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ON THE EXISTENCE OF PARABOLIC ACTIONS

IN CONVEX DOMAINS OF C
k+1
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Abstract. We prove that the one-parameter group of holomorphic automorphisms induced
on a strictly geometrically bounded domain by a biholomorphism with a model domain is
parabolic. This result is related to the Greene-Krantz conjecture and more generally to the
classification of domains having a non compact automorphisms group. The proof relies on
elementary estimates on the Kobayashi pseudo-metric.
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1. Main results

It is a standard and classical result of Cartan that if Ω is a bounded domain

in C
n whose automorphism group Aut(Ω) is not compact then there exist a point

x ∈ Ω, a point p ∈ ∂Ω, and automorphisms ϕj ∈ Aut(Ω) such that ϕj(x) → p. Such

a point p is called a boundary orbit accumulation point.

The classification of domains with non-compact automorphism groups deeply re-

lies on the geometry of the boundary at an orbit accumulation point p. For instance,

Wong and Rosay [15], [16] showed that if p is a strongly pseudoconvex point, then

the domain is biholomorphic to the euclidean ball. In their works [1]–[3], Bedford

and Pinchuk introduced a scaling technique to analyse the case of a weakly pseu-

doconvex boundary orbit accumulation point. In particular, they characterized the

pseudoconvex and finite type domains in C
2 having a non-compact automorphism

group. The papers [4]–[6] deal with a local version, in the spirit of Wong-Rosay, of

this result.
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On the other hand, Greene and Krantz [8] suggested the following conjecture.

Greene-Krantz Conjecture. If the automorphism group Aut(Ω) of a smoothly

bounded pseudoconvex domain Ω ⋐ C
n is non-compact, then any orbit accumulation

point is of finite type.

This conjecture is still open, even for convex domains, despite a quite large number

of partial results: Greene and Krantz [8], Kim [11], Kim and Krantz [12], [13],

Kang [10], Landucci [14], and Byun and Gaussier [7]. We refer to the survey [9] for

a more precise discussion of the above conjecture and for a general presentation of

the subject.

The scaling technique applied to a bounded and strictly geometrically convex

domain Ω ⊂ C
k+1 produces a biholomorphism ψ : D → Ω where D is of the form

D = {(w, z) ∈ C
k+1 : Rew+σ(z) < 0} for some smooth convex function σ on Ck+1.

In view of the above conjecture, it seems relevant to show that the one-parameter

group of biholomorphic mappings induced onΩ by the translations (w, z) 7→ (w+it, z)

is parabolic. This is what we establish in this short note:

Theorem 1. Let Ω be a C1-smooth bounded strictly geometrically convex domain

in C
k+1. Let ψ : Ω → D be a biholomorphism, where D := {(w, z) ∈ C

k+1 : Rew +

σ(z) < 0} and σ is a C1-smooth nonnegative convex function on the complex plane

such that σ(0) = 0. Then there exists a point a∞ ∈ ∂Ω such that lim
t→∞

ψ−1(w±it, z) =

a∞ for any (w, z) ∈ D.

We now start to prove the above theorem and first recall some notation and

definitions.

For two domains D,Ω in C
n, we denote by Hol(D,Ω) the set of all holomorphic

maps from D into Ω. We denote by d(z, ∂Ω) the distance from a point z ∈ Ω to ∂Ω

and by ∆ the open unit disk in the complex plane.

Let p, q be two points in a domain Ω in C
n and let X be a vector in C

n. The

Kobayashi infinitesimal pseudometric FΩ(p,X) is defined by

FΩ(p,X) = inf{α > 0; ∃g ∈ Hol(∆,Ω), g(0) = p, g′(0) = X/α}.

The Kobayashi pseudodistance kΩ(p, q) is defined by

kΩ(p, q) = inf

∫ b

a

FΩ(γ(t), γ
′(t)) dt,

where the infimum is taken over all differentiable curves γ : [a, b] → Ω such that

γ(a) = p and γ(b) = q.

Before proceeding to prove Theorem 1, we establish a few lemmas.
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Lemma 2. Let Ω be a C1-smooth bounded strictly geometrically convex domain

in C
k+1. Then there exists ε0 > 0 such that for any η ∈ ∂Ω and for any ε ∈ (0, ε0]

there is a constant K(ε) > 0 such that

kΩ(z, w) > −
1

2
ln d(z, ∂Ω)−K(ε)

holds for any z, w ∈ Ω with |z − η| < ε, |w − η| > 3ε.

P r o o f. Since ∂Ω is strictly geometrically convex, there exists a family of holo-

morphic peak functions

F : Ω× ∂Ω → C, (z, η) 7→ F (z, η)

such that

(i) F is continuous and F (., η) is holomorphic;

(ii) |F | < 1;

(iii) there exist a positive constant A and a positive constant ε0 such that |1 −

F (η + t~nη, η)| 6 At for t ∈ [0, ε0], where ~nη is the normal to ∂Ω at η.

Taking ε0 > 0 small enough, we may assume that ∂B(η, 3ε)∩ ∂Ω 6= ∅ for ε 6 ε0 and

for any η ∈ ∂Ω.

Let γ be a smooth path in Ω such that γ(0) = z, γ(1) = w,
∫ 1

0
FΩ(γ(t), γ

′(t)) dt 6

kΩ(z, w) + 1. Let z0 ∈ γ be such that |z0 − η| = 3ε. We have

(1.1) kΩ(z, w) >

∫ 1

0

FΩ(γ(t), γ
′(t)) dt− 1 > kΩ(z, z0)− 1.

Let η̃ ∈ ∂Ω be such that z = η̃ + t~nη, t > 0. We set u0 := F (z0, η̃) and u := F (z, η̃),

u and u0 are in the unit disk ∆. Then we have

(1.2) kΩ(z, z0) > k∆(u, u0) =
1

2
ln

1 + |τu0
(u)|

1− |τu0
(u)|

> −
1

2
ln(1− |τu0

(u)|),

where τu0
(u) =

u− u0
1− ū0u

. One easily checks that

(1.3) 1− |τu0
(u)| 6

2|1− u|

1 − |u0|
.

Using the properties of F we obtain

(1.4) |1− u| = |1− F (z, η̃)| 6 At = Ad(z, bΩ).

Since |η − η̃| 6 |η − z|+ |z − η̃| < 2ε and |z0 − η| = 3ε, we have |z0 − η̃| > ε.
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Setting M(ε) := sup
η∈∂Ω, z∈Ω

|z−η|>ε

|F (z, η)|, M(ε) < 1 yields

(1.5) 1− |u0| = 1− |F (z0, η̃)| > 1−M(ε) > 0.

From (1.3), (1.4), and (1.5) we get

(1.6) 1− |τu0
(u)| 6

2A

1−M(ε)
d(z, ∂Ω).

Then from (1.1), (1.2), and (1.6) we obtain

(1.7) kΩ(z, w) > −
1

2
ln d(z, ∂Ω)−

1

2
ln

2A

1−M(ε)
− 1

and this completes the proof. �

Lemma 3. Let Ω be a C1-smooth, bounded, strictly geometrically convex domain

in C
k+1 and let η, η′ ∈ ∂Ω satisfy η 6= η′. Then there exist ε > 0 and a constant K

such that

kΩ(z, w) > −
1

2
ln d(z, ∂Ω)−

1

2
ln d(w, ∂Ω) −K

for any z ∈ B(η, ε) and any w ∈ B(η′, ε).

P r o o f. Let η and η′ be two distinct points on ∂Ω. Suppose that |z− η| < ε and

|w − η′| < ε and let γ be a C1 path in Ω connecting z and w such that kΩ(z, w) >∫ 1

0
FΩ[γ(t), γ

′(t)] dt−1. If ε is small enough we may find z0 ∈ γ such that |z0−η| > 3ε

and |z0 − η′| > 3ε. Let z0 = γ(t0), then

kΩ(z, w) >

∫ t0

0

FΩ(γ(t), γ
′(t)) dt+

∫ 1

t0

FΩ(γ(t), γ
′(t)) dt− 1

> kΩ(z, z0) + kΩ(z0, w)− 1

> −
1

2
ln d(z, ∂Ω)−

1

2
ln d(w, ∂Ω) − 2K(ε)− 1,

where the last inequality is obtained by applying twice Lemma 2. �

We now recall the definition of horospheres. Let a ∈ Ω, η ∈ ∂Ω, R > 0. The big

horosphere with pole a, center η and radius R in Ω is defined as follows:

FΩ
a (η,R) =

{
z ∈ Ω: lim inf

w→η
(kΩ(z, w)− kΩ(a, w)) <

1

2
lnR

}
.
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Lemma 4. If Ω is a C1-smooth, bounded, strictly geometrically convex domain

in C
k+1, then FΩ

a (η,R) ∩ ∂Ω ⊂ {η} for any a ∈ Ω, η ∈ ∂Ω, R > 0.

P r o o f. If there exists η′ ∈ ∂Ω∩FΩ
a (η,R) then we can find a sequence {zn} ⊂ Ω

with zn → η′ and a sequence {wn} ⊂ Ω with wn → η such that

(1.8) kΩ(zn, wn)− kΩ(a, wn) <
1

2
lnR.

By Lemma 3, the following estimate holds if η 6= η′ and n is great enough:

(1.9) kΩ(zn, wn) > −
1

2
ln d(zn, ∂Ω)−

1

2
ln d(wn, ∂Ω)−K,

where K is a constant which only depends on η, η′ and Ω.

On the other hand, we have

(1.10) kΩ(a, wn) 6 −
1

2
ln d(wn, ∂Ω) +K(a),

since ∂Ω is smooth.

From (1.8), (1.9), and (1.10) we get

(1.11) −
1

2
ln d(zn, ∂Ω) . 1,

which is absurd. �

P r o o f of Theorem 1. Set an := ψ−1(−tn, 0) where lim tn = ∞. After taking

a subsequence we may assume that lim an = a∞ ∈ ∂Ω. We may also assume that

a∞ is the origin in C
k+1.

Set bt := ψ−1(−1 + it, 0). According to Lemma 4, it suffices to show that there

exists R0 > 0 such that

(1.12) {bt : t ∈ R} ⊂ FΩ
a0
(a∞, R0).

Since an → a∞, we have

(1.13) lim inf
w→a∞

(kΩ(bt, w) − kΩ(a0, w)) 6 lim inf
n→∞

(kΩ(bt, an)− kΩ(a0, an)).

Then by the invariance of the Kobayashi metric and the convexity of D we have

(1.14) kΩ(bt, an)− kΩ(a0, an) = kD((−1 + it, 0), (−tn, 0))− kD((−t0, 0), (−tn, 0))

= kH(−1 + it,−tn)− kH(−t0,−tn),

where H is the left half plane {w ∈ C : Rew < 0}.
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Let σ : H → ∆ be a biholomorphism between H and the disk ∆ given by

σ(w) = (w + 1)/(w − 1). Set zt := σ(−1 + it) = it/(−2 + it) and xn := σ(−tn) =

(−tn + 1)/(−tn − 1). Then we have

(1.15) kH(−1 + it, − tn)− kH(−t0,−tn) = k∆(zt, xn)− k∆(x0, xn)

= ln

(
|1− xnzt|+ |xn − zt|

|1− xnzt| − |xn − zt|

|1− xnx0|+ |xn − x0|

|1− xnx0| − |xn − x0|

)

= ln

(
|1− xnx0|+ |xn − x0|

|1− xnzt| − |xn − zt|

|1− xnzt|+ |xn − zt|

|1− xnx0| − |xn − x0|

)

= ln

(
|1− xnx0|2 − |xn − x0|2

|1− xnzt|2 − |xn − zt|2

(
|1− xnzt|+ |xn − zt|

|1− xnx0| − |xn − x0|

)2)

= ln

(
1− x20
1− |zt|2

(
|1− xnzt|+ |xn − zt|

|1− xnx0| − |xn − x0|

)2)
.

From (1.14) and (1.15) we conclude

(1.16) lim
n→∞

(kΩ(bt, an)− kΩ(a0, an)) = ln

(
1− x20
1− |zt|2

|1− zt|2

|1− x0|2

)
= ln

1− x20
|1− x0|2

.

Finally, (1.12) follows directly from (1.13) and (1.16) when ln (1 − x20)/|1− x0|2 <
1

2
lnR0. �
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