
Commentationes Mathematicae Universitatis Carolinae

Ioana Ghenciu
Property (wL) and the reciprocal Dunford-Pettis property in projective tensor
products

Commentationes Mathematicae Universitatis Carolinae, Vol. 56 (2015), No. 3, 319–329

Persistent URL: http://dml.cz/dmlcz/144347

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/144347
http://dml.cz


Comment.Math.Univ.Carolin. 56,3 (2015) 319–411 319

Property (wL) and the reciprocal Dunford-Pettis

property in projective tensor products

Ioana Ghenciu

Abstract. A Banach space X has the reciprocal Dunford-Pettis property (RDPP )
if every completely continuous operator T from X to any Banach space Y is
weakly compact. A Banach space X has the RDPP (resp. property (wL)) if
every L-subset of X∗ is relatively weakly compact (resp. weakly precompact).
We prove that the projective tensor product X ⊗ πY has property (wL) when
X has the RDPP , Y has property (wL), and L(X, Y ∗) = K(X, Y ∗).

Keywords: the reciprocal Dunford-Pettis property; property (wL); spaces of
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1. Introduction

Throughout this paper X, Y, E, and F will denote real Banach spaces. An
operator T : X → Y will be a continuous and linear function. The set of all
operators from X to Y will be denoted by L(X, Y ), and the compact operators
will be denoted by K(X, Y ).

In this paper we study weak precompactness and relative weak compactness
in spaces of compact operators. Our results are organized as follows. First we
give sufficient conditions for subsets of K(X, Y ∗) to be weakly precompact and
relatively weakly compact. Those results are used to study whether the projective
tensor product X ⊗π Y has properties (wL) and the RDPP , when X and Y have
the respective property.

Finally, we prove that in some cases, if X ⊗π Y has property (wL), then
L(X, Y ∗) = K(X, Y ∗). Our results generalize some results from [17] and [24].

2. Definitions and notations

Our notation and terminology is standard. The unit ball of X will be denoted
by BX , and X∗ will denote the continuous linear dual of X . By an operator we
understand any bounded linear mapping between Banach spaces. The set of all
operators from X to Y will be denoted by L(X, Y ), and the subspaces of compact,
resp. weakly compact operators will be denoted by K(X, Y ), resp. W (X, Y ). The
operator T is called completely continuous (or Dunford-Pettis) if T maps weakly
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320 Ghenciu I.

convergent sequences to norm convergent sequences. A subset S of X is said to
be weakly precompact provided that every bounded sequence from S has a weakly
Cauchy subsequence [5]. An operator T : X → Y is called weakly precompact (or
almost weakly compact) if T (BX) is weakly precompact.

A bounded subset A of X∗ is called an L-subset of X∗ if each weakly null
sequence in X tends to 0 uniformly on A; i.e.,

lim
n

sup{|x∗(xn)| : x∗ ∈ A} = 0.

The Banach space X has the reciprocal Dunford-Pettis property (RDPP ) if
every completely continuous operator T from X to any Banach space Y is weakly
compact [25, p. 153]. The space X has the RDPP if and only if every L-subset
of X∗ is relatively weakly compact [27]. Banach spaces with property (V ) of
Pe lczyński, in particular reflexive spaces and C(K) spaces, have the RDPP [30].
Emmanuele [20] and Bator [3] showed that ℓ1 6 →֒ X if and only if every L-subset
of X∗ is relatively compact. We say that a Banach space X has property weak
(L) (wL) if every L-subset of X∗ is weakly precompact. The space X has the
RDPP (resp. property (wL)) if and only if any operator T : Y → X∗ such that
T ∗|X is completely continuous, is weakly compact (resp. weakly precompact) (by
Theorem 4.7 of [23]).

The Banach space X has the Dunford-Pettis property (DPP ) if every weakly
compact operator T : X → Y is completely continuous. The survey article by
Diestel [14] is an excellent source of information about classical contributions to
the study of the DPP .

A topological space S is called dispersed (or scattered) if every nonempty closed
subset of S has an isolated point. A compact Hausdorff space K is dispersed if
and only if ℓ1 6 →֒ C(K) [31].

The Banach-Mazur distance d(E, F ) between two isomorphic Banach spaces
E and F is defined by inf(‖T ‖‖T−1‖), where the infinum is taken over all iso-
morphisms T from E onto F . A Banach space E is called an L∞-space (resp.
L1-space) [9, p. 7] if there is a λ ≥ 1 so that every finite dimensional subspace of
E is contained in another subspace N with d(N, ℓn

∞
) ≤ λ (resp. d(N, ℓn

1 ) ≤ λ) for
some integer n. Complemented subspaces of C(K) spaces (resp. L1(µ) spaces) are
L∞-spaces (resp. L1-spaces) [9, Proposition 1.26]. The dual of an L1-space (resp.
L∞-space) is an L∞-space (resp. L1- space) [9, Proposition 1.27]. The L∞-spaces,
L1-spaces, and their duals have the DPP [9, Corollary 1.30].

3. Weakly precompact subsets of spaces of compact operators

We begin by giving sufficient conditions for a subset of K(X, Y ) to be weakly
precompact and relatively weakly compact. We recall that the dual weak operator
topology (w′) on L(X, Y ) is defined by the functionals T 7−→ x∗∗T ∗(y∗), x∗∗ ∈
X∗∗, y∗ ∈ Y ∗ [26]. In Corollary 3 of [26] it is shown that if (Tn) is a sequence of
compact operators such that Tn → T (w′), where T is a compact operator, then
Tn → T weakly.
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If H is a subset of K(X, Y ), x ∈ X , y∗ ∈ Y ∗, and x∗∗ ∈ X∗∗, let H(x) = {Tx :
T ∈ H}, H∗(y∗) = {T ∗y∗ : T ∈ H}, and H∗∗(x∗∗) = {T ∗∗x∗∗ : T ∈ H}.

Theorem 1. Let H be a bounded subset of K(X, Y ) such that

(i) H(x) is weakly precompact for each x ∈ X , and

(ii) H∗(y∗) is relatively weakly compact for each y∗ ∈ Y ∗.

Then H is weakly precompact.

Proof: Let (Tn) be a sequence in H . Let S be the closed linear span of {T ∗

ny∗ :
y∗ ∈ Y ∗, n ∈ N}. The compactness of each Tn implies that S is a separable
subspace of X∗. Let X0 be a countable subset of X that separates points of
S. Let (xk) be a sequence in X so that X0 = {xk : k ∈ N}. By hypotheses,
{Tnxk : n ∈ N} is weakly precompact for each k. By diagonalization, we may
assume that (Tni

) is a subsequence of (Tn) so that (Tni
xk)i is weakly Cauchy for

each k. Without loss of generality, we assume that (Tnx) is weakly Cauchy for
each x ∈ X0.

For fixed y∗ ∈ Y ∗, the sequence (T ∗

ny∗) must have a weakly convergent sub-
sequence. Suppose that z∗1 and z∗2 are two weak sequential cluster points of the

sequence (T ∗

ny∗). Then z∗1 , z∗2 ∈ S. Suppose that T ∗

k(n)y
∗ w
−→ z∗1 , T ∗

p(n)y
∗ w
−→ z∗2 .

For each x ∈ X0,

〈z∗1 , x〉 = lim
n
〈T ∗

k(n)y
∗, x〉 = lim

n
〈y∗, Tk(n)x〉

= lim
n
〈y∗, Tnx〉 = lim

n
〈y∗, Tp(n)x〉

= lim
n
〈T ∗

p(n)y
∗, x〉 = 〈z∗2 , x〉.

Hence z∗1 = z∗2 , since X0 separates points of S. Then (T ∗

ny∗) is weakly convergent
for all y∗ ∈ Y ∗. Thus (Tn) is Cauchy in the (w′) topology on K(X, Y ). Hence for
any two subsequences (An) and (Bn) of (Tn), (An−Bn) → 0 (w′). By Corollary 3
of [26], (An − Bn) → 0 weakly; thus (Tn) is weakly Cauchy in K(X, Y ). �

Corollary 2. Let H be a bounded subset of K(X, Y ) such that

(i) H∗(y∗) is weakly precompact for each y∗ ∈ Y ∗, and

(ii) H∗∗(x∗∗) is relatively weakly compact for each x∗∗ ∈ X∗∗.

Then H is weakly precompact.

Proof: Suppose H satisfies the hypotheses. Consider the subset H∗ of K(Y ∗, X∗).
By Theorem 1, H∗ is weakly precompact. Let (Tn) be a sequence in H . Without
loss of generality, we can assume that (T ∗

n) is weakly Cauchy. Hence (T ∗

ny∗) is
weakly Cauchy for each y∗ ∈ Y ∗. Therefore (Tn) is Cauchy in the (w′) topology
on K(X, Y ). As in the proof of Theorem 1, (Tn) is weakly Cauchy. �

The following theorem generalizes Theorem 4.9 of [24].

Theorem 3. Suppose that L(X, Y ) = K(X, Y ). Let H be a bounded subset of

K(X, Y ) such that

(i) H(x) is relatively weakly compact for each x ∈ X , and
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(ii) H∗(y∗) is relatively weakly compact for each y∗ ∈ Y ∗.

Then H is relatively weakly compact.

Proof: Let (Tn) be a sequence in H . By Theorem 1, H is weakly precompact.
Without loss of generality, assume that (Tn) is weakly Cauchy. For each x ∈ X ,
the sequence (Tnx) has a weakly convergent subsequence and is weakly Cauchy,
thus is weakly convergent to Tx, say. Similarly, for each y∗ ∈ Y ∗, the sequence
(T ∗

ny∗) has a weakly convergent subsequence and is weakly Cauchy, thus is weakly
convergent.

Clearly, the assignment X ∋ x 7−→ Tx is linear and bounded. Hence T ∈
L(X, Y ). For all y∗ ∈ Y ∗, x ∈ X , limn〈T

∗

ny∗, x〉 = limn〈y
∗, Tnx〉 = 〈T ∗y∗, x〉.

Then T ∗

ny∗ w∗

→ T ∗y∗. Since (T ∗

ny∗) is weakly convergent, T ∗

ny∗ w
→ T ∗y∗. Hence

Tn → T in the (w′) topology of K(X, Y ). By Corollary 3 of [26], Tn → T weakly,
and H is relatively weakly compact. �

Remark. If L(X, Y ) = K(X, Y ), then a subset H of K(X, Y ) is relatively weakly
compact if and only if conditions (i) and (ii) of the previous theorem hold.

Corollary 4 ([26, Corollary 2]). If X and Y are reflexive and L(X, Y ) = K(X, Y ),
then K(X, Y ) is reflexive.

Proof: Let H be the unit ball of L(X, Y ) = K(X, Y ). Since X and Y are
reflexive, H(x) and H∗(y∗) are relatively weakly compact for all x ∈ X and
y∗ ∈ Y ∗. By Theorem 3, H is relatively weakly compact, and thus K(X, Y ) is
reflexive. �

4. Property (wL) and the RDPP in projective tensor products

In this section we consider the property (wL) and the RDPP in the projective
tensor product X ⊗π Y . We begin by noting that there are examples of Banach
spaces X and Y such that X ⊗π Y has property RDPP . If 1 < q′ < p < ∞, then
L(ℓp, ℓq′) = K(ℓp, ℓq′) ([33]). Let q be the conjugate of q′. By [26, Corollary 2],
L(ℓp, ℓq′) ≃ (ℓp ⊗π ℓq)∗ is reflexive. Then ℓp ⊗π ℓq is reflexive, and thus has the
RDPP . Thus the spaces X = ℓp and Y = ℓq are as desired.

Observation 1. If X is an infinite dimensional space with the Schur property,
then X does not have property (wL).

Since ℓ1 →֒ X , ℓ1 →֒ X∗ ([13], p. 211). All bounded subsets of X∗ are L-
subsets, and thus there are L-subsets of X∗ which fail to be weakly precompact.

Since property (wL) is inherited by quotients, it follows that if X has property

(wL), then ℓ1 6
c
→֒ X , and c0 6 →֒ X∗ [6].

Observation 2. If T : Y → X∗ be an operator such that T ∗|X is compact, then
T is compact. To see this, let T : Y → X∗ be an operator such that T ∗|X is
compact. Let S = T ∗|X . Suppose x∗∗ ∈ BX∗∗ and choose a net (xα) in BX which

is w∗- convergent to x∗∗. Then (T ∗xα)
w∗

→ T ∗x∗∗. Now, (T ∗xα) ⊆ S(BX), which

is a relatively compact set. Then (T ∗xα) → T ∗x∗∗. Hence T ∗(BX∗∗) ⊆ S(BX),
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which is relatively compact. Therefore T ∗(BX∗∗) is relatively compact, and thus
T is compact. It follows that if L(X, Y ∗) = K(X, Y ∗), then L(Y, X∗) = K(Y, X∗).

The following lemma is known [8]; we include proof for the convenience of the
reader.

Lemma 5. Suppose that every operator T : X → Y ∗ is completely continuous.

If (xn) is a weakly null sequence in X and (yn) is a bounded sequence in Y , then

(xn ⊗ yn) is weakly null in X ⊗π Y .

Proof: Suppose that (xn) is weakly null and ‖yn‖ ≤ M for all n ∈ N. Let
T ∈ L(X, Y ∗) ≃ (X ⊗π Y )∗ ([15, p. 230]). Since T is completely continuous,

|〈T, xn ⊗ yn〉| ≤ M‖Txn‖ → 0.

�

Theorem 6. (i) Suppose that X has the RDPP , Y has property (wL), and

L(X, Y ∗) = K(X, Y ∗). Then X ⊗π Y has property (wL).
(ii) Suppose that X has property (wL), Y has the RDPP , and L(X, Y ∗) =

K(X, Y ∗). Then X ⊗π Y has property (wL).

Proof: (i) We will use Theorem 1. Let H be an L-subset of (X ⊗π Y )∗ ≃
L(X, Y ∗) = K(X, Y ∗). We will verify the conditions (i) and (ii) of this theorem.
Let (Tn) be a sequence in H and let y∗∗ ∈ Y ∗∗. We will show that {T ∗

ny∗∗ : n ∈ N}
is an L-subset of X∗. Suppose that (xn) is weakly null in X . For n ∈ N,

|〈T ∗

ny∗∗, xn〉| = |〈y∗∗, Tnxn〉| ≤ ‖y∗∗‖ ‖Tnxn‖.

We show that ‖Tnxn‖ → 0. Suppose that ‖Tnxn‖ 6→ 0. Without loss of
generality we assume that |〈Tnxn, yn〉| > ǫ for some sequence (yn) in BY and
some ǫ > 0. Since {Tn : n ∈ N} is an L-set and (xn ⊗yn) is weakly null in X⊗π Y

(by Lemma 5), supm |〈Tm, xn⊗yn〉| → 0, and so |〈Tn, xn⊗yn〉| = |〈Tnxn, yn〉| → 0.
This contradiction shows that ‖Tnxn‖ → 0. Hence {T ∗

ny∗∗ : n ∈ N} is an L-subset
of X∗. Therefore this subset is relatively weakly compact [27]. This verifies (ii)
of Theorem 1.

It remains to verify (i) of Theorem 1. Let x ∈ X . We show that {Tnx : n ∈ N}
is an L-subset of Y ∗. Let (yn) be a weakly null sequence in Y . For n ∈ N,

|〈Tnx, yn〉| = |〈x, T ∗

nyn〉| ≤ ‖x‖ ‖T ∗

nyn‖.

An argument similar to the one above shows that ‖T ∗

nyn‖ → 0. Thus {Tnx :
n ∈ N} is an L-subset of Y ∗, hence weakly precompact, for all x ∈ X . We thus
verified (i) of Theorem 1. By Theorem 1, (Tn) has a weakly Cauchy subsequence.
We proved that H is weakly precompact.

(ii) If L(X, Y ∗) = K(X, Y ∗), then L(Y, X∗) = K(Y, X∗) (by Observation 2).
By (i), Y ⊗π X has property (wL). Since X ⊗π Y is isometrically isomorphic to
Y ⊗π X , X ⊗π Y has property (wL). �
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Theorem 7. Suppose that X and Y have the RDPP and L(X, Y ∗) = K(X, Y ∗).
Then X ⊗π Y has the RDPP .

Proof: Let H be an L-subset of (X ⊗π Y )∗ ≃ L(X, Y ∗) = K(X, Y ∗) and let
(Tn) be a sequence in H . The proof of Theorem 6 shows that {Tnx : n ∈ N}
is an L-subset of Y ∗, and thus relatively weakly compact by [27]. Similarly,
{T ∗

ny∗∗ : n ∈ N} is an L-subset of X∗, thus relatively weakly compact. Then, by
Theorem 3, (Tn) has a weakly convergent subsequence. �

Theorem 7 contains Corollary 4 of [17]. The assumptions that X∗ and Y ∗ are
weakly sequentially complete in Corollary 4 of [17] are superfluous.

Corollary 8. Suppose that ℓ1 6 →֒ X , Y has the RDPP (resp. property (wL)),
and L(X, Y ∗) = K(X, Y ∗). Then X ⊗π Y has the RDPP (resp. property (wL)).

Proof: If ℓ1 6 →֒ X , then every L-subset of X∗ is relatively compact [20], [3].
If Y has the RDPP (resp. property (wL)), then X ⊗π Y has the RDPP (resp.
property (wL)), by Theorem 7 (resp. Theorem 6 (i)). �

The RDPP case of the previous result was proved in Theorem 3 of [17]. In
Theorem 11 we show that if X ⊗π Y has the RDPP (resp. property (wL)), then
either ℓ1 6 →֒ X or ℓ1 6 →֒ Y . Thus, in Theorems 6 and 7 we can suppose without
loss of generality that either ℓ1 6 →֒ X or ℓ1 6 →֒ Y . Hence Theorem 7 is equivalent
to Theorem 3 of [17].

Corollary 9. (i) Suppose that X is a closed subspace of an order continuous

Banach lattice and X has property (wL). If Y has the RDPP (resp. property

(wL)) and L(X, Y ∗) = K(X, Y ∗), then X ⊗π Y has the RDPP (resp. property

(wL)).
(ii) Suppose that X is a Banach space with property (wV ∗) and X has property

(wL). If Y has the RDPP (resp. property (wL)) and L(X, Y ∗) = K(X, Y ∗), then

X ⊗π Y has the RDPP (resp. property (wL)).

Proof: If X has property (wL), then ℓ1 6
c
→֒ X (by Observation 1).

(i) Since X is a subspace of a Banach lattice, ℓ1 6 →֒ X [36]. Apply Corollary 8.
(ii) Since X has property (wV ∗), ℓ1 6 →֒ X [7]. Apply Corollary 8. �

Corollary 9(i) contains Corollary 5 of [17]. The fact that properties RDPP and
(wL) are inherited by quotients, immediately implies the following result, which
contains Corollary 6 of [17].

Corollary 10. Suppose that ℓ1 6 →֒ E∗ and F has property RDPP (resp. prop-

erty (wL)). If L(E∗, F ∗) = K(E∗, F ∗), then the space N1(E, F ) of all nuclear

operators from E to F has the RDPP (resp. property (wL)).

Proof: It is known that N1(E, F ) is a quotient of E∗ ⊗π F [34, p. 41]. Apply
Corollary 8. �

Theorem 11. Suppose that L(E, F ∗) = K(E, F ∗). The following statements

are equivalent:
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(i) E and F have the RDPP (resp. property (wL)) and either ℓ1 6 →֒ E or

ℓ1 6 →֒ F .

(ii) E ⊗π F has the RDPP (resp. property (wL)).

Proof: (i) ⇒ (ii) by Corollary 8.
(ii) ⇒ (i) Suppose that E⊗π F has the RDPP (resp. property (wL)). Then E

and F have the RDPP (resp. property (wL)), since the RDPP (resp. property
(wL)) is inherited by quotients. Suppose ℓ1 →֒ E and ℓ1 →֒ F . Hence L1 →֒
E∗ [29]. Also, the Rademacher functions span ℓ2 inside of L1, and thus ℓ2 →֒
E∗. Similarly ℓ2 →֒ F ∗. Then c0 →֒ K(E, F ∗) ([16], [22]), a contradiction with
Observation 1. �

The RDPP case of the previous result was proved in Theorem 8 of [17].

Observation 3. If ℓ1 →֒ E and ℓ1 →֒ F , then c0 →֒ K(E, F ∗) ([16], [22]). More
generally, if ℓ1 →֒ E and ℓp →֒ F ∗, p ≥ 2, then c0 →֒ K(E, F ∗) ([16], [22]). Hence

ℓ1
c
→֒ E ⊗π F [6]. By Observation 1, E ⊗π F does not have property (wL).

Observation 4. If E∗ has the Schur property, then ℓ1 6 →֒ E. Indeed, if ℓ1 →֒ E,
then L1 →֒ E∗ [29], and E∗ does not have the Schur property.

Observation 5. If E∗ has the Schur property and F has property (wL), then
L(E, F ∗) = K(E, F ∗). To see this, let T : F → E∗ be an operator. Then T is
completely continuous (since E∗ has the Schur property). Therefore T ∗(BE∗∗) is
an L-subset of F ∗, thus is weakly precompact. Since T ∗ is weakly precompact, T

is weakly precompact, by Corollary 2 of [4]. Then T is compact. By Observation 2,
L(E, F ∗) = K(E, F ∗).

Corollary 12. (i) Suppose that E∗ has the Schur property and F has the

RDPP (resp. property (wL)). Then E ⊗π F has the RDPP (resp. pro-

perty (wL)).
(ii) [17, Corollary 10] Suppose that E = ℓp, where 1 < p ≤ ∞, and F = c0.

Then E ⊗π F has the RDPP .

(iii) Suppose that E is an infinite dimensional L∞-space not containing ℓ1. If

F has the RDPP (resp. property (wL)), then E ⊗π F has the RDPP

(resp. property (wL)).

Proof: (i) Since E∗ has the Schur property, ℓ1 6 →֒ E (by Observation 4). By
Observation 5, L(E, F ∗) = K(E, F ∗). Apply Corollary 8.

(ii) By (i), F ⊗π E, hence E ⊗π F has the RDPP .
(iii) Suppose E is an infinite dimensional L∞-space not containing ℓ1. Then

E has the DPP by Corollary 1.30 of [9]; thus E∗ has the Schur property by
Theorem 3 of [14]. Apply (i). �

The RDPP case of Corollary 12(i) was proved in Corollary 9 of [17]. Corol-
lary 12(iii) generalizes Corollary 11 of [17]. The hypothesis that F ∗ is a subspace
of an L1-space in Corollary 11 of [17] is superfluous.
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Corollary 13. Suppose that E and F have the DPP. The following statements

are equivalent:

(i) E and F have the RDPP (resp. property (wL)) and ℓ1 6 →֒ E or ℓ1 6 →֒ F ;

(ii) E ⊗π F has the RDPP (resp. property (wL)).

Proof: (i)⇒(ii) Suppose that E and F have the DPP and the RDPP (resp.
property (wL)). Suppose without loss of generality that ℓ1 6 →֒ E. Then E∗ has
the Schur property by Theorem 3 of [14]. Apply Corollary 12 (i).

(ii)⇒(i) The proof is the same as the corresponding one in Theorem 11. �

By Theorem 11 (or Corollary 13), the space C(K1) ⊗π C(K2) has the RDPP

if and only if either K1 or K2 is dispersed. The spaces A and H∞ have the DPP

and property (V ), hence they have the RDPP , and contain copies of ℓ1 ([10],
[11], [12], [35]). Let E, F be A or H∞. Then E ⊗π F does not have property
(wL) (by Observation 3).

Corollary 14. Suppose that ℓ1 6 →֒ E and F has the RDPP (resp. property

(wL)). If F ∗ is complemented in a Banach space Z which has an unconditional

Schauder decomposition (Zn), with Zn having the Schur property for each n, then

the following statements are equivalent:

(i) E ⊗π F has the RDPP (resp. property (wL));
(ii) L(E, F ∗) = K(E, F ∗).

Proof: (i)⇒(ii) Suppose E ⊗π F has the RDPP (resp. property (wL)). Since
ℓ1 6 →֒ E and Zn has the Schur property, L(E, Zn) = K(E, Zn) for each n. If
L(E, F ∗) 6= K(E, F ∗), then c0 →֒ K(E, F ∗) (by Theorem 1 of [18]), a contradic-
tion.

(ii)⇒(i) Apply Corollary 8. �

Next we present some results about the necessity of the conditions L(E, F ∗) =
K(E, F ∗) and W (E, F ∗) = K(E, F ∗).

A Banach space X has the approximation property if for each norm compact
subset M of X and ǫ > 0, there is a finite rank operator T : X → X such that
‖Tx − x‖ < ǫ for all x ∈ M . If in addition T can be found with ‖T ‖ ≤ 1, then
X is said to have the metric approximation property. For example, C(K) spaces,
c0, ℓp for 1 ≤ p < ∞, Lp(µ) for any measure µ and 1 ≤ p < ∞, and their duals
have the metric approximation property [15, p. 238], [34].

A separable Banach space X has an unconditional compact expansion of the
identity (u.c.e.i) if there is a sequence (An) of compact operators from X to X

such that
∑

Anx converges unconditionally to x for all x ∈ X [21]. In this case,
(An) is called an (u.c.e.i.) of X . A sequence (Xn) of closed subspaces of a Banach
space X is called an unconditional Schauder decomposition of X if every x ∈ X

has a unique representation of the form x =
∑

xn, with xn ∈ Xn, for every n,
and the series converges unconditionally [28, p. 48].
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The space X has (Rademacher) cotype q for some 2 ≤ q ≤ ∞ if there is a
constant C such that for for every n and every x1, x2, . . . , xn in X ,

(

n
∑

i=1

‖xi‖
q

)1/q

≤ C

(
∫ 1

0

‖ri(t)xi‖
qdt

)1/q

,

where (rn) are the Radamacher functions. A Hilbert space has cotype 2 [1, p. 138].
The dual of C(K), the space M(K), has cotype 2 [1, p. 142].

Theorem 15. Assume one of the following conditions holds.

(i) If T : E → F ∗ is an operator which is not compact, then there is a

sequence (Tn) in K(E, F ∗) such that for each x ∈ E, the series
∑

Tnx

converges unconditionally to Tx.

(ii) Either E∗ or F ∗ has an (u.c.e.i.).
(iii) E is an L∞-space and F ∗ is a subspace of an L1-space.

(iv) E = C(K), K a compact Hausdorff space, and F ∗ is a space with cotype 2.

(v) E has the DPP and ℓ1 →֒ F .

(vi) E and F have the DPP .

If E ⊗π F has property (wL), then L(E, F ∗) = K(E, F ∗).

Proof: Suppose E⊗π F has property (wL). Then E and F have property (wL).
(i) Let T : E → F ∗ be a noncompact operator. Let (Tn) be a sequence as in the

hypothesis. By the Uniform Boundedness Principle, {
∑

n∈A Tn : A ⊆ N, A finite}
is bounded in K(E, F ∗). Then

∑

Tn is wuc and not unconditionally convergent
(since T is noncompact). Hence c0 →֒ K(E, F ∗) [6], and we have a contradiction
with Observation 1.

(ii) Suppose that F ∗ has an (u.c.e.i.) (An). Then An : F ∗ → F ∗ is compact
for each n and

∑

Any converges unconditionally to y, for each y ∈ F ∗. Let
T : E → F ∗ be a noncompact operator. Hence

∑

AnTx converges unconditionally
to Tx for each x ∈ E and AnT ∈ K(E, F ∗). Then c0 →֒ K(E, F ∗) (by (i)),
a contradiction.

Similarly, if E∗ has an (u.c.e.i.) and L(E, F ∗) 6= K(E, F ∗), then c0 →֒
K(F, E∗).

Suppose (iii) or (iv) holds. It is known that any operator T : E → F ∗

is 2-absolutely summing ([32]), hence it factorizes through a Hilbert space. If
L(E, F ∗) 6= K(E, F ∗), then c0 →֒ K(E, F ∗) (by Remark 3 of [19]), a contradic-
tion.

(v) Suppose that E has the DPP and ℓ1 →֒ F . By Observation 3, ℓ1 6 →֒
E. Then E∗ has the Schur property by Theorem 3 of [14]. By Observation 5,
L(E, F ∗) = K(E, F ∗).

(vi) Suppose that E and F have the DPP . If ℓ1 →֒ F , then (v) implies
L(E, F ∗) = K(E, F ∗). If ℓ1 6 →֒ F , then F ∗ has the Schur property [14]. By the
proof of Observation 5, L(E, F ∗) = K(E, F ∗). �
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By Theorem 15, if one of the hypotheses (i)-(vi) holds and L(E, F ∗) 6= K(E, F ∗),
then E ⊗π F does not have property (wL). Thus the space ℓp ⊗ ℓq, where
1 < p ≤ q′ < ∞ and q and q′ are conjugate, does not have property (wL),
since the natural inclusion map i : ℓp → ℓq′ is not compact. Further, the space
C(K) ⊗π ℓp, with K not dispersed and 1 < p ≤ 2, does not have property (wL),
since L(C(K), ℓq) 6= K(C(K), ℓq) (by Corollary 3.11 of [2]), where q is the conju-
gate of p, 2 ≤ q < ∞.

Theorem 16. Suppose that F ∗ is complemented in a Banach space Z which has

an unconditional Schauder decomposition (Zn), and W (E, Zn) = K(E, Zn) for

all n. If E ⊗π F has property (wL), then W (E, F ∗) = K(E, F ∗).

Proof: Let T : E → F ∗ be a weakly compact and noncompact operator, Pn :
Z → Zn, Pn(

∑

zi) = zn, and let P be the projection of Z onto F ∗. Define
Tn : E → F ∗ by Tnx = PPnTx, x ∈ E, n ∈ N. Note that PnT is compact
since W (E, Zn) = K(E, Zn). Then Tn is compact for each n. For each z ∈ Z,
∑

Pnz converges unconditionally to z; thus
∑

Tnx converges unconditionally to
Tx for each x ∈ E. Then

∑

Tn is wuc and not unconditionally converging. Hence
c0 →֒ K(E, F ∗) [6], and we obtain a contradiction. �
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