j,k)=1
(jk,p)=1√
x/p<jk6z

∣

∣

∣

∣

∑

06m6(x−n0)/j2k2

χ∗(f(m))

∣

∣

∣

∣

+
∑

j,k
z<jk6

√
x

x

j2k2
+

∑

j,k
(j,k)=1
(jk,p)=1
jk6y

1 +
∑

j,k
jk>y

∑

n6x
j2|n

k2|n+1

1.
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It is obvious that f(m) has two distinct zeros in Fp and is not a constant multiple

of the (p− 1)-st power of a polynomial over Fp. By Lemma 3.1 we have

(3.4)
∑

n6x

E(n)χ1(n)E(n+ 1)χ2(n+ 1) ≪
∑

j,k

jk6
√

x/p

x

pj2k2
p1/2 log p

+
∑

j,k√
x/p<jk6z

p1/2 log p+ xz−1 log z + y log y +
∑

j,k
jk>y

∑

n6x
j2|n

k2|n+1

1

≪
x

p1/2
log p+ z(log z)p1/2 log p+ xz−1 log z + y log y +

∑

j,k
jk>y

∑

n6x
j2|n

k2|n+1

1.

Taking z = x1/2/(p1/4(log p)1/2), y = x7/11(log x)6 and applying Lemma 2.1 we get

∑

n6x

E(n)χ1(n)E(n+ 1)χ2(n+ 1)

≪
log p

p1/2
x+ p1/4(log p)1/2x1/2 log x+ x7/11(log x)7.

�

4. Proof of Theorem 1.1

Let p be an odd prime, A(n) be the characteristic function of the square-free

primitive roots modulo p, and let E(n) be the characteristic function of the square-

free numbers. Noting that

ϕ(p− 1)

p− 1

∑

d|p−1

µ(d)

ϕ(d)

∑

χ mod p
ord(χ)=d

χ(n) =

{

1, if n is a primitive root modulo p,

0, otherwise.

We have

∑

n6x

A(n)A(n+ 1) =
ϕ2(p− 1)

(p− 1)2

×
∑

d1|p−1

µ(d1)

ϕ(d1)

∑

χ1 mod p
ord(χ1)=d1

∑

d2|p−1

µ(d2)

ϕ(d2)

∑

χ2 mod p
ord(χ2)=d2

∑

n6x

E(n)χ1(n)E(n+ 1)χ2(n+ 1)
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=
ϕ2(p− 1)

(p− 1)2

∑

n6x
(n(n+1),p)=1

E(n)E(n+ 1)

+
ϕ2(p− 1)

(p− 1)2

∑

d1|p−1
d1>1

µ(d1)

ϕ(d1)

∑

χ1 mod p
ord(χ1)=d1

∑

n6x
(n+1,p)=1

E(n)χ1(n)E(n+ 1)

+
ϕ2(p− 1)

(p− 1)2

∑

d2|p−1
d2>1

µ(d2)

ϕ(d2)

∑

χ2 mod p
ord(χ2)=d2

∑

n6x
(n,p)=1

E(n)E(n+ 1)χ2(n+ 1)

+
ϕ2(p− 1)

(p− 1)2

∑

d1|p−1
d1>1

µ(d1)

ϕ(d1)

∑

χ1 mod p
ord(χ1)=d1

∑

d2|p−1
d2>1

µ(d2)

ϕ(d2)

×
∑

χ2 mod p
ord(χ2)=d2

∑

n6x

E(n)χ1(n)E(n+ 1)χ2(n+ 1).

Then from Theorem 2.1 and Theorem 3.1 we get

∑

n6x

A(n)A(n+ 1) = x
ϕ2(p− 1)

(p− 1)2
p(p− 2)

p2 − 2

∏

p1

(

1−
2

p21

)

+O(4ω(p−1)p−1/2(log p)x+ 4ω(p−1)p1/4(log p)1/2x1/2 log x+ 4ω(p−1)x7/11(log x)7).

Noting that

p−1/2(log p)x+ p1/4(log p)1/2x1/2 log x ≫ x2/3(log x)2/3(log p)2/3,

we immediately conclude

∑

n6x

A(n)A(n + 1) = x
ϕ2(p− 1)

(p− 1)2
p(p− 2)

p2 − 2

∏

p1

(

1−
2

p21

)

+ O(4ω(p−1)p−1/2(log p)x+ 4ω(p−1)p1/4(log p)1/2x1/2 log x).

This completes the proof of Theorem 1.1. �
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