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A LOCAL APPROACH TO g-ENTROPY

Mehdi Rahimi

In this paper, a local approach to the concept of g-entropy is presented. Applying the
Choquet‘s representation Theorem, the introduced concept is stated in terms of g-entropy.
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Classification: 28D20, 28E10

1. INTRODUCTION

The fuzzy entropy of dynamical systems is studied extensively [3, 4, 5, 6, 7, 8, 9, 10, 12,
15, 17, 19, 20]. It is based on the idea of replacing partitions, in the classical ergodic
theory, by fuzzy partitions.

The concept of g-entropy, as a generalized form of the fuzzy entropy, is studied by
Mesiar and Rybarik [12, 17, 20] and its Hudetz correction is discussed in [16]. It is based
on an increasing bijective map g : [0,∞] → [0,∞] such that g(0) = 0 and g(1) = 1.

In classical ergodic theory, local studies of entropy of dynamical systems is studied
extensively [1, 11, 13, 21, 23]. A local study of the fuzzy entropy of dynamical systems,
in the sense of Dumitrescu, was arranged in [14].

The main goal of this paper is to apply the method used in [14] to present a local
approach to g-entropy of a dynamical system. This approach is of topological nature, in
the sense that, the set of all g-decomposable measures is equipped by a topology which
provides the requirements of the Choquet‘s representation Theorem. It enables us to
state the introduced entropy in this paper in terms of the g-entropy [12, 17, 20].

In section 2, we recall some preliminary concepts. In section 3, we define a topology
on the set of invariant measures and prove some results which leads to the g-ergodic
decomposition of invariant measures. In section 4, a new version of g-entropy, in a local
approach, is defined. Finally, the new quantity is stated in terms of g-entropy.

2. PRELIMINARY CONCEPTS

In this section, we provide some known facts which will be used in the remaining of the
paper. From now on, g : [0,∞] → [0,∞] is an increasing bijective function such that
g(0) = 0 and g(1) = 1. The following definitions are mainly from [16].
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A fuzzy σ-algebra F on X is a collection of fuzzy subsets of X, i. e., functions f :
X → [0, 1], satisfying the following conditions:

(i) 1X ∈ F .

(ii) If f, g ∈ F then f.g ∈ F and (f−g)+ ∈ F where (f−g)+(x) := max{(f−g)(x), 0}
for all x ∈ X.

(iii) If {fn}∞n=1 ⊂ F then
∨∞

n=1 fn ∈ F where
∨∞

n=1 fn := min {
∑∞

n=1 fn, 1}.

A function m∗ : F → [0,∞) is called a fuzzy measure, if

(i) m∗(0X) = 0.

(ii) m∗(
∨∞

n=1 fn) =
∑∞

n=1 m∗(fn), whenever {fn}∞n=1 ⊂ F and
∑∞

n=1 fn ≤ 1.

A g-decomposable measure on F is a mapping m : F → [0, 1] such that m(1X) = 1,
m(0X) = 0 and

m

(
g−1

( ∞∑
n=1

g ◦ fn

))
= g−1

( ∞∑
n=1

g(m(fn))

)
whenever fn ∈ F (n = 1, 2, 3, . . .) are such that

∑∞
n=1 g ◦ fn ≤ 1.

If m is a g-decomposable measure on F then the function

m∗ := g ◦m ◦ g−1 (1)

is a fuzzy measure on F .
A family ξ = {f1, f2, . . . , fk} of members of F is a g-fuzzy partition of X, if

∑k
i=1 g ◦

fi = 1 on X. When g(x) = x, a g-fuzzy partition is nothing but a fuzzy partition, i. e., a
family ξ = {f1, f2, . . . , fk} such that

∑k
i=1 fi = 1 on X. Note that, if ξ = {f1, f2, . . . , fk}

is a g-fuzzy partition then g(ξ) = {g ◦ f1, g ◦ f2, . . . , g ◦ fk} is a fuzzy partition.
The g-entropy Hm,g of a g-fuzzy partition ξ = {f1, f2, . . . , fk} is defined by the

formula

Hm,g(ξ) = g−1

(
k∑

i=1

g(Φ(m(fi)))

)
where Φ = g−1 ◦ φ ◦ g and φ(x) = −x log x for x 6= 0, φ(0) = 0. Hence

Hm,g(ξ) = g−1

(
k∑

i=1

φ(m∗(g(fi)))

)
.

The joint of two g-fuzzy partitions ξ = {f1, f2, . . . , fk} and η = {h1, h2, . . . , ht} is defined
by

ξ ∨ η = {g−1((g ◦ fi)(g ◦ hj)) : i = 1, . . . , k, j = 1, . . . , t}.

Note that, in the case of g(x) = x for all x ∈ X, if ξ and η are two fuzzy partitions then

ξ ∨ η = {fihj : i = 1, . . . , k, j = 1, . . . , t}.
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Suppose that T : (X,B) → (X,B) is a measurable mapping and F is a fuzzy σ-algebra
of B-measurable fuzzy subsets of X. For a g-decomposable measure m, and a g-fuzzy
partition ξ, the g-entropy of T with respect to ξ is defined as:

hm,g(T, ξ) := lim
n→∞

g−1

(
1
n

g

(
Hm,g

( n−1∨
i=0

T−iξ
)))

where T−iξ = {f1 ◦ T i, f2 ◦ T i, . . . , fk ◦ T i}.

Finally, the g-entropy of T is defined by:

hm,g(T ) := sup
ξ

hm,g(T, ξ)

where the supremum is taken over all g-fuzzy partitions. Note that, the fuzzy entropy
hm∗(T ) can be obtained putting g(u) = u, u ∈ [0, 1]. We recall that, the entropy of a
fuzzy partition ξ = {f1, f2, . . . , fk} is given by Hm∗(ξ) = −

∑k
i=1 m∗(fi) log m∗(fi). The

entropy of a dynamical system T with respect to the fuzzy entropy ξ is given by

hm∗(T, ξ) = lim
n→∞

1
n

Hm∗

(
n−1∨
i=0

T−iξ

)

and the fuzzy entropy of T is given by

hm∗(T ) = sup
ξ

hm∗(T, ξ)

where the supremum is taken over all fuzzy partitions ξ.

The following theorem makes a connection between the concept of g-entropy and
fuzzy entropy.

Theorem 2.1. Let T , g and ξ be as above and m∗ be a fuzzy measure defined by (1).
Then

(i) Hm,g(ξ) = g−1(Hm∗(g(ξ)));

(ii) hm,g(T, ξ) = g−1(hm∗(T, g(ξ)));

(iii) hm,g(T ) = g−1(hm∗(T )).

P r o o f . See [18] Proposition 10.6.6, Proposition 10.6.11 and Theorem 10.6.13. �

Theorem 2.2. (Butnariu and Klement [2]) Suppose that F is a fuzzy σ-algebra on X
and m∗ is a fuzzy measure on F . Let B = {A ⊂ X : χA ∈ F} and let µm∗ : B → R
be defined by µm∗(A) := m∗(χA). Then every f ∈ F is B-measurable and m∗(f) =∫

X
f dµm∗ for all f ∈ F .
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Corollary 2.3. Let F be a fuzzy σ-algebra on X and m is a g-decomposable measure
on X. Then m∗ := g ◦m ◦ g−1 is a fuzzy measure on F and µm∗ is a measure on the
σ-algebra B = {A ⊂ X : χA ∈ F} such that

m(f) = g−1

(∫
X

g ◦ f dµm∗

)
for all f ∈ F .

3. TOPOLOGY ON INVARIANT MEASURES

In this section, let T : X → X be a continuous map on a compact metric space X.
Let F ⊂ [0, 1]X be the family of all Borel measurable maps f : X → [0, 1]. Then the
corresponding σ−algebra given by Theorem 2.2 is indeed the σ−algebra of Borel sets of
X. The set of all fuzzy measures m : F → [0,∞], satisfying m(1X) = 1 is denoted by
M∗(X). Let g : [0,∞] → [0,∞] be an increasing bijective function such that g(0) = 0
and g(1) = 1. The set of g-invariant measures of T is defined by

M∗
g (X, T ) := {m ∈ M∗(X) : m(g−1 ◦ f ◦ T ) = m(g−1 ◦ f) ∀f ∈ F}.

A g-decomposable measure m ∈ M∗
g (X, T ) is said to be g-ergodic, if the following

implication holds for all f ∈ F :

f ◦ T = f ⇒ m(g−1 ◦ f) = 0 or 1.

The set of all g-fuzzy ergodic measures of T is denoted by E∗g (X, T ).
The following lemma connects the g-invariant and g-ergodic measures to the classical

invariant and ergodic measures.

Lemma 3.1. Let T : X → X be a continuous map on a compact metric space X. Let
M(X, T ) and E(X, T ) be the set of invariant and ergodic measures of T in the classical
sense respectively. Let m∗ be a fuzzy measure defined by (1). Then

(i) m ∈ M∗
g (X, T ) if and only if µm∗ ∈ M(X, T ).

(ii) If m ∈ E∗g (X, T ) then µm∗ ∈ E(X, T ).

P r o o f . (i) Let m ∈ M∗
g (X, T ). For any Borel set A, if f = χA then m(g−1 ◦χA ◦T ) =

m(g−1 ◦ χA), therefore

µm∗
(
T−1(A)

)
=

∫
X

χT−1(A) dµm∗

=
∫

X

χA ◦ Tdµm∗

= m∗(χA ◦ T )
= g

(
m((g−1 ◦ χA) ◦ T )

)
= g

(
m(g−1 ◦ χA)

)
= m∗(χA)
= µm∗(A).
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This means µm∗ ∈ M(X, T ).
Conversely, let µm∗ ∈ M(X, T ). For any characteristic function f = χA, where A is

a Borel set, we have

m(g−1 ◦ f ◦ T ) = m(g−1 ◦ χA ◦ T )
= g−1 (m∗(χA ◦ T ))

= g−1

(∫
X

χA ◦ T dµm∗

)
= g−1

(∫
X

χT−1(A) dµm∗

)
= g−1

(
µm∗(T−1(A))

)
= g−1 (µm∗(A))
= g−1 (m∗(χA))
= m(g−1 ◦ χA)
= m(g−1 ◦ f),

which gives the result for characteristic functions. Moreover, if f =
∑k

i=1 ciχAi is a
simple function where ci, i = 1, 2, . . . , k, are different real numbers and Ai, i = 1, 2, . . . , k,
are pairwise disjoint Borel measurable, then

m(g−1 ◦ f ◦ T ) = g−1 (m∗(f ◦ T ))

= g−1

(∫
X

f ◦ T dµm∗

)
= g−1

(∫
X

k∑
i=1

ciχAi
dµm∗

)

= g−1

(
k∑

i=1

cim
∗(χAi ◦ T )

)

= g−1

(
k∑

i=1

cim
∗(χAi)

)

= g−1

(
k∑

i=1

ci

∫
X

χAi
dµm∗

)

= g−1

(∫
X

k∑
i=1

ciχAi dµm∗

)
= g−1 (m∗(f))
= m(g−1 ◦ f),

which gives the result for simple functions.
Finally, let f ∈ F . Let {fn}∞n=1 be a sequence of simple functions such that 0 ≤ f1 ≤
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f2 ≤ f3 ≤ . . . and fn ↗ f . Applying Monotone Convergence Theorem we will have

m(g−1 ◦ f ◦ T ) = g−1 (m∗(f ◦ T ))

= g−1

(∫
X

f ◦ T dµm∗

)
= g−1

(
lim

n→∞

∫
X

fn ◦ T dµm∗

)
= g−1

(
lim

n→∞
m∗(fn ◦ T )

)
= g−1

(
lim

n→∞
m∗(fn)

)
= g−1

(
lim

n→∞

∫
X

fn dµm∗

)
= g−1

(∫
X

f dµm∗

)
= g−1 (m∗(f))
= m(g−1 ◦ f).

It completes the proof of (i).

(ii) Let m ∈ E∗g (X, T ). If A is a Borel measurable set such that T−1(A) = A then
χT−1(A) = χA or equivalently χA ◦ T = χA, therefore m(g−1 ◦ χA) = 0 or 1, that is
g−1(m∗(χA)) = 0 or 1 which means g−1(µm∗(A)) = 0 or 1, consequently µm∗(A) = 0 or
1, since g is injective. It proves that µm∗ ∈ E(X, T ). �

In the following, M∗(X) is equipped by a topology in a natural way.

Definition 3.2. The w∗-topology on M∗(X) is the smallest topology making each of
the maps m∗ 7→

∫
X

f dµm∗ (f ∈ C(X)) continuous. A basis is given by the collection of
all sets of the form

Vm∗
0
(f1, . . . , fk; ε) =

{
m∗ ∈ M∗(X) :

∣∣∣∣∫
X

fi dµm∗ −
∫

X

fi dµm∗
0

∣∣∣∣ < ε, 1 ≤ i ≤ k

}
where m∗

0 ∈ M∗(X), k ≥ 1, fi ∈ C(X) and ε > 0.

By the correspondence given in Theorem 2.2, the previous topology is indeed the
weak∗ topology defined on M(X) in the classical case. So all of the properties of the
weak∗ topology defined on M(X) is inherited to M∗(X). We summarize the most
important properties of M∗(X) in the following theorem.

Theorem 3.3. Let X be a compact metrizable space and let T : X → X be continuous.
Let F ⊂ [0, 1]X be the σ−algebra of all Borel measurable maps f : X → [0, 1]. Then

(i) The space M∗(X) is metrizable in the w∗-topology. If {fn}∞n=1 is a dense subset
of C(X) then

D(m,m′) =
∞∑

n=1

|
∫

X
fn dµm∗ −

∫
X

fn dµm′∗ |
2n ‖ fn ‖
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is a metric on M∗(X) giving the w∗-topology.

(ii) For mn,m ∈ M∗(X) (n ≥ 1), mn → m if and only if
∫

X
f dµm∗

n
→
∫

X
f dµm∗ for

all f ∈ C(X).

(iii) M∗
g (X, T ) is a compact subset of M∗(X).

(iv) M∗
g (X, T ) is convex.

(v) ext(M∗
g (X, T )) = E∗g (X, T ).

P r o o f . See [24] Theorems 6.4 and 6.10. �

Definition 3.4. Suppose that Y is a non-empty compact subset of a locally convex
space E, and let τ be a probability measure on Y . A point x in E is said to be
represented by τ if Φ(x) =

∫
Y

Φ dτ for every continuous linear functional Φ on E.

Theorem 3.5. (Choquet) Suppose that Y is a metrizable compact convex subset of a
locally convex space E, and that x0 is an element of Y . Then there exists a probability
measure τ on Y which represents x0 and is supported by the extreme points of Y .

See Phelps [22] for a proof of Choquet’s Theorem.

By Theorem 3.3, M∗(X) is a compact metrizable space and M∗
g (X, T ) is a compact

metrizable convex set with the extreme points E∗g (X, T ). So applying the Choquet‘s
Theorem we will have the following corollary.

Corollary 3.6. For any m ∈ M∗
g (X, T ) there exists a unique probability measure τ on

the Borel subsets of the compact metrizable space M∗
g (X, T ) such that τ(E∗g (X, T )) = 1

and ∫
X

f(x) dµm∗(x) =
∫

E∗
g (X,T )

(∫
X

f(x) dµν∗(x)
)

dτ(ν)

for every bounded measurable function f : X → R.

In particular, if f ∈ F then the previous equality is indeed

m∗(f) =
∫

E∗
g (X,T )

ν∗(f) dτ(ν).

Since m∗ = g ◦m ◦ g−1 then

g ◦m ◦ g−1(f) =
∫

E∗
g (X,T )

g ◦ ν ◦ g−1(f) dτ(ν).

Replacing f by g ◦ f in the previous relation we will have

m(f) = g−1

(∫
E∗

g (X,T )

g(ν(f)) dτ(ν)

)
.

Under the assumptions of Corollary 3.6 we write m =
∫

E∗
g (X,T )

ν dτ(ν) and it is called
the g-ergodic decomposition of m.
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4. LOCAL g-ENTROPY

In this section, T : X → X is a continuous map on a compact metric space X and F is
the σ-algebra of Borel measurable maps f : X → [0, 1]. As before, let g : [0,∞] → [0,∞]
be an increasing function such that g(0) = 0 and g(1) = 1.

Definition 4.1. For x ∈ X and f ∈ F , define

ωg(T, x, f) := g−1

(
lim sup

n→∞

1
n

n−1∑
k=0

(
(g ◦ f) ◦ T k

)
(x)

)
.

We write ω(T, x, f) for the special case g(x) = x, indeed

ω(T, x, f) = lim sup
n→∞

1
n

n−1∑
i=0

(f ◦ T i)(x).

Definition 4.2. Let ξ = {f1, f2, . . . , fk} be a g-partition and x ∈ X. Define

Ωg(T, x, ξ) := g−1

(
k∑

i=1

g (Φ(ωg(T, x, fi)))

)

= g−1

(
k∑

i=1

φ (g(ωg(T, x, fi)))

)

= g−1

(
−

k∑
i=1

g (ωg(T, x, fi)) log g(ωg(T, x, fi))

)
.

If ξ = {f1, f2, . . . , fk} is a fuzzy partition, the special case g(x) = x of the definition
4.2 is given by

Ω(T, x, ξ) = −
k∑

i=1

ω(T, x, fi) log ω(T, x, fi) =
k∑

i=1

φ(ω(T, x, fi)).

Definition 4.3. Let ξ = {f1, f2, . . . , fk} be a g-partition and x ∈ X. Define

Hg(T, x, ξ) := lim sup
n→∞

g−1

(
1
n

g

(
Ωg(T, x,

n−1∨
i=0

T−iξ)

))
.

Setting g(x) = x, in Definition 4.3 will result in the following:

H(T, x, ξ) = lim sup
n→∞

1
n

Ω

(
T, x,

n−1∨
i=0

T−iξ

)

where ξ = {f1, f2, . . . , fk} is a fuzzy partition.
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Definition 4.4. Let ξ be a g-partition and m ∈ M∗
g (X, T ). Define

h∗m,g(T, ξ) :=
∫

X

Hg(T, x, ξ) dµm∗(x)

and
h∗m,g(T ) := sup

ξ
h∗m,g(T, ξ)

where the supremum is taken over all g-fuzzy partitions.

If m∗ is a fuzzy measure and ξ is a fuzzy partition, the special case g(x) = x in
Definition 4.4 results in the following:

h∗m∗(T, ξ) =
∫

X

H(T, x, ξ) dµm∗(x)

and
h∗m∗(T ) = sup

ξ
h∗m∗(T, ξ)

where the supremum is taken over all fuzzy partitions.
In [14], the properties of the previous quantities in the case of g(x) = x for all x ∈ X,

are discussed.

Theorem 4.5. Let x ∈ X and ξ be a g-fuzzy partition. Then

(i) Ωg(T, x, ξ) = g−1 (Ω(T, x, g(ξ)));

(ii) Hg(T, x, ξ) = g−1 (H(T, x, g(ξ)));

(iii) If g is convex then h∗m,g(T ) ≤ g−1 (h∗m∗(T )).

P r o o f . (i) First note that, by Definition 4.1, g(ωg(T, x, f)) = ω(T, x, f). Now, the
result follows directly from Definition 4.2.

(ii) follows from (i) and the equality g(
∨n−1

i=0 T−iξ) =
∨n−1

i=0 T−ig(ξ).

(iii) For a g-fuzzy partition ξ, applying part (ii) and Jensen‘s inequality we will have

h∗m,g(T, ξ) =
∫

X

Hg(T, x, ξ) dµm∗(x)

=
∫

X

g−1 (H(T, x, g(ξ))) dµm∗(x)

≤ g−1

(∫
X

H(T, x, g(ξ)) dµm∗(x)
)

= g−1 (hm∗(T, g(ξ)))
≤ g−1 (hm∗(T )) ,

where the last inequality holds because g−1 is also increasing. Finally, taking supremum
over all g-fuzzy partitions we will get the result. �
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Theorem 4.6. Suppose that T : X → X is a continuous map on a compact metric
space X. If ξ, η are g-fuzzy partitions and x ∈ X then

(i) If ξ ≤ η then Ωg(T, x, ξ) ≤ Ωg(T, x, η).

(ii) If ξ ≤ η then Hg(T, x, ξ) ≤ Hg(T, x, η).

P r o o f . Let ξ = {fi} and η = {hj} be two g-fuzzy partitions and assume, with-
out loss of generality, that all fuzzy sets are such that ωg(T, x, f) 6= 0. (Since if
ξ = {f1, f2, . . . , fk} with ωg(T, x, f) > 0 for 1 ≤ i ≤ r and ωg(T, x, f) = 0 for r < i ≤ k
we can replace ξ by {f1 ∨ f2 ∨ . . . ∨ fk}).

(i) Since ξ ≤ η we have ξ ∨ η = η. By definition we obtain

g(Ωg(T, x, η)) = g(Ωg(T, x, ξ ∨ η))
= Ω(T, x, g(ξ ∨ η))
= Ω(T, x, g(ξ) ∨ g(η))

= −
∑
i,j

ω(T, x, (g ◦ fi)(g ◦ hj)) log ω(T, x, (g ◦ fi)(g ◦ hj))

= −
∑
i,j

ω(T, x, (g ◦ fi)(g ◦ hj)) log
ω(T, x, (g ◦ fi)(g ◦ hj))

ω(T, x, g ◦ fi)
ω(T, x, g ◦ fi)

= −
∑
i,j

ω(T, x, (g ◦ fi)(g ◦ hj)) log
ω(T, x, (g ◦ fi)(g ◦ hj))

ω(T, x, g ◦ fi)

−
∑
i,j

ω(T, x, (g ◦ fi)(g ◦ hj)) log ω(T, x, g ◦ fi)

≥ −
∑
i,j

ω(T, x, (g ◦ fi)(g ◦ hj)) log ω(T, x, g ◦ fi) (2)

where the last inequality holds since ω(T, x, (g ◦ fi)(g ◦ hj)) ≤ ω(T, x, (g ◦ fi)).
On the other hand, since

ω(T, x, g ◦ fi) ≤
∑

j

ω(T, x, (g ◦ fi)(g ◦ hj))

we conclude that

−
∑
i,j

ω(T, x, (g◦fi)(g◦hj)) log ω(T, x, g◦fi) ≥ −
∑

i

ω(T, x, (g◦fi)) log ω(T, x, g◦fi). (3)

Combining (2) and (3) we will have

g(Ωg(T, x, η)) ≥ g(Ωg(T, x, ξ)).

This gives the result, since g is increasing.

(ii) Replace ξ by ∨n−1
i=0 T−iξ and η by ∨n−1

i=0 T−iη in (i) and apply Definition 4.3 to get
the result. �
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The following theorem states the quantities in Definition 4.4 in terms of the g-entropy.

Theorem 4.7. Suppose that T : X → X is a continuous map on a compact metric
space X and F ⊂ [0, 1]X is the σ-algebra of Borel measurable maps f : X → [0, 1]. If
m ∈ M∗

g (X, T ) and m =
∫

E∗
g (X,T )

ν dτ(ν) is the g-ergodic decomposition of m then

(i) If ξ is a g-fuzzy partition then

h∗m,g(T, ξ) =
∫

E∗
g (X,T )

hν,g(T, ξ) dτ(ν).

(ii) If card(E∗g (X, T )) < ∞ then

h∗m,g(T ) =
∫

E∗
g (X,T )

hν,g(T ) dτ(ν).

P r o o f . (i) First, let ν ∈ E∗g (X, T ). By Lemma 3.1 (ii), µν∗ ∈ E(X, T ). By Birkhoff
ergodic Theorem we have

ωg(T, x, f) = g−1

(
lim sup

n→∞

1
n

n−1∑
k=0

(g ◦ f) ◦ T k(x)

)

= g−1

(∫
X

g ◦ f dµν∗

)
= g−1 (ν∗(g ◦ f))
= g−1 ◦ ν∗ ◦ g(f)

for almost every x ∈ X. Since ν∗ = g ◦ ν ◦ g−1 we conclude that

g (ωg(T, x, f)) = g(ν(f))

for almost every x ∈ X.
Therefore, if ξ = {f1, f2, . . . , fk} is a g-fuzzy partition then

Ωg(T, x, ξ) = g−1

(
−

k∑
i=1

g (ωg(x, fi)) log g(ωg(x, fi))

)

= g−1

(
−

k∑
i=1

g(ν(fi)) log g(ν(fi)

)
= Hν,g(ξ)

for almost every x ∈ X.
For every n ∈ N, replacing ξ by

∨n−1
i=0 T−iξ, and considering the equality g

(∨n−1
i=0 T−iξ

)
=
∨n−1

i=0 T−ig(ξ) we obtain

Ωg

(
T, x,

n−1∨
i=0

T−iξ

)
= Hν,g

(
n−1∨
i=0

T−iξ

)
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for almost every x ∈ X which simply results in

Hg(T, x, ξ) = hν,g(T, ξ)

for almost every x ∈ X. Integrating with respect to µν∗ we obtain

h∗ν,g(T, ξ) = hν,g(T, ξ) (4)

for all g-fuzzy partitions ξ. Taking supremum over all g-fuzzy partitions we will have
h∗ν,g(T ) = hν,g(T ).

Now, let m ∈ M∗
g (X, T ). For n ≥ 1, let fn := min{Hg(T, ·, ξ), n}. Clearly, {fn}∞n=1

is an increasing sequence of bounded measurable functions such that fn ↗ Hg(T, ·, ξ).
Applying Corollary 3.6, Monotone Convergence Theorem and (4) we will have

h∗m,g(T, ξ) =
∫

X

Hg(T, x, ξ) dµm∗(x)

= lim
n→∞

∫
X

fn(x) dµm∗(x)

= lim
n→∞

∫
E∗

g (X,T )

(∫
X

fn(x) dµν∗(x)
)

dτ(ν)

=
∫

E∗
g (X,T )

(∫
X

Hg(T, x, ξ) dµν∗(x)
)

dτ(ν)

=
∫

E∗
g (X,T )

h∗ν,g(T, ξ) dτ(ν)

=
∫

E∗
g (X,T )

hν,g(T, ξ) dτ(ν).

(ii) For m ∈ E∗g (X, T ), let

Dm := {{ξn}n≥1 : ξn ≤ ξn+1, hm,g(T, ξn) → hm,g(T )}

then, by the supremum property, Dm 6= ∅. Also
⋂

m∈E∗
g (X,T ) Dmj 6= ∅. To show this,

let E∗g (X, T ) = {m1,m2, . . . ,mk}. For each j ∈ {1, 2, . . . , k} choose {ξ(j)
n }n≥1 ∈ Dmj .

For n ≥ 1, let ξn := ∨k
j=1ξ

(j)
n . For j ∈ {1, 2, . . . , k}, applying Theorem 4.6 (ii), we have

hmj ,g(T, ξ(j)
n ) ≤ hmj ,g(T, ξn) ≤ hmj ,g(T ). (5)

Since {ξ(j)
n }n≥1 ∈ Dmj , the relation (5) results in

lim
n→∞

hmj ,g(T, ξn) = hmj ,g(T )

for all j ∈ {1, 2, . . . , k}. It means {ξn}n≥1 ∈
⋂

m∈E∗
g (X,T ) Dmj which proves that⋂

m∈E∗
g (X,T ) Dmj 6= ∅. Now, we can choose a sequence {ξn}∞n=1 of g-fuzzy partitions such
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that ξn ≤ ξn+1 (n = 1, 2, . . .) and limn→∞ hm,g(T, ξn) = hm,g(T ) for all m ∈ E∗g (X, T ).
Applying part (i) and Monotone Convergence Theorem we will have:

h∗m,g(T ) ≥ lim
n→∞

h∗m,g(T, ξn)

= lim
n→∞

∫
E∗

g (X,T )

hν,g(T, ξn) dτ(ν)

=
∫

E∗
g (X,T )

lim
n→∞

hν,g(T, ξn) dτ(ν)

=
∫

E∗(X,T )

hν,g(T ) dτ(ν).

On the other hand

h∗m,g(T, ξ) =
∫

E∗
g (X,T )

hν,g(T, ξ) dτ(ν) ≤
∫

E∗
g (X,T )

hν,g(T ) dτ(ν)

for any given g-fuzzy partition ξ. This easily results in

h∗m,g(T ) ≤
∫

E∗
g (X,T )

hν,g(T ) dτ(ν)

which completes the proof. �

SUMMARY AND CONCLUSIONS

This paper is devoted to a local study of the concept of g-entropy of dynamical systems.
The set of g-invariant and g-ergodic fuzzy measures is defined in section 3. It is equipped
to a weak∗ topology such that the set of g-invariant fuzzy measures is the convex hull of
the set of g-ergodic fuzzy measures. Then the g-ergodic decomposition is introduced. A
new type of g-entropy is defined in section 4. This definition is of local entity. Using the
framework constructed in section 4, the new quantity is stated in terms of the known
g-entropy.
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[10] D. Markechová: A note to the Kolmogorov-Sinaj entropy of fuzzy dynamical systems.
Fuzzy Sets and Systems 64 (1994), 87–90. DOI:10.1016/0165-0114(94)90009-4

[11] B. McMillan: The basic theorems of information theory. Ann. Math. Statist. 24 (1953),
196–219. DOI:10.1214/aoms/1177729028
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