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Abstract. We give a sufficient condition under which any Jordan automorphism
of a triangular algebra is either an automorphism or an anti-automorphism.
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1. Introduction

Throughout the paper, R denotes a commutative ring such that 1

2
∈ R. Let

A and B be unital algebras over R. Recall that if θ is an R-linear map from A
into B, then:

(i) θ is said to be a Jordan homomorphism if θ(AB + BA) = θ(A)θ(B) +
θ(B)θ(A) for all A,B ∈ A;

(ii) θ is said to be a homomorphism (resp., an anti-homomorphism) if θ(AB)
= θ(A)θ(B) for all A,B ∈ A (resp., θ(AB) = θ(B)θ(A) for all A,B ∈ A).

Clearly, every homomorphism and every anti-homomorphism is a Jordan ho-
momorphism. It is well-known that the converse is not true in general.

Recall that a left A-module (resp., right B-module) M is faithful if for any
A ∈ A, AM= {0} (resp., for any B ∈ B, MB = {0}) implies A = 0 (resp.,
B = 0).

Let M be a unital (A,B)-bimodule which is faithful as a left A-module and
also as a right B-module. The R-algebra

U = Tri(A,M,B) =

{(

a m

b

)

: a ∈ A, b ∈ B,m ∈ M

}

,

under the usual matrix operations is called a triangular algebra (see e.g. [2]).
Benkovič and Eremita [3] described the three classical examples of triangular
rings: upper triangular matrix rings, block upper triangular matrix rings, and
nest algebras. In the same manner we can describe upper triangular matrix
algebras and block upper triangular matrix algebras.

In [4], I.N. Herstein showed that every Jordan automorphism of a primitive
ring of characteristic different from 2 and 3 is either an automorphism or an anti-
automorphism. Since then many other results have been shown in a similar vein
for different classes of rings and algebras.
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It is shown in [1] that every Jordan automorphism of a triangular algebra is
either an automorphism or an anti-automorphism. The authors of [1] proved this
result by a method based on calculations using each entry of an element in U . In
this paper we will provide a new proof of this result using fundamental properties
of Jordan automorphisms of unital algebras obtained by Herstein [4].

2. Main result

Here is a basic lemma which will be used frequently.

Lemma 2.1 (see [4]). Let A be a unital algebra over R. If θ is a Jordan auto-

morphism of A, then:

(a) θ(A2) = (θ(A))2 for every A ∈ A,

(b) θ(ABA) = θ(A)θ(B)θ(A) for all A,B ∈ A,

(c) θ(AXB +BXA) = θ(A)θ(X)θ(B) + θ(B)θ(X)θ(A) for all A,B,X ∈ A.

Notation 2.2. Let P = ( 1 0

0
), Q = ( 0 0

1
), I = ( 1 0

1
) and if m ∈ M, we put

Em = ( 1 m
0

) and Fm = ( 0 m
1

).

Lemma 2.3 (see [5, Proof of Theorem 1]). If both A and B have only trivial

idempotents, then the set of idempotents of U is Ω = {Em, Fm | m ∈ M}.

Remark 2.4. An easy computation shows that QXP = 0 for any X ∈ U .

Lemma 2.5. Let φ be a Jordan endomorphism of U such that φ(P ) = P and

φ(Q) = Q. Then for every A,B,X ∈ U , we have:

(1) φ(PAQ) = Pφ (A)Q, φ(PA) = Pφ(A), φ(AQ) = φ(A)Q, φ(AP ) =
φ(A)P and φ(QA) = Qφ(A),

(2) φ(APXQ) = φ (A)Pφ (X)Q,

(3) φ(PXQA) = Pφ (X)Qφ (A),
(4) Pφ(AB)Q = Pφ(A)φ(B)Q,

(5) φ (ABPXQ) = φ (A)φ (B)Pφ (X)Q,

(6) φ(PXQAB) = Pφ(X)Qφ(A)φ(B).

Proof: (1) Let A ∈ U . Since QAP = 0, we have φ (PAQ) = φ (PAQ+QAP ) =
Pφ (A)Q+Qφ (A)P by Lemma 2.1(c). But Qφ(A)P = 0. Then,

(E1) φ(PAQ) = Pφ (A)Q.

Moreover, from Lemma 2.1(b) it follows that

(E2) φ (PAP ) = Pφ (A)P and φ (QAQ) = Qφ (A)Q.

On account of equations (E1) and (E2) and the fact that P + Q = I, we have
φ (PA) = φ (PAQ) + φ (PAP ) = Pφ (A)Q + Pφ (A)P = Pφ (A) and φ (AQ) =
φ (QAQ) + φ (PAQ) = Qφ (A)Q+ Pφ (A)Q = φ (A)Q.

In the same manner we can see that φ(AP ) = φ(A)P and φ(QA) = Qφ(A).
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(2) Note that Y P = (P +Q)Y P = PY P + QY P = PY P for all Y ∈ U . Let
A, X ∈ U . From (1) it follows that

φ (APXQ) = φ (PAPXQ)

= φ ((PA)(PXQ) + (PXQ)(PA))

= φ (PA)φ (PXQ) + φ (PXQ)φ (PA)

= Pφ (A)Pφ (X)Q+ Pφ (X)QPφ (A)

= φ (A)Pφ (X)Q since QP = 0.

(3) By using the fact that QY = QY (P +Q) = QY P +QY Q = QYQ for all
Y ∈ U , the proof of (3) is similar to that of (2).

(4) Let A,B ∈ U . We have

Pφ (AB)Q = φ (PABQ) by (1)

= φ (PABQ+BQPA) since QP = 0

= φ (PA)φ (BQ) + φ (BQ)φ (PA)

= Pφ (A)φ (B)Q+ φ (B)QPφ (A) by (1)

= Pφ (A)φ (B)Q.

(5) Let A,B,X ∈ U . By (1) and (2), we have

φ (ABPXQ) = φ (APBPXQ+BPXQAP ) since BP = PBP

= φ (AP )φ (BPXQ) + φ (BPXQ)φ (AP )

= φ (A)Pφ (B)Pφ (X)Q+ φ (B)Pφ (X)Qφ (A)P

= φ (A)φ (B)Pφ (X)Q since φ(B)P = Pφ(B)P.

(6) The proof is similar to that of (5) by using the fact that QA = QAQ. �

Lemma 2.6. Let ψ be a Jordan endomorphism of U such that ψ(P ) = Q and

ψ(Q) = P . Then for every A,B,X ∈ U , we have:

(1) ψ(PAQ) = Pψ(A)Q, ψ (PA) = ψ (A)Q, ψ (AQ) = Pψ (A), ψ(AP ) =
Qψ(A) and ψ(QA) = ψ(A)P ,

(2) ψ(APXQ) = Pψ (X)Qψ (A),
(3) ψ(PXQA) = ψ (A)Pψ (X)Q,

(4) Pψ(AB)Q = Pψ(B)ψ(A)Q,

(5) ψ(ABPXQ) = Pψ(X)Qψ(B)ψ(A),
(6) ψ(PXQAB) = ψ(B)ψ(A)Pψ(X)Q.

Proof: The proof is similar to that of Lemma 2.5. �

Proposition 2.7. (1) Let φ be a Jordan automorphism of U such that

φ(P ) = P and φ(Q) = Q. Then φ is an automorphism.

(2) Let ψ be a Jordan automorphism of U such that ψ(P ) = Q and ψ(Q) = P .

Then ψ is an anti-automorphism.
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Proof: (1) Let A,B,X ∈ U . Lemma 2.5((2), (5)) yields φ (AB)Pφ (X)Q =
φ (ABPXQ) = φ (A)φ (B)Pφ (X)Q. So (φ(AB) − φ(A)φ(B))Pφ(X)Q = 0.
Since φ is a Jordan automorphism, we have (φ(AB) − φ(A)φ(B))PUQ = 0.
Thus [P (φ(AB) − φ(A)φ(B))P ]PUQ = 0 since P 2 = P . Note that by hy-
pothesis, M is a faithful left A-module. Then an easy computation shows that
P (φ(AB)−φ(A)φ(B))P = 0. In the same manner we can also see that Q(φ(AB)−
φ(A)φ(B))Q = 0. Moreover, Lemma 2.5(4) gives Pφ(AB)Q = Pφ(A)φ(B)Q.
That is, P (φ(AB)−φ(A)φ(B))Q = 0. Therefore (P+Q)(φ(AB)−φ(A)φ(B))(P +
Q) = 0. Consequently, φ(AB) = φ(A)φ(B). This completes the proof.

(2) The proof is similar to that of (1). �

This brings us to the main result of this paper.

Theorem 2.8. If both A and B have only trivial idempotents, then any Jordan

automorphism of U is either an automorphism or an anti-automorphism.

Proof: Let θ be a Jordan automorphism of U . Since P is an idempotent of U ,
either θ(P ) = Em or θ(P ) = Fm for some m ∈ M. Assume that θ(P ) = Em for
some m ∈ M. This implies that θ(Q) = Fk for some k ∈M. Indeed, if θ(Q) = Ex

for some x ∈M , we obtain θ(PQ+QP ) = θ (P )θ(Q)+θ (Q) θ (P ) = Em+Ex 6= 0,
a contradiction. Therefore θ (PQ+QP ) = EmFk + FkEm. Hence k + m = 0.
This gives θ (Q) = F

−m. It is easy to check that T =
(

1 −m

1

)

is invertible

and its inverse is T−1 = ( 1 m
1

). Let σT be the automorphism of U defined by
σT (Y ) = TY T−1 for all Y ∈ U . It is not difficult to see that θ(P ) = σT (P ) and
θ(Q) = σT (Q). We thus get φ(P ) = P and φ(Q) = Q, where φ = σT−1 ◦ θ is
also a Jordan automorphism of U . By Proposition 2.7, φ is an automorphism.
Therefore θ is an automorphism.

Similarly, we can prove that if θ(P ) = Fm for some m ∈ M, then θ is an
anti-automorphism. �
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