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Abstract. Let X be a complex L1-predual, non-separable in general. We investigate
extendability of complex-valued bounded homogeneous Baire-α functions on the set extBX∗

of the extreme points of the dual unit ball BX∗ to the whole unit ball BX∗ . As a corollary
we show that, given α ∈ [1, ω1), the intrinsic α-th Baire class of X can be identified with
the space of bounded homogeneous Baire-α functions on the set extBX∗ when extBX∗

satisfies certain topological assumptions. The paper is intended to be a complex counterpart
to the same authors’ paper: Baire classes of non-separable L1-preduals (2015). As such it
generalizes former work of Lindenstrauss and Wulbert (1969), Jellett (1985), and ourselves
(2014), (2015).
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1. Introduction

A complex (or real) Banach space X is called an L1-predual (or a Lindenstrauss

space) if its dual X∗ is isometric to a complex (or real) space L1(X,S, µ) for a mea-

sure space (X,S, µ). Complex L1-preduals were studied, e.g., in [4], [6], [11], [18],

[20] or recently in [17]. Our contribution to the subject of L1-preduals can be found

in [13], [14] and [15].

After intensive studies of real L1-preduals, the investigation of its complex version

came more into focus. In [3], Effros provided a “simplex-like” characterization of

complex L1-preduals, which allowed to involve many real case techniques also in the

complex case.

The present paper is intended to be a complex counterpart to the paper [13]. As

such it generalizes some results of Lindenstrauss and Wulbert in [12], Jellett in [7]

This work was supported by the Czech Science Foundation (P201/12/0290); and by the
Foundation of Karel Janeček for Science and Research.
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and of ours in [13], [14] as well. Although the very general strategy of the proofs is

the same as in the paper [13], the complex setting demands introducing new; more

intricate notions. It is not obvious whether the complex analogues of the real notions

could work considerably well. The main goal of the paper is to show that the answer

is affirmative. Nevertheless, the complex case requires more delicate approach and

elaborated arguments. At some points we also needed to prove stronger results than

in the real case (e.g., Lemma 2.13).

All topological spaces involved in the paper are considered to be Hausdorff. Let F

represent the field of either real or complex numbers.

For a topological space K, let C(K,F) be the space of all continuous functions

on K with values in F, B(K,F) be the space of all Borel functions on K with values

in F and Bb(K,F) be the space of all bounded Borel functions on K with values

in F. If K is compact, we writeM(K,F) for the space of F-valued Radon measures

on K andM1(K) for the set of all Radon probability measures on K. (By a Radon

positive measure on a compact space K we mean a complete inner regular Borel

measure. An F-valued Radon measure µ on K is an F-valued measure such that its

total variation |µ| is a Radon positive measure.) For a point x ∈ K, εx stands for

the Dirac measure at x. A set B ⊂ K is universally measurable if B is measurable

with respect to any Radon measure on K. If B ⊂ K is a universally measurable

subset of K, we write M(B,F) for the subset of M(K,F) containing measures µ

satisfying |µ|(K \ B) = 0. Similarly, M1(B) stands for the probability measures

carried by B. For a universally measurable set B ⊂ K, a bounded Borel function f

on B and µ ∈ M(K,F), we write µ(f) for the integral
∫

K
f̃ dµ, where f̃ = f on B

and 0 on K \B.

Let K be a topological space and H be a subset of C(K,F). We set B0(H) = H

and, for α ∈ (0, ω1), let Bα(H) consist of all pointwise limits of elements from
⋃

β<α

Bβ(H). Further, we denote by Bα,b(H) the set of all bounded elements from

Bα(H). The symbol Bα,bb(H) denotes the inductive families created by means of

pointwise limits of bounded sequences of lower classes, where B0,bb(H) = H.

If we start the inductive procedure from the space of all continuous functions, we

write simply Bα(K,F) and Bα,b(K,F) for the spaces of Baire-α functions. Then we

have Bα,b(K,F) = Bα,bb(K,F). Let us remind that for a metrizable space K the

identity Bb(K,F) =
⋃

α<ω1

Bα,b(K,F) holds. Having started with the space A(K,F)

of all continuous affine functions on a compact convex set K in a locally convex

space, we obtain spaces Aα(K,F), Aα,b(K,F) and Aα,bb(K,F). As a consequence

of the uniform boundedness principle we get Aα,bb(K,F) = Aα,b(K,F) = Aα(K,F)

(see e.g. [16], Lemma 5.36) and the elements of this set we call functions of affine

class α.
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If X is a (either real or complex) Banach space and BX∗ is its dual unit ball

endowed with the weak* topology, X is isometrically embedded in C(BX∗ ,F) via

the canonical embedding. We recall the definitions of Baire classes of X∗∗ from [2].

For α ∈ [0, ω1), we call Bα(X,F) the intrinsic α-Baire class of X∗∗. Following [2],

page 1044, we denote the intrinsic α-th Baire class by X∗∗
α . Let us remark that

our definition differs from the one in [2]. While in our case elements of X∗∗
α are

restrictions of uniquely determined elements from X∗∗ to the closed unit ball BX∗ ,

the functions considered in [2] are precisely these extensions.

Still considering X to be a subspace of C(BX∗ ,F), the α-th Baire class of X∗∗ is

defined as the set of those elements x∗∗ ∈ X∗∗ whose restriction to BX∗ is a Baire-α

function and which satisfy the barycentric formula, i.e.,

x∗∗

(
∫

BX∗

id dµ

)

=

∫

BX∗

x∗∗ dµ

for every probability measure µ ∈ M1(BX∗). Where no confusion can arise, we do

not distinguish between X∗∗
Bα
and X∗∗

Bα
|BX∗
.

Obviously, X∗∗
α ⊂ X∗∗

Bα
, but the converse need not hold by [22], Theorem on

page 184. We refer the reader for a detailed exposition on Baire classes of Banach

spaces to [2], pages 1043–1048.

We have proven in [13], Theorems 2.14, 2.15: Let X be a real L1-predual.

(a) If extBX∗ is Lindelöf and α ∈ [0, ω1), then for every odd function f ∈

Bα,b(extBX∗ ,R) there exists a function h on BX∗ extending f such that

⊲ h ∈ X∗∗
α+1 if α ∈ [0, ω0),

⊲ h ∈ X∗∗
α if α ∈ [ω0, ω1).

(b) If extBX∗ is a Lindelöf H-set and α ∈ [1, ω1), then for every odd function

f ∈ Bα,b(extBX∗ ,R) there exists a function h ∈ X∗∗
α extending f .

The first goal of this paper is to extend the validity of the previous assertions to

the complex setting. This is accomplished by Theorems 2.1 and 2.2.

The second goal of our paper is to extend [13], Corollary 2.16, which states: Let X

be a real L1-predual such that extBX∗ is a Lindelöf H-set. Then for any α ∈ [1, ω1),

the space X∗∗
α is isometric to the space of all real bounded odd Baire-α functions

on extBX∗.

Corollary 2.3 carries the result to the context of complex L1-preduals. It is also

a generalization of [12], Theorem 1, by Lindenstrauss and Wulbert.

It is worth pointing out that for a separable Banach space X , the set extBX∗ of

extreme points in BX∗ is an Fσ set if and only if it is a Lindelöf H-set. In the non-

separable case only one implication remains valid in general: extBX∗ is a Lindelöf

H-set provided it is of type Fσ . For a detailed argument consult, e.g. [15], page 4.
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2. Results

Before we attain the results promised in the introduction we are obliged to provide

definitions of H-sets and homogeneous functions.

A set A of a topological space K is called an H-set (or a resolvable set) if for

any nonempty B ⊂ K (equivalently, for any nonempty closed B ⊂ K) there exists

a relatively open U ⊂ B such that either U ⊂ A or U ∩A = ∅. It is easy to see that

the family of all H-sets is an algebra (see, e.g. [8], §12, VI).

Let T stand for the unit circle endowed with the unit Haar measure dα. The

following notions are due to Effros (see [3]). A set B ⊂ BX∗ is called homogeneous if

αB = B for each α ∈ T. An example of a homogeneous set is extBX∗ . A function f

on a homogeneous set B ⊂ BX∗ is called homogeneous (see, e.g. [3], page 53, and [9],

page 240) if

f(αx∗) = αf(x∗), (α, x∗) ∈ T×B.

The main aim of this section is to infer the following results.

Theorem 2.1. Let X be a complex L1-predual with extBX∗ being Lindelöf and

α ∈ [0, ω1). Then for every homogeneous function f ∈ Bα,b(extBX∗ ,C) there exists

a function h on BX∗ extending f such that

⊲ h ∈ X∗∗
α+1 if α ∈ [0, ω0),

⊲ h ∈ X∗∗
α if α ∈ [ω0, ω1).

Theorem 2.2. Let X be a complex L1-predual such that extBX∗ is a Lindelöf

H-set. Let α ∈ [1, ω1). Then for every homogeneous function f ∈ Bα,b(extBX∗ ,C)

there exists a function h ∈ X∗∗
α extending f .

As a consequence of the preceding theorem we obtain:

Corollary 2.3. Let X be a complex L1-predual such that extBX∗ is a Lindelöf

H-set. Let α ∈ [1, ω1). Then the space X
∗∗
α is isometric to the space of all bounded

homogeneous Baire-α functions on extBX∗ .

To meet our goals we have to supply the reader with several further notions which

are necessary within our proofs.

Let K be a compact convex set in a locally convex topological vector space. For

a point x ∈ K, we can assign the setM1
x(K) consisting of all probability measures

on K satisfying
∫

K
id dµ = x (equivalently, µ(h) = h(x) for any continuous affine

function h on K). Given a measure µ ∈ M1(K), we write r(µ) for the unique point

x ∈ K satisfying x =
∫

K
id dµ (see [1], Proposition I.2.1, or [9], Chapter 7, §20).
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A function f : K → F is strongly affine if f is µ-measurable for each µ ∈ M1(K)

and f(x) = µ(f) for any x ∈ K and µ ∈ M1
x(K).

The usual dilation order ≺ onM1(K) is defined as µ ≺ ν if µ(f) 6 ν(f) for any

convex continuous function f on K. We writeM1
max(K) for the set of all probability

measures on K which are maximal with respect to ≺. A measure µ ∈ M(K,F) is

boundary if either µ = 0 or the probability measure |µ|/‖µ‖ is inM1
max. The symbol

Mbnd(K,F) denotes the space of all boundary measures on K.

By the Choquet representation theorem, for any x ∈ K there exists µ ∈ M1
x(K)∩

M1
max(K) (see [9], Corollary on page 192). The set K is called simplex if this

measure is uniquely determined for each x ∈ K (see [9], §20, Theorem 3). If K

is metrizable, maximal measures are carried by the Gδ set extK of extreme points

of K (see [9], §20, Theorem 5). If K is a simplex, the space A(K,F) is an example

of an L1-predual (see [9], §23, Theorem 6).

We recall that a topological space X is K-analytic if it is an image of a Polish

space under an upper semicontinuous compact-valued map (see [19], Section 2.1).

Let us just recall that the family of K-analytic sets contains compact sets and is

stable with respect to countable unions and countable intersections.

If K is a topological space, a zero set in K is an inverse image of a closed set in R

under a continuous function f : K → R. The complement of a zero set is a cozero

set. A countable union of closed sets is called an Fσ set, the complement of an Fσ

set is a Gδ set. If K is normal, it follows from Tietze’s theorem that a closed set is

a zero set if and only if it is also a Gδ set. We recall that Borel sets are elements

of the σ-algebra generated by the family of all open subsets of K and Baire sets are

elements of the σ-algebra generated by the family of all cozero sets in K.

We say that a function f : K → F from a topological space K is a Baire function

if it is measurable with respect to the σ-algebra of Baire sets (i.e., f−1(U) is a Baire

set for every open set U ⊂ F). It is well known that any Baire function belongs to

some Bα(K,F) for a suitable ordinal α ∈ [0, ω1).

The subsequent notion of the mapping hom means another Effros’ contribution to

our paper (see [3]).

Definition 2.4. Let X be a complex Banach space. If f is a Borel function

defined on a homogeneous set B ⊂ BX∗ , we set

(hom f)(x∗) =

∫

T

α−1f(αx∗) dα, x∗ ∈ B.

The basic properties of the mapping hom are summarized by the following lemma.
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Lemma 2.5. Let B ⊂ BX∗ be a homogeneous set and f ∈ Bb(B,C).

(a) The function hom f is homogeneous on B.

(b) The function f is homogeneous if and only if hom f = f .

(c) If f is continuous on B, then hom f is continuous on B.

(d) If f ∈ Bα,b(B,C), then hom f ∈ Bα,b(B,C).

P r o o f. (a) The homogeneity of hom f can be observed by taking into account

the following equations valid for any x∗ ∈ B and β ∈ T:

(hom f)(βx∗) =

∫

T

α−1f(αβx∗) dα = β

∫

T

(αβ)−1f(αβx∗) dα = β(hom f)(x∗).

(b) If hom f = f , then f is homogeneous by (a).

If f is homogeneous,

(hom f)(x∗) =

∫

T

α−1f(αx∗) dα =

∫

T

f(x∗) dα = f(x∗)

for any x∗ ∈ B.

(c) Let

g(α, x∗) = α−1f(αx∗), (α, x∗) ∈ T×B.

Then g is a continuous function on T×B. We want to show that the mapping

ϕ : x∗ 7→

∫

T

g(α, x∗) dα, x∗ ∈ B,

is continuous on B. To this end, let x∗ ∈ B and ε > 0 be given.

For each α ∈ T we find an open neighborhood Uα of α and Vα of x
∗ such that

|g(α, x∗)− g(β, y∗)| < ε, (β, y∗) ∈ Uα × Vα.

By the compactness of T× {x∗} there exist finitely many α1, . . . , αn ∈ T such that

T× {x∗} ⊂
n
⋃

i=1

(Uαi
× Vαi

).

We set V =
n
⋂

i=1

Vαi
. For any α ∈ T we have αk such that α ∈ Uαk

and then, for any

y∗ ∈ V ,

|g(α, x∗)− g(α, y∗)| < |g(α, x∗)− g(αk, x
∗)|+ |g(αk, x

∗)− g(α, y∗)| < 2ε.
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Thus, for y∗ ∈ V ,

|ϕ(x∗)− ϕ(y∗)| =

∣

∣

∣

∣

∫

T

g(α, x∗)− g(α, y∗) dα

∣

∣

∣

∣

6

∫

T

|g(α, x∗)− g(α, y∗)| dα < 2ε.

Hence ϕ is continuous at the point x∗.

(d) If f is bounded continuous on B, hom f is continuous on B by (c). The

rest of the proof now follows by transfinite induction and the Lebesgue dominated

convergence theorem. �

Definition 2.6. The mapping hom: C(BX∗ ,C) → C(BX∗ ,C) induces a mapping

(denoted likewise) hom: M(BX∗ ,C) → M(BX∗ ,C) defined as

(homµ)(f) = µ(hom f), f ∈ C(BX∗ ,C), µ ∈ M(BX∗ ,C).

Due to Lemma 2.5 (c), homµ is a well defined measure on BX∗ .

Lemma 2.7. Let F ⊂ BX∗ be a closed set. Then the set
⋃

α∈T

αF is a closed

homogeneous set in BX∗ .

P r o o f. The assertion follows from the observation that
⋃

α∈T

αF = ϕ(T × F ),

where

ϕ(α, x∗) = αx∗, (α, x∗) ∈ T× F.

Hence
⋃

α∈T

αF is a continuous image of a compact set, and thus it is itself compact.

Obviously, it is also homogeneous. �

Lemma 2.8. Let K be a compact space and µ ∈ M(K,C). Then there exists

a Baire function ω : K → T such that d|µ| = ω dµ.

P r o o f. Let µ be defined on a σ-algebra S containing all Borel subsets of K.

By [21], Theorem 6.12, there exists an S-measurable function ϕ : K → T such that

d|µ| = ϕdµ. By Lusin’s theorem, there exists a Baire function ω : K → C such that

ω = ϕ holds |µ|-almost everywhere. Finally, we adjust ω on a Baire |µ|-null set such

that ω has values in T. �

Analogously as in Lemma 2.5, now, we summarize the basic properties of the

mapping hom.
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Lemma 2.9. Let B be a homogeneous universally measurable subset of BX∗ .

(a) If f is a bounded Baire function on BX∗ and µ ∈ M(BX∗ ,C), then

(homµ)(f) = µ(hom f).

(b) If µ ∈ M(B,C), then homµ ∈ M(B,C).

(c) If µ ∈ M(BX∗ ,C) is boundary, then homµ is boundary.

P r o o f. (a) Let

F = {f : BX∗ → C : f bounded Baire, (homµ)(f) = µ(hom f)}.

The definition of the mapping hom provides C(BX∗) ⊂ F . Obviously, F is closed

with respect to taking pointwise limits of bounded sequences. Hence F contains all

bounded Baire functions on BX∗ .

(b) Let µ ∈ M(B,C) be a given nonzero measure. Let K ⊂ BX∗ \B be compact.

We find compact sets Kn ⊂ B, n ∈ N, such that |µ|(B \Kn) → 0. Using Lemma 2.7

we may assume that Kn are homogeneous. Let fn : BX∗ → [0, 1] be continuous such

that fn = 0 on Kn and fn = 1 on K. Let ω : BX∗ → T be a Baire function satisfying

d|homµ| = ω d(homµ) (see Lemma 2.8). Then for each n ∈ N we have by (a)

|homµ|(K) 6 |homµ|(fn) =

∫

BX∗

fn(x
∗)ω(x∗) d(homµ)

=

∣

∣

∣

∣

∫

T

(
∫

B

fn(αx
∗)ω(αx∗) dµ(x∗)

)

dα

∣

∣

∣

∣

6

∫

T

(
∫

B

|fn(αx
∗)| d|µ|(x∗)

)

dα

=

∫

T

(
∫

B\Kn

|fn(αx
∗)| d|µ|(x∗)

)

dα

6 |µ|(B \Kn).

Since |µ|(B \Kn) → 0, we get |homµ|(K) = 0. Thus |homµ|(BX∗ \B) = 0.

(c) For the proof see [3], Lemma 4.2, or [9], §23, Lemma 10. �

If X is a complex Banach space, then the following analogue of Lazar’s character-

ization of real L1-preduals (see [10], Theorem) is due to Effros:

A complex Banach space X is an L1-predual if and only if, for any x∗ ∈ BX∗

and measures µ, ν ∈ M1
x∗(BX∗)∩M1

max(BX∗), it holds that homµ = hom ν (see [3],

Theorem 4.3, or [9], §23, Theorem 5).
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Lemma 2.10. Let K, L be K-analytic topological spaces and r : K → L be

a continuous surjection. Let g : L → C. Then g is a Baire function on L if and only

if g ◦ r is a Baire function on K.

P r o o f. A function g : L → C is Baire if and only if the real-valued functions

Re g, Im g : L → R are Baire, which is by [13], Lemma 2.1, equivalent to (Re g) ◦ r,

(Im g) ◦ r being Baire. This holds, again, if and only if

g ◦ r = Re(g ◦ r) + i Im(g ◦ r) = (Re g) ◦ r + i(Im g) ◦ r

is a Baire function. �

Lemma 2.11. Let K be a compact convex set in a locally convex space such that

extK is Lindelöf. Let f : extK → R be bounded and continuous. Then there exist

a lower semicontinuous convex Baire function l : K → R and upper semicontinuous

concave Baire function u : K → R such that l 6 u and l = u = f on extK.

P r o o f. Using [15], Lemma 4.5, we find sequences (un) and (ln) such that

⊲ the functions un are continuous concave on K, ln are continuous convex on K,

⊲ inf f(extK) 6 inf l1(K), supu1(K) 6 sup f(extK),

⊲ un ց f , ln ր f on extK.

We define u = inf
n∈N

un, l = sup
n∈N

ln. Then we observe that l 6 u by the minimum

principle (see [1], Theorem I.4.10, or [16], Theorem 3.16), both functions are Baire,

u is upper semicontinuous concave and l is lower semicontinuous convex. Apparently,

l = u = f on extK. This finishes the proof. �

Lemma 2.12. Let X be a complex Banach space such that extBX∗ is Lindelöf.

Let f ∈ Bα,b(extK,C) be homogeneous. Then there exist a homogenous K-analytic

set B ⊃ extBX∗ and a homogeneous bounded Baire function g on BX∗ such that

(a) g = f on extBX∗ ,

(b) µ(g) = ν(g) for any µ, ν ∈ M1(B) with µ ≺ ν,

(c) ‖g‖l∞(BX∗ ) 6 2‖f‖l∞(extBX∗ ).

P r o o f. We proceed by transfinite induction on the class of a function f .

We assume first that f is continuous. Let f = f1 + if2 be decomposed into its

real and imaginary part. By Lemma 2.11, there exist lower semicontinuous convex

Baire functions l1, l2 on BX∗ and upper semicontinuous concave Baire functions u1,

u2 on BX∗ such that lj 6 uj and lj = uj = fj on extBX∗ , j ∈ {1, 2}.

For j ∈ {1, 2}, let

Bj = {x ∈ K : uj(x) = lj(x)}.
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Since

Bj = {x ∈ BX∗ : uj(x) − lj(x) 6 0} =
∞
⋂

n=1

{

x ∈ BX∗ : uj(x) − lj(x) <
1

n

}

,

the set Bj is a Gδ set containing extBX∗ and, for µ, ν ∈ M1(Bj) with µ ≺ ν, we

have by [16], Proposition 3.56,

∫

Bj

uj dµ >

∫

Bj

uj dν =

∫

Bj

lj dν >

∫

Bj

lj dµ =

∫

Bj

uj dµ.

Hence

µ(uj) = ν(uj) = µ(lj) = ν(lj).

The set B3 = B1 ∩ B2 is a Gδ set containing extBX∗ . Also, lj = uj on B3 for

j ∈ {1, 2}. Thus for µ, ν ∈ M1(B3) with µ ≺ ν it holds that

(2.1) µ(uj) = ν(uj) = µ(lj) = ν(lj).

We write BX∗ \B3 =
⋃

Fn, where Fn are closed sets in BX∗ . Then

Hn =
⋃

α∈T

αFn, n ∈ N,

are homogeneous closed sets disjoint from extBX∗ (see Lemma 2.7). For a given

n ∈ N let Gn = X \Hn. Then Gn is a homogeneous open set containing extBX∗ .

Furthermore,
⋂

Gn ⊂ B3.

Fix n ∈ N. By the Lindelöf property of extBX∗ there exists a countable cover of

extBX∗ by closed sets {Kn,k : k ∈ N} such that

extBX∗ ⊂
∞
⋃

k=1

Kn,k ⊂ Gn.

By replacing Kn,k with
⋃

α∈T

αKn,k, if necessary, we may assume that Kn,k are ho-

mogeneous. Then Kn =
∞
⋃

k=1

Kn,k is a homogeneous Fσ set satisfying

extBX∗ ⊂ Kn ⊂ Gn.

Thus B =
⋂

Kn is a K-analytic homogeneous set satisfying

extBX∗ ⊂ B ⊂ B3.
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We set

g1 = u1, g2 = u2, g = hom(g1 + ig2) on BX∗ .

By Lemma 2.5 (d), g is a Baire function on BX∗ . Further, g = f on extBX∗ , since,

for x∗ ∈ extBX∗ ,

g(x∗) = (hom(g1 + ig2))(x
∗) =

∫

T

α−1(g1 + ig2)(αx
∗) dα

=

∫

T

α−1f(αx∗) dα = (hom f)(x∗) = f(x∗).

Next, let µ, ν ∈ M1(B) with µ ≺ ν be given. For α ∈ T, let σα : BX∗ → BX∗ denote

the affine homeomorphism defined by σα(x
∗) = αx∗, x∗ ∈ BX∗ . Then σαµ ≺ σαν

for each α ∈ T, and thus employing (2.1)

µ(g) = µ(hom(g1 + ig2)) =

∫

T

α−1

(
∫

B

(g1 + ig2)(αx
∗) dµ(x∗)

)

dα

=

∫

T

α−1(σαµ)(g1 + ig2) dα =

∫

T

α−1(σαµ)(u1 + iu2) dα

=

∫

T

α−1(σαν)(u1 + iu2) dα = . . . = ν(g).

Finally, due to [16], Theorem 3.85,

‖gj‖l∞(B) = ‖fj‖l∞(extBX∗ ), j ∈ {1, 2}.

Hence

‖g‖l∞(BX∗ ) 6 ‖g1 + ig2‖l∞(BX∗ ) 6 ‖f1‖l∞(extBX∗ ) + ‖f2‖l∞(extBX∗ )

6 2‖f‖l∞(extBX∗ ).

Hence g satisfies the conditions (a), (b) and (c), which concludes the proof for the

case α = 0.

Assume now that the claim holds true for all β smaller then some countable

ordinal α. Given f ∈ Bα,b(extBX∗ ,C), let (fn) be a bounded sequence of functions

with fn ∈ Bαn,b(extBX∗ ,C) for some αn < α, n ∈ N, such that fn → f . We may

assume that ‖fn‖l∞(extBX∗ ) 6 ‖f‖l∞(extBX∗ ) for n ∈ N. For each n ∈ N, we use the

induction hypothesis and find a homogeneous K-analytic set Bn ⊃ extBX∗ along

with a homogeneous Baire function gn on BX∗ that coincides with fn on extBX∗ ,

and satisfies µ(gn) = ν(gn) for any µ, ν ∈ M1(Bn) with µ ≺ ν and also

‖gn‖l∞(BX∗ ) 6 2‖fn‖l∞(extBX∗ ) 6 2‖f‖l∞(extBX∗ ).
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Let gn = |gn|ei Arg gn be the polar decomposition of gn (here Arg: C → (−π, π]

denotes the principal value of a complex number, where we set Arg 0 = π). Since the

functions z 7→ |z| and z 7→ Arg z are Baire on C, the functions x∗ 7→ |gn(x∗)| and

x∗ 7→ ei Arg(gn(x
∗)) are Baire on BX∗ . We set

r(x∗) = lim sup
n→∞

|gn(x
∗)|, a(x∗) = lim sup

n→∞
Arg(gn(x

∗)), x∗ ∈ BX∗ ,

and

h(x∗) = r(x∗)eia(x
∗), x∗ ∈ BX∗ .

Then h is a Baire function on BX∗ satisfying ‖h‖l∞(BX∗ ) 6 2‖f‖l∞(extBX∗ ). Further,

let

B =

{

x∗ ∈
∞
⋂

n=1

Bn : (gn(x
∗)) converges

}

, g(x∗) = (homh)(x∗), x∗ ∈ BX∗ .

Then B is a homogeneousK-analytic set containing extBX∗ , g is a bounded homoge-

neous Baire function on BX∗ (by Lemma 2.5 (a), (d)), ‖g‖l∞(BX∗ ) 6 2‖f‖l∞(extBX∗ )

and

g(x) = lim
n→∞

gn(x) = lim
n→∞

fn(x) = f(x), x ∈ extBX∗ .

Finally, for µ, ν ∈ M1(B) satisfying µ ≺ ν we have

µ(g) =

∫

B

(

lim
n→∞

gn

)

dµ = lim
n→∞

µ(gn) = lim
n→∞

ν(gn) =

∫

B

(

lim
n→∞

gn

)

dν = ν(g).

This finishes the proof. �

Lemma 2.13. Let X be a complex Banach space, B ⊃ extBX∗ be a homogeneous

K-analytic set and f : BX∗ → C be a function such that

(a) f is bounded and Baire,

(b) µ(f) = ν(f) for every µ, ν ∈ M1(B) with µ ≺ ν,

(c) µ(f) = 0 for every µ ∈ Mbnd(BX∗ ,R) ∩ A(BX∗ ,R)⊥.

Then there exists an affine bounded Baire function h : K → C such that

(d) h = f on B,

(e) µ(h) = h(r(µ)) for any µ ∈ M1
max(BX∗).

P r o o f. Let B ⊃ extBX∗ and f : BX∗ → R be as in the hypothesis.

We set

h(x∗) = ν(f), ν ∈ M1
x∗(BX∗) ∩M1

max(BX∗), x∗ ∈ BX∗ .

Then h is correctly defined because of (c).
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Further, h is affine. Indeed, let αx∗ + (1 − α)y∗ be a convex combination of

points x∗, y∗ ∈ BX∗ . Pick νx∗ ∈ M1
x∗(BX∗) ∩M1

max(BX∗) and νy∗ ∈ M1
y∗(BX∗) ∩

M1
max(BX∗). Since the set of maximal measures is a convex cone and the mapping r

is affine,

ανx∗ + (1− α)νy∗ ∈ M1
αx∗+(1−α)y∗(BX∗) ∩M1

max(BX∗).

Thus

h(αx∗ + (1− α)y∗) = (ανx∗ + (1− α)νy∗)(f) = ανx∗(f) + (1 − α)νy∗(f)

= αh(x∗) + (1− α)h(y∗),

and h is affine.

Obviously, due to (b), the fact that any maximal measure is carried by B (see [1],

Remark, page 38, or [16], Theorem 3.79 (a)) and the definition of h, we have

h(x∗) = ν(f) = εx∗(f) = f(x∗), ν ∈ M1
x∗(BX∗) ∩M1

max(BX∗), x∗ ∈ B,

h(r(µ)) = µ(f) = µ(h), µ ∈ M1
max(BX∗).

Thus (d) and (e) hold.

Finally we show that h is Baire. The set B is K-analytic, and thus universally

measurable by [19], Corollary 2.9.3. Further, it follows from [5], Theorem 1 and

Theorem 3, that

M1(B) = {µ ∈ M1(BX∗) : µ(B) = 1}

is K-analytic.

Since f is a bounded Baire function on B, the function f̃ : M1(B) → C defined

as

f̃(µ) =

∫

B

f dµ, µ ∈ M1(B),

is a well defined Baire function on M1(B). The mapping r : M1(B) → BX∗ is

an affine continuous surjection (this follows from [1], page 12, or [16], Proposi-

tion 2.38) and f̃ = h ◦ r.

Indeed, let µ ∈ M1(B). We pick a maximal measure ν ∈ M1
max(BX∗) with µ ≺ ν.

Then ν ∈ M1(B) and r(µ) = r(ν), thus due to (b)

f̃(µ) = µ(f) = ν(f) = h(r(ν)) = h(r(µ)) = (h ◦ r)(µ).

By Lemma 2.10, h is a Baire function on BX∗ . �
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Lemma 2.14. Let K be a compact convex set and f : K → C be a bounded

Baire affine function such that µ(f) = f(r(µ)) for every µ ∈ M1
max(K). Then f is

strongly affine.

P r o o f. The result is acquired by applying Lemma 2.5 from [13] to the real and

imaginary part of the complex function f in the hypothesis. �

Lemma 2.15. Let K be a topological space, H ⊂ C(K,F), α ∈ [0, ω1), and

f ∈ Bα(H). Then there exists a countable set F ⊂ H such that f ∈ Bα(F).

P r o o f. The assertion follows by transfinite induction. �

Lemma 2.16. Let X be a complex L1-predual such that extBX∗ is Lindelöf.

Then for every bounded homogeneous Baire function on extBX∗ there exists its

homogeneous Baire strongly affine extension on BX∗ .

P r o o f. Let f be a homogeneous bounded Baire function on extBX∗ . By Lem-

ma 2.12, there exist a homogeneous K-analytic set B ⊃ extBX∗ and a bounded

Baire homogeneous function h : BX∗ → C such that

⊲ h = f on extBX∗ ,

⊲ for any µ, ν ∈ M1(B) with µ ≺ ν it holds that µ(h) = ν(h).

Let

ω ∈ Mbnd(BX∗ ,R) ∩ A(BX∗ ,R)⊥

be given. Without loss of generality we may assume that ω = µ − ν, where µ, ν ∈

M1
max(BX∗). Then r(µ) = r(ν). By Effros’ theorem [3], Theorem 4.3 (see also [9],

§23, Theorem 5) and Lemma 2.9 (a),

µ(h) = µ(homh) = (homµ)(h) = (hom ν)(h) = ν(homh) = ν(h).

Hence ω(h) = 0. By Lemma 2.13, there exists an affine bounded Baire extension g

of h satisfying µ(g) = g(r(µ)) for each µ ∈ M1
max(BX∗). By Lemma 2.14, the

extension g is strongly affine.

It remains to show that g is homogeneous. Given x∗ ∈ BX∗ and a maximal measure

µ ∈ M1
x∗(BX∗) ∩ M1

max(BX∗), the measure σαµ ∈ M1
αx∗(BX∗) ∩ M1

max(BX∗) for

every α ∈ T. Due to [16], Theorem 3.79 (c), we have

g(αx∗) = (σαµ)(g) = (σαµ)(h) = αµ(h) = αµ(g) = αg(x∗).

This concludes the proof. �
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Lemma 2.17. Let K be a compact convex set with extK being Lindelöf. Then

any bounded Baire F-valued function on extK can be extended to a bounded Baire

F-valued function on K.

P r o o f. The real variant is precisely [13], Lemma 2.8. For the complex version

decompose the given function to its real and imaginary part and apply the real

version. �

Definition 2.18. Let X be a complex L1-predual with extBX∗ Lindelöf. For

any bounded Baire function f on extBX∗ we define

Tf(x∗) = (homµ)(f̃), µ ∈ M1
x∗(BX∗) ∩M1

max(BX∗), x∗ ∈ BX∗ ,

where f̃ is an arbitrary bounded Baire function on BX∗ extending f .

We point out that Tf is well defined since

⊲ homµ = hom ν for any µ, ν ∈ M1
x∗(BX∗) ∩ M1

max(BX∗) and x∗ ∈ BX∗ by the

mentioned Effros’ theorem,

⊲ f has a bounded Baire extension on BX∗ (see Lemma 2.17),

⊲ given two bounded Baire extensions f̃1, f̃2 of f , they coincide on a Baire set

containing extBX∗ , and thus (homµ)(f̃1) = (homµ)(f̃2) for any µ ∈ M1
max(BX∗).

The mapping T is defined analogously as in the real case (see [13], Definition 2.9).

An obvious difference lies in using an operator hom instead of odd. It is also a natural

generalization of the dilation mapping defined in the simplicial case, e.g. in [16],

Definition 6.7.

Lemma 2.19. Let X be a complex L1-predual with extBX∗ Lindelöf. Let f be

a bounded Baire complex-valued function on extBX∗ . Then Tf is a bounded homo-

geneous Baire strongly affine function on BX∗ such that Tf = hom f on extBX∗ .

P r o o f. Let f̃ be a bounded Baire function onBX∗ extending f (see Lemma 2.17).

Since hom f̃ is a homogeneous bounded Baire function on BX∗ , by Lemma 2.16 there

exists a homogeneous Baire strongly affine function h on BX∗ satisfying h = hom f̃

on extBX∗ . Let x∗ ∈ BX∗ be given and let µ ∈ M1
x∗(BX∗) ∩ M1

max(BX∗). Since

homµ is boundary (see Lemma 2.9 (c)) and h = hom f̃ on a Baire set contain-

ing extBX∗ , we obtain

Tf(x∗) = (homµ)(f̃ ) = µ(hom f̃) = µ(h) = h(x∗).

Thus Tf is a homogeneous Baire strongly affine function on BX∗ .

Finally, for a point x∗ ∈ extBX∗ we have

Tf(x∗) = h(x∗) = (hom f̃)(x∗) = (hom f)(x∗).

The proof is finished. �
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Remark 2.20. Let X be a complex Banach space and f : BX∗ → C a bounded

affine homogeneous function. Then f(0) = 0 and f can be extended to an element

of X∗∗.

Lemma 2.21. Let X be a complex L1-predual with extBX∗ Lindelöf. Let (fn)

be a bounded sequence of Baire complex-valued functions on extBX∗ converging

pointwise to f on extBX∗ . Then Tfn → Tf .

P r o o f. For n ∈ N, let f̃n be bounded Baire extensions of the functions fn (see

Lemma 2.17), obviously we may assume that they are bounded by the same constant.

We set

h1 = lim sup
n→∞

(Re f̃n), h2 = lim sup
n→∞

(Im f̃n) and f̃ = h1 + ih2.

Then f̃ is a bounded Baire function extending f . The set

B =
{

x∗ ∈ BX∗ : both (Re f̃n(x
∗)) and (Im f̃n(x

∗)) converge
}

is a Baire set containing extBX∗ . Thus, for x∗ ∈ BX∗ and µ ∈ M1
x∗(BX∗) ∩

M1
max(BX∗), we have

lim
n→∞

(Tfn)(x
∗) = lim

n→∞
(homµ)(f̃n) = lim

n→∞

∫

B

f̃n d(homµ)

= lim
n→∞

∫

B

(Re f̃n + i Im f̃n) d(homµ) =

∫

B

(h1 + ih2) d(homµ)

= (homµ)(f̃) = Tf(x∗).

This concludes the proof. �

We recall that the validity of [2], Theorem II.1.2 (a), can be extended to complex

Banach spaces (see [14], Proposition 3.1).

Proposition 2.22. Let X be a complex Banach space and f a Baire-1 affine

homogeneous function on BX∗ . Then f ∈ X∗∗
1 .

Lemma 2.23. Let X be a complex L1-predual with extBX∗ Lindelöf and α ∈

[0, ω1). Let f ∈ Bα,b(extBX∗ ,C). Then

⊲ Tf ∈ X∗∗
α+1 if α ∈ [0, ω0),

⊲ Tf ∈ X∗∗
α if α ∈ [ω0, ω1).

P r o o f. If α = 0, then Tf is a homogeneous strongly affine function whose re-

striction to extBX∗ is equal to a continuous function hom f (see Lemma 2.19). Thus
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Tf ∈ B1,b(BX∗) by Remark 2.20 and [15], Theorem 1.2. Using Proposition 2.22 we

acquire that Tf ∈ X∗∗
1 .

For α < ω0 now the proof follows by induction using Lemma 2.21.

If α = ω0, let fn ∈ Bαn,b(extBX∗ ,C), αn < α, form a bounded sequence converg-

ing to f ∈ Bα,b(extBX∗ ,C). By Lemma 2.21, Tfn → Tf . By the first part of the

proof, Tf ∈ X∗∗
α .

For higher Baire classes we use again transfinite induction. �

Lemma 2.24. Let X be a complex L1-predual with extBX∗ being a Lindelöf

H-set and α ∈ [1, ω1). Let f ∈ Bα,b(extBX∗ ,C). Then Tf ∈ X∗∗
α .

P r o o f. The proof is analogous to the proof of Lemma 2.23, we only use instead

of [15], Theorem 1.2, as the starting point of transfinite induction the following fact

from [15], Theorem 1.3: If extBX∗ is a Lindelöf H-set and h ∈ X∗∗ is a strongly

affine function on BX∗ whose restriction on extBX∗ is Baire-1, then h is Baire-1

on BX∗ . Any such function is then in X∗∗
1 by Proposition 2.22. �

We conclude the paper with the proofs of the main results introduced at the

beginning of this section.

P r o o f of Theorem 2.1. By Lemma 2.23, if α ∈ [0, ω0) then the function Tf is in

X∗∗
α+1, and if α ∈ [ω0, ω1) then Tf ∈ X∗∗

α . Since Tf = hom f = f on extBX∗ (see

Lemma 2.19), the proof is finished. �

P r o o f of Theorem 2.2. The proof is analogous to the proof of Theorem 2.1, only

we use Lemma 2.24 instead of Lemma 2.23. �

P r o o f of Corollary 2.3. A function f ∈ X∗∗
α is bounded, homogeneous, Baire-α

and strongly affine. The restriction mapping f ∈ X∗∗
α 7→ f |extBX∗

is therefore an iso-

metric isomorphism onto the space of all bounded homogeneous Baire-α functions

on extBX∗ due to Theorem 2.2.

The norm preservation is guaranteed by the following observation. Let x∗ ∈ BX∗

be arbitrary and µ ∈ M1
x∗(BX∗) ∩M1

max(BX∗). The set

B =
{

y∗ ∈ BX∗ : |f(y∗)| 6 ‖f |extBX∗
‖l∞(extBX∗ )

}

is a Baire set containing extBX∗ , and thus µ(B) = 1. Hence

|f(x∗)| = |µ(f)| 6

∫

B

|f | dµ 6 ‖f |extBX∗
‖l∞(extBX∗ ).

This concludes the proof. �
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