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WHY λ-ADDITIVE (FUZZY) MEASURES?

Ion Chiţescu

The paper is concerned with generalized (i. e. monotone and possibly non-additive) mea-
sures. A discussion concerning the classification of these measures, according to the type and
amount of non-additivity, is done. It is proved that λ-additive measures appear naturally as
solutions of functional equations generated by the idea of (possible) non additivity.

Keywords: generalized measure (probability), λ-additive measure, functional equation
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1. INTRODUCTION

Classical measure theory is based on the concept of additivity (or which is more, count-
able additivity). Recently, new necessities (theoretical and practical) imposed the study
of (possibly) non-additive measures. These measures play an increasing role in the
description of all kind of phenomena and therefore are intensively studied now.

A major role in the history of generalized (i. e. monotone and possibly non-additive)
measures was played by the Japanese scholar M. Sugeno, who formally introduced them
in his doctoral thesis [2], under the name of fuzzy measures. Trying to study non
additivity in the same thesis, he introduced the concept of λ−additivity (λ-rule), which
appears to be extremely important, raising many future developments. Among these
developments, we can nominate the important fact that any λ-additive measure (for λ >
−1) is generated by a classical measure (i. e. it is representable, using the terminology
in the present paper) as shown by Z. Wang in [3].

The main goal of our paper is to discuss about the concept of λ−additivity as (per-
haps) the most natural and efficient (from computational point of view) instrument of
measure of non-additivity. We do this in two steps (see the paragraph “Results”).

The first step consists in a preliminary discussion pertaining a classification of gen-
eralized measures, according to two criteria: their degree of λ−additivity and their
possible representability as homeomorphic images of classical measures. We took into
consideration also the marginal value λ = −1, when speaking about λ−additivity.

The second step consists in applying functional equations methods for searching (pos-
sibly) non-additive measures. Using classical results (see [1]) we arrive at the conclusion
that the λ-additive measures appear even in this framework, proving to be extremely
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natural and adequate. So, the answer to the question in the title should be: Because
they are good!

We lay stress upon the fact that, for simplicity reasons, throughout the paper we are
concerned only with monotone and normalized measures, which we call measures. The
main theoretical tool we use is the monograph [4].

2. PRELIMINARY FACTS

As usual, the set [0,∞) of all positive real numbers, will be denoted by R+.
For any set T we shall write P(T ) to denote the set of all subsets of T . Throughout

the paper we shall consider a class of sets T , i. e. ∅ ∈ T ⊂ P(T ) and T ∈ T .
A function µ : T → R+ will be called a measure (or a generalized probability)

if µ(∅) = 0, is monotone (i. e. µ(A) ≤ µ(B) whenever A, B are in T and A ⊂ B) and
normalized (i. e. µ(T ) = 1). So, from now on, we shall consider measures µ : T → [0, 1].

If λ ∈ [−1,∞) and µ : T → [0, 1] is a measure, we say that µ is λ-additive (satisfies
the λ-rule, according to [4]) if, for any A, B in T with A ∩B = ∅ and A ∪B ∈ T one
has

µ(A ∪B) = µ(A) + µ(B) + λµ(A)µ(B) (1)

(compare with [4], where the value λ = −1 is not taken into consideration).
In case λ = 0, µ is additive.
If there exists λ ∈ [−1,∞) (respectively λ ∈ (−1,∞)) such that µ is λ-additive, we

shall say that µ is some λ-additive (respectively some λ∗-additive).
Condition λ ≥ −1 appears to be natural because it is compatible with the mono-

tonicity of µ and is necessary in case µ is decomposable (see Definition 3.5).

Remark. Non-additive measures can describe, sometimes, better than additive mea-
sures different phenomena. Let us notice that superadditive measures (µ(A ∪ B) ≥
µ(A) + µ(B), if A ∩ B = ∅) can express a cooperative action in terms of the measured
property, while subadditive measures (µ(A∪B) ≤ µ(A)+µ(B), if A∩B = ∅) can express
non cooperation or mutual inhibition. So, additive (classical) measures can express no
interaction. It is easy to see that λ-additive measures are particular cases of superad-
ditive measures (in case λ ≥ 0) or of subadditive measures (in case λ ≤ 0). Of course,
λ-additive measures cannot encompass all monotone measures.

Here is an example (due to one of the anonymous referees) of a subadditive measure
which is not some λ-additive in the sense of the present paper. Let a, b, c be three
different elements and take: T = {a, b, c}, T = {∅, {a}, {b}, {a, b}, {a, b, c}} and µ : T →
[0, 1] given via µ(∅) = 0, µ({a}) = 1/4, µ({b}) = 1/2, µ({a, b}) = 1/2, µ({a, b, c}) = 1.
One can see that µ is “−2-additive”, i. e. µ(A∪B) = µ(A) + µ(B)− 2µ(A)µ(B) for any
A,B ∈ T , A ∩B = ∅, A ∪B ∈ T .

3. RESULTS

3.1. Preliminary discussion

Definition 3.1. A function h : [0, 1] → [0, 1] which is strictly increasing, continuous
and such that h(0) = 0, h(1) = 1, will be called a T−function.
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It follows that h−1 is a T -function too.

Example 3.2. (Examples of T -functions)
a) The canonical T -function is defined as follows. For any 0 6= λ ∈ (−1,∞), hλ :

[0, 1] → [0, 1] acts via (see [4])

hλ(x) =
(λ + 1)x − 1

λ
. (2)

b) The inverse T -function of hλ from a) is θλ : [0, 1] → [0, 1], given via (see [4])

θλ(y) =
ln(1 + λy)
ln(1 + λ)

. (3)

c) We can consider a natural non null number n which generates the T -function
h : [0, 1] → [0, 1], given via

h(x) = xn. (4)

Definition 3.3. We shall say that the measure µ is representable if there exists an
additive measure m : T → [0, 1] and a T -function h : [0, 1] → [0, 1], such that µ = h ◦m.
In this case we say that the pair (m,h) represents µ.

Remarks.
1. Of course, any additive measure is representable.

2. It follows that m = h−1 ◦µ. The classical terminology (see [4]) refers to h−1. More
precisely, one says that µ is quasi-additive and h−1 is called the T -function of µ.

3. It is possible to have more than one pair (m,h) which represents µ as the following
example shows.

Example 3.4. Take T = {1, 2}, T = P(T ) and µ : T → [0, 1] given via µ(∅) = 0,
µ(T ) = 1, µ({1}) = α, µ({2}) = β, where 0 < α < β < 1 (of course µ is a measure).

We can consider an additive measure m : T → [0, 1], given via m(∅) = 0, m(T ) = 1,
m({1}) = a, m({2}) = b, where 0 < a < 1− a = b < 1.

Any strictly increasing continuous function h : [0, 1] → [0, 1] such that h(0) = 0,
h(1) = 1, h(a) = α, h(b) = β generates the pair (m,h) which represents µ.

Remark. Assume 0 6= λ ∈ (−1,∞) and µ : T → [0, 1] is λ-additive. Then, according
to [3], µ is representable: there exists an additive measure m : T → [0, 1] such that
µ = hλ ◦m (see (2)).
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Standard Terminology
In case T is a σ−algebra and the measure µ can be represented by a pair (m,h),

where m is σ-additive (i. e. m is a classical probability), we say that µ is a Sugeno
measure (see [4]) or a fuzzy measure (according to M. Sugeno who introduced the
notion in his doctoral thesis [2]).

Definition 3.5. A measure µ will be called decomposable if there exist A, B in T
such that A ∩B = ∅, A ∪B = T and µ(A) > 0, µ(B) > 0.

Example 3.6. We shall exhibit an example of measure µ which is −1−additive and
decomposable.

Take T = {1, 2}, T = P(T ), µ : T → [0, 1] defined via µ(∅) = 0, µ(T ) = 1, µ({1}) = α
(where 0 < α ≤ 1) and µ({2}) = 1 and check the aforementioned properties.

Remark. Any −1-additive measure µ has the following property: for any A, B in
T such that A ∩ B = ∅, A ∪ B = T , one has either µ(A) = 1 or µ(B) = 1 (possibly
µ(A) = µ(B) = 1). Indeed, if µ(A) = a, µ(B) = b, one has:

1− a = b(1− a) ⇔ 1− a− b(1− a) = 0 ⇔ (1− a)(1− b) = 0 ⇔ (a = 1 ∨ b = 1).

Proposition 3.7. If µ is a measure which is decomposable and −1−additive, it follows
that µ is not representable.

P r o o f . Let A, B in T with A ∩B = ∅, A ∪B = T and µ(A) = α > 0, µ(B) = β > 0.
Assume α = 1 (see the preceding remark). Accepting the existence of a pair (m,h)
which represents µ, we shall arrive at a contradiction. Indeed, 1 = α = µ(A) = h(m(A))
implies m(A) = 1 and β = h(m(B)) > 0 implies m(B) > 0.

Hence 1 = m(A ∪B) = m(A) + m(B), false. �

Example 3.8. There exist representable measures which are not some λ-additive.
Indeed, take T = [0, 1], T =the Lebesgue measurable subsets of T , m : T →

[0, 1] =the Lebesgue measure on T .
Define µ : T → [0, 1] via µ(A) = m(A)2. Hence µ = h ◦m where h : [0, 1] → [0, 1] is

the T -function given via h(t) = t2, see (4).
The pair(m,h) represents µ.
Now, take λ ∈ [−1,∞). We shall show that µ is not λ-additive. To this end, let A,

B in T , A ∩B = ∅ and accept that

µ(A ∪B) = µ(A) + µ(B) + λµ(A)µ(B)

i. e.
(m(A) + m(B))2 = m(A)2 + m(B)2 + λm(A)2m(B)2

which means
2m(A)m(B) = λm(A)2m(B)2.
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It follows that, for any disjoint A, B in T with m(A) > 0, m(B) > 0, one must have

λm(A)m(B) = 2

which is not possible (take e. g. A1 = [0, 1
a ], B1 = ( 1

a , 2
a ] and A2 = [0, 1

b ],
B2 = ( 1

b , 2b ], with a 6= b, a ≥ 2, b ≥ 2.

We are now in position to state the following synthesis result.

Theorem 3.9. We have the following strict inclusions:

the some λ∗-additive measures
⊂

the representable measures
⊂

all measures.

P r o o f . The first inclusion is a classical result (see [4] and [3]). Indeed, let λ ∈ (−1,∞)
and take a λ-additive measure µ.

In case λ = 0, it is clear that µ is representable. In case λ 6= 0, we consider m = θλ ◦µ
(see (3)) which is additive. Hence µ = hλ◦m (see (2)) and (m,hλ) represents µ. Actually,
everything follows from the fact that the map m 7→ hλ ◦m is a bijection with domain =
the additive measures and codomain = the λ−measures.

The first inclusion is strict (Example 3.8) and the second inclusion is strict (Example
3.6 and Proposition 3.7). �

We finish this preliminary discussion by presenting some strange measures which
appear in a natural way.

Example 3.10. (The Marginal Measures) We shall consider an additive measure m :
T → [0, 1] and, for any 0 6= λ ∈ (−1,∞), the canonical T -function hλ : [0, 1] → [0, 1]
(see (3)). Then, for any 0 6= λ ∈ (−1,∞), we can construct the λ-additive function (see
[4]) µ(m,λ) = hλ ◦m. Hence, for any A ∈ T , one has

µ(m,λ)(A) =
(λ + 1)m(A) − 1

λ
.

It is seen that, for any A ∈ T , the following limits exist

µ(m,−1)(A) = lim
λ→−1+

µ(m,λ)(A) =
{

1, if m(A) > 0,
0, if m(A) = 0,

µ(m,∞)(A) = lim
λ→∞

µ(m,λ)(A) =
{

1, if m(A) = 1,
0, if m(A) < 1.

We defined µ(m,−1) : T → [0, 1], µ(m,∞) : T → [0, 1], which are measures and we
shall call them marginal measures.

In order to better study their properties, we shall assume that T is an algebra of sets.
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In case m is not decomposable, which is equivalent to the fact T is an atom of m (i. e.
either m(A) = 0 or m(A) = 1 for any A ∈ T ), one can see that µ(m,−1) = µ(m,∞) =
m = µ(m,λ), for any 0 6= λ ∈ (−1,∞).

The interesting situation is when m is decomposable. In this case, one can see that:
a) µ(m,−1) is −1-additive and not representable, due to the fact that µ(m,−1) is

decomposable too (see Proposition 7). Supplementarily, one can see that µ(m,−1) is
not λ-additive, if λ > −1.

b) µ(m,∞) is not representable and not λ-additive for any λ ≥ −1. Concerning the
non representability of µ = µ(m,∞): if (n, h) represents µ, let A, B in T with A∩B = ∅,
A ∪ B = T and 0 < m(A) < 1, 0 < m(B) < 1. Then µ(A) = 0 = h(n(A)), µ(B) = 0 =
= h(n(B)), hence n(A) = n(B) = 0 and n(T ) = n(A) + n(B) = 0, contradiction.

3.2. The functional equations point of view. Adequacy of λ-dditivity

The most “popular” measures are the classical ones, i. e. the additive measures. The
increasing importance of the non-additive measures led to the study of the “amount of
non-additivity” of a given measure µ. It is natural to study the problem as follows.

Define first the set ∆ = [0, 1]2.
Consider a function ϕ : ∆ → R. We study the measures µ : T → [0, 1] having the

property that, for any A, B in T , such that A ∩B = ∅ and A ∪B ∈ T , one has

µ(A ∪B) = µ(A) + µ(B) + ϕ(µ(A), µ(B)) (5)

(in (1), one has ϕ(µ(A), µ(B)) = λµ(A)µ(B)).
So, the function ϕ is the instrument for measuring the amount of non-additivity of µ.
One can write (5) in a more general way, considering a function F : ∆ → R and the

condition (for any A, B in T , A ∩B = ∅, A ∪B ∈ T )

µ(A ∪B) = F (µ(A), µ(B)) (6)

(in (1): F (µ(A), µ(B)) = µ(A) + µ(B) + λµ(A)µ(B)).
This point of view, concerning the measure of the amount of non-additivity of µ, will

be called here the functional equations point of view. We shall see that, from this point
of view, the λ−additivity of µ appears in a natural way.

Considering the equalities (5) and (6), the following problem is natural.

Problem A
Which type of function ϕ (or of function F ) is more suitable? Here “suitable” means

two facts:

a) the function ϕ (or the function F ) should measure the amount of non-additivity
of µ in an appropriate (realistic) way;

b) the function ϕ (or the function F ) should be acceptable from computational point
of view.

To be honest, point b) is decisive for the choice of ϕ (or F ).
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In this form, the problem seems to be too general, consequently too difficult. In order
to increase the possibility of finding a solution, we shall reduce the investigation area.
Namely, we shall be concerned only with the study of representable measures µ.

Assume that µ is represented by the pair (m,h). Hence, for any A, B in T , A∩B = ∅,
A ∪B ∈ T , relations (5) and (6) become respectively:

h(m(A ∪B)) = h(m(A) + m(B))
= h(m(A)) + h(m(B)) + ϕ(h(m(A)), h(m(B))) (5′)

h(m(A ∪B)) = h(m(A) + m(B)) = F (h(m(A)), h(m(B))). (6′)

Writing m(A) = x, m(B) = y, we have (x, y) ∈ ∆. If is natural to impose the follow-
ing conditions which should be fulfilled by h for any (x, y) ∈ {(s, t) ∈ ∆ | s + t ≤ 1}:

h(x + y) = h(x) + h(y) + ϕ(h(x), h(y)) (5′′)

h(x + y) = F (h(x), h(y)). (6′′)

We shall be mainly concerned with the particular situation

F (u, v) = u + v + ϕ(u, v). (7)

Consequently, we shall consider Problem A within this new (particular) framework,
in the following form

Problem A′

Which type of ϕ (or of F ) is more suitable? Supplementarily: considering ϕ (or of
F ) to be known, find h (viewing (5′′) or (6′′) as functional equations with unknown
function h).

From now on, we shall be concerned with Problem A′. Before proceeding further,
we shall change a little the framework, considering that ϕ : R2 → R, F : R2 → R (i. e.
ϕ and F are defined everywhere). This gives us the possibility of considering (6′′) as a
functional equation with F known and h unknown and to use the general theory (see
[1]). On the other hand, to give ϕ means to give F , when working in case (7).

Using (5′), (5′′), (6′), (6′′) and h(0) = 0, we propose the following reasonable assump-
tions:

ϕ(u, v) = ϕ(v, u); F (u, v) = F (v, u) (8)

(for any (u, v) ∈ ∆);

ϕ(u, 0) = ϕ(0, u) = 0; F (u, 0) = F (0, u) = u (9)

(for any u ∈ [0, 1]).
To continue, we assume (Major Assumption) that the most suitable type of F is the

polynomial type. Hence, we shall consider that F : R2 → R is a polynomial function.
General theory of the equation (6′′) (see [1, §2.2.4]) says that the only possibilities

for F are the following:

Type 1:
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F (u, v) = u + v + C

with C real constant.

Type 2:

F (u, v) = λuv + Bu + Bv +
B2 −B

λ

with λ, B real constants, λ 6= 0.
We shall work in the natural case (7).
For Type 1, it follows that ϕ(u, v) = C for any real u and v. Due to (9) it follows

that ϕ = 0, hence F (u, v) = u + v and (5′′) becomes the Cauchy equation

h(x + y) = h(x) + h(y)

for any real x and y. All the continuous solutions h : R → R are of the form h(x) = ax,
with a =real constant. Due to h(1) = 1, one has a = 1, hence h(x) = x and µ = h◦m =
m is additive.

For Type 2, we use (7) to get that, for any real u and v:

ϕ(u, v) = λuv + (B − 1)(u + v) +
B2 −B

λ
.

The control conditions (8) and (9): (8) is automatically verified and condition (9)
becomes (for any real u):

(B − 1)u +
B2 −B

λ
= 0

hence B = 1, ϕ(u, v) = λuv and F (u, v) = u + v + λuv. So, (5) (or (6)) becomes: for
any A, B in T , A ∩B = ∅, A ∪B ∈ T , one has

µ(A ∪B) = µ(A) + µ(B) + λµ(A)µ(B)

hence µ is λ-additive (we saw that condition λ ≥ −1 is compulsory).
The functional equation (5′′) for h (valid for any real x, y) becomes

h(x + y) = h(x) + h(y) + λh(x)h(y). (10)

Here λ 6= 0 is a real constant.
For the sake of completeness, let us recall how to solve (10). Define f : R → R,

f(x) = λh(x) + 1, hence h(x) = f(x)−1
λ and (10) becomes

f(x + y)− 1
λ

=
f(x) + f(y)− 2

λ
+

(f(x)− 1)(f(y)− 1)
λ

⇔ f(x + y) = f(x)f(y).

This classical modified Cauchy equation has all the continuous solutions f : R → R
of the form f(x) = exp(ax), with a =real constant. Hence, h : R → R has the form

h(x) =
exp(ax)− 1

λ
.
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We have automatically h(0) = 0. Condition h(1) = 1 means

exp(a)− 1 = λ ⇔ λ + 1 = exp(a) ⇔ a = ln(λ + 1).

So, we are obliged to assume λ > −1. Finally, we get h : R → R, defined via

h(x) =
(λ + 1)x − 1

λ
. (11)

This result is “good”, because, practically (2) and (11) coincide. We got, using h,
the canonical T -function hλ : [0, 1] → [0, 1] (see (2)), with hλ(x) = h(x) for x ∈ [0, 1]. It
follows that (m,hλ) represents µ and that µ is λ-additive.

Remark. We could solve Problem A′, finding a pair (m,hλ) which represents µ, only
in case λ > −1. The case λ = −1, generating “pathological” measures (e. g. non
representable ones), could not be treated in the aforementioned way.

At the same time, we could see that the functional equations point of view led us
naturally to consider λ-additive measures which are natural and adequate.
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