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Abstract. For the equation

y
(n) + |y|k sgn y = 0, k > 1, n = 3, 4,

existence of oscillatory solutions

y = (x∗ − x)−α
h(log(x∗ − x)), α =

n

k − 1
, x < x

∗
,

is proved, where x∗ is an arbitrary point and h is a periodic non-constant function on R.
The result on existence of such solutions with a positive periodic non-constant function h

on R is formulated for the equation

y
(n) = |y|k sgn y, k > 1, n = 12, 13, 14.

Keywords: nonlinear ordinary differential equation of higher order; asymptotic behavior
of solutions; oscillatory solution

MSC 2010 : 34C15, 34C10

1. Introduction

During the investigation of the problem on asymptotic behavior near vertical

asymptotes of positive solutions to the equation

(1.1) y(n) = p(x, y, y′, . . . , y(n−1))|y|k sgn y, n > 2, k > 1,
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posed by I. T.Kiguradze [7], it was proved for sufficiently large n in [8] and for

n = 12, 13, 14 in [1] and [6] that the equation

(1.2) y(n) = |y|k sgn y

with some k > 1 has a positive solution with non-power asymptotic behavior, namely,

(1.3) y(x) = (x∗ − x)−αh(log(x∗ − x)),

where h is a positive periodic non-constant function on R,

(1.4) α =
n

k − 1
.

Still, it was not clear whether solutions of that type exist if n < 12.

2. Preliminary results. Existence of solutions

with non-power asymptotic behavior

In this section, a result on existence of positive solutions with non-power asymp-

totic behavior is formulated for equation (1.2) with n = 12, 13, 14. Precise proofs are

contained in [1]. The results concerning solutions with power asymptotic behavior

are contained in [2], [5], [7].

Theorem 2.1. For n = 12, 13, 14 there exists k > 1 such that equation (1.2) has

a solution y(x) with

y(j)(x) = (x∗ − x)−α−jhj(log(x
∗ − x)), j = 0, 1, . . . , n− 1,

where α is defined by (1.4) and hj are periodic positive non-constant functions on R.

To prove this result the Hopf bifurcation theorem [9] is used:

Theorem 2.2 (Hopf). Consider the α-parametrized dynamical system ẋ = Lαx+

Qα(x) in a neighborhood of 0 ∈ R
n with linear operators Lα and smooth enough

functions Qα(x) = O(|x|2) as x → 0. Let λα and λα be simple complex conjugated

eigenvalues of the operators Lα. Suppose Reλα̃ = Reλα̃ = 0 for some α̃ and the

operator Lα̃ has no other eigenvalues with zero real part.

If Re(dλα/dα)(α̃) 6= 0, then there exist continuous mappings ε 7→ α(ε) ∈ R,

ε 7→ T (ε) ∈ R, and ε 7→ b(ε) ∈ R
n defined in a neighborhood of 0 and such that
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α(0) = α̃, T (0) = 2π/ Imλα̃, b(0) = 0, b(ε) 6= 0 for ε 6= 0, and the solutions to the

problems

ẋ = Lα(ε)x+Qα(ε)(x), x(0) = b(ε)

are T (ε)-periodic and non-constant.

To use this theorem, equation (1.2) is transformed (see [5] or [2], Chapter I, (5.1))

by using the substitution

(2.1) x∗ − x = e−t, y = (C + v)eαt,

where α is defined by (1.4) and

(2.2) C = (α(α + 1) . . . (α + n− 1))1/(k−1).

Suppose V is the vector with coordinates Vj = v(j), j = 0, . . . , n − 1. Then

equation (1.2) can be written as

(2.3)
dV

dt
= AV + F (V ),

where A is a constant n× n matrix

A =



















0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0

· · · · . . . ·

0 0 0 0 . . . 1

−ã0 −a1 −a2 −a3 . . . −an−1



















with

−ã0 = a0 − kck−1p0 = a0 − kα(α+ 1) . . . (α+ n− 1)

= a0 − (α+ 1) . . . (α+ n− 1)(α+ n)

and eigenvalues satisfying the equation

0 = det(A− λE) = (−1)n+1(−ã0 − a1λ− . . .− an−1λ
n−1 − λn)

= (−1)n+1
(

(α+ 1)(α+ 2) . . . (α+ n)− (λ+ α) . . . (λ+ α+ n− 1)
)

,

which is equivalent to

(2.4)

n−1
∏

j=0

(λ + α+ j) =

n−1
∏

j=0

(1 + α+ j).

481



The mappings F : R
n → R

n and G : R×R
n → R

n satisfy the following estimates

as t→∞ :

(2.5)

{

‖F (V )‖ = O(‖V ‖
2
),

‖F ′

V (V )‖ = O(‖V ‖).

F is a vector function with n− 1 zero components: F (V ) = (0, . . . , 0, Fn−1(V )) and

Fn−1(V ) = ((C + V0)
k − Ck − kCk−1V0) = O(V0

2), V0 → 0,

d

dV
Fn−1(V ) = O(|V0|), V0 → 0.

If equation (2.4) has a pair of pure imaginary roots, we have to check the other

conditions of the Hopf bifurcation theorem and then apply it.

Lemma 2.1. For any integer n > 11 there exist α > 0 and q > 0 such that

(2.6)

n−1
∏

j=0

(qi + α+ j) =

n−1
∏

j=0

(1 + α+ j) with i2 = −1.

Lemma 2.2. For any α > 0 and any integer n > 1 all roots λ ∈ C to equation

(2.4) are simple.

Lemma 2.3. If 12 6 n 6 14, α > 0, and q > 0 satisfy the polynomial equation

n−1
∏

j=0

((α + j)2 + q2) =

n−1
∏

j=0

(α+ j + 1)2,

then 2α+ 4 < q2 < 3α+ 5.

The condition Re(dλα/dα)(α̃) 6= 0 needed for the Hopf theorem, expressed explic-

itly by means of the implicit function theorem, reads

[n−1
∑

j=0

α+ j

q2 + (α+ j)2

]2

+

[n−1
∑

j=0

q

q2 + (α+ j)2

]2

6=
n−1
∑

j=0

α+ j

q2 + (α+ j)2

n−1
∑

j=0

1

1 + α+ j
.
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Lemma 2.4. If 12 6 n 6 14, α > 0 and 0 < q2 < 3α+ 5, then

[n−1
∑

j=0

α+ j

q2 + (α+ j)2

]2

+

[n−1
∑

j=0

q

q2 + (α+ j)2

]2

(2.7)

>

n−1
∑

j=0

α+ j

q2 + (α+ j)2

n−1
∑

j=0

1

1 + α+ j
.

To apply the Hopf bifurcation theorem we need to check that equation (2.4) cannot

have more than a single pair of imaginary conjugated roots. It can be easily obtained

by considering equation (2.6).

Now the Hopf bifurcation theorem and the lemmas formulated provide, for n =

12, 13, 14, existence of a family αε > 0 such that equation (2.4) with α = α0 has

imaginary roots λ = ±qi and for sufficiently small ε system (2.3) with α = αε has

a periodic solution Vε(t) with period Tε → T = 2π/q as ε → 0. In particular, the

coordinate Vε,0(t) = v(t) of the vector Vε(t) is also a periodic function with the same

period. Then, taking into account (2.1), we obtain

y(x) =
(

C + v(−ln(x∗ − x))
)

(x∗ − x)−α.

Putting h(s) = C + v(−s), which is a non-constant continuous periodic and positive

for sufficiently small ε function we obtain the required equality

y(x) = (x∗ − x)−αh(ln(x∗ − x)).

In a similar way we obtain the related expressions for y(j)(x), j = 0, 1, . . . , n− 1.

3. Main results

Theorem 3.1. For n = 4 and any real k > 1 there exists an oscillatory periodic

function h : R → R such that the functions x 7→ |x − x∗|
−αh(log |x − x∗|) defined

on (x∗;∞) and (−∞;x∗) with α = n/(k − 1) and arbitrary x∗ are solutions to the

equation

(3.1) y(n)(x) + |y(x)|k sgn y(x) = 0.

P r o o f. Any solution to equation (3.1) with positive initial data can change the

signs of its derivatives of order 0, 1, 2, 3 according to the following cyclic scheme

483



only:
++++ → +++− → ++−− → +−−−

x





y

−+++ ← −−++ ← −−−+ ← −−−−

Moreover, all these sign changes must occur infinitely many times. In other words,

non-extensible solutions cannot keep ultimately any of the sign combinations from

the above scheme.

Thus, to any non-trivial initial data (0, v1, v2, v3) with vj > 0, j = 1, 2, 3, at a point

x0 ∈ R we can assign the point x1 > x0 where the solution with these initial data

vanishes the next time. This correspondence is continuous according to the implicit

function theorem and due to the fact that the solutions considered vanish at x1 with

non-zero first order derivative.

Passing from the point x1 to the values of derivatives at this point we obtain

another continuous mapping F : {0} × R
3
+ \ {0} → {0} × R

3
−
\ {0}.

Now consider the compact set

E =
{

Y = (Y0, Y1, Y2, Y3) ∈ R
4 : |Y0|

1/4+|Y1|
1/(k+3)+|Y2|

1/(2k+2)+|Y3|
1/(3k+1) = 1

}

homeomorphic to the 3D sphere.

Note that for any point Y = (Y0, Y1, Y2, Y3) ∈ R
4 \ {0} there exists a unique con-

stant B > 0 such that (BαY0, B
α+1Y1, B

α+2Y2, B
α+3Y3) ∈ E. The related mapping

Ψ: R
4 \ {0} → E defined as

Ψ(Y0, Y1, Y2, Y3) = (BαY0, B
α+1Y1, B

α+2Y2, B
α+3Y3)

with the appropriate B > 0 is surely continuous.

Next, consider the subset

E0 = {Y = (0, Y1, Y2, Y3) ∈ E : Y1 > 0, Y2 > 0, Y3 > 0} ⊂ E

and the composition −Ψ ◦ F |E0
continuously mapping E0 into itself. Since E0 is

homeomorphic to the 2D disk, we can apply Brouwer’s fixed-point theorem. This

yields the existence of a solution y(x) to equation (3.1) on a segment [x0;x1] satisfying

the conditions y(x0) = y(x1) = 0 and, with some constant B > 0,

−Bα+1y′(x1) = y′(x0), −Bα+2y′′(x1) = y′′(x0), −Bα+3y′′′(x1) = y′′′(x0).

Note that for any solution y1(x) to equation (3.1) the function y2(x) defined as

±bαy1(bx+C) with arbitrary constants b > 0 and C is also a solution to this equation

and y
(j)
2 (x) = ±bα+jy

(j)
1 (bx+ C) for all j = 0, . . . , n.
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Hence, the solution y(x) obtained before can be smoothly extended to the segment

[x1;x2] with x2 = x1 +B(x1 − x0) by the formula

y(x) = −B−αy
(x− x1

B
+ x0

)

, x ∈ [x1;x2],
x− x1

B
+ x0 ∈ [x0;x1].

The extended solution satisfies y(x1) = y(x2) = 0 and

−Bα+1y′(x2) = y′(x1), −Bα+2y′′(x2) = y′′(x1), −Bα+3y′′′(x2) = y′′′(x1).

So, the process can be repeated infinitely many times with the same constant B > 0.

Similarly, the solution can be extended to the left. The domain of the extended

solution is the union of the segments [xj ;xj+1], j ∈ Z, and for all j we have

y(xj) = 0,

xj+1 − xj = B(xj − xj−1),

−Bα+iy(i)(xj+1) = y(i)(xj), i = 1, 2, 3,

and

(3.2) y(x) = −B−αy
(x− xj

B
+ xj−1

)

, x ∈ [xj ;xj+1].

In order to investigate whether B is greater or less than 1, denote by x′′′

j , x
′′

j , x
′

j

the points in (xj−1;xj) where the related derivatives of the solution vanish. Now the

following inequalities will be proved:

|y(x′

j)| < |y(x
′′′

j+1)| < |y(x
′′

j+1)| < |y(x
′

j+1)|,(3.3)

|y′(x′′

j )| < |y
′(xj)| < |y

′(x′′′

j+1)| < |y
′(x′′

j+1)|,(3.4)

|y′′(x′′′

j )| < |y′′(x′

j)| < |y
′′(xj)| < |y

′′(x′′′

j+1)|,(3.5)

|y′′′(xj)| < |y
′′′(x′′

j+1)| < |y
′′′(x′

j+1)| < |y
′′′(xj+1)|.(3.6)

Indeed,

1

k + 1
(|y(x′

j)|
k+1 − |y(x′′′

j+1)|
k+1) = −

∫ x′′′

j+1

x′

j

y′(x)|y(x)|k−1y(x) dx

=

∫ x′′′

j+1

x′

j

y′(x)yIV(x) dx = y′(x)y′′′(x)

∣

∣

∣

∣

x′′′

j+1

x′

j

−

∫ x′′′

j+1

x′

j

y′′(x)y′′′(x) dx < 0
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since y′(x′

j) = y′′′(x′′′

j+1) = 0 and y′′(x)y′′′(x) > 0 on [x′

j ;x
′′′

j+1]. This yields the first

of inequalities (3.3), while the others follow from y(x)y′(x) > 0 on (x′′′

j+1, x
′

j+1).

Similarly, for the first inequality of (3.4),

y′(x′′

j )
2 − y′(xj)

2 = −2

∫ xj

x′′

j

y′(x)y′′(x) dx

= −2y(x)y′′(x)

∣

∣

∣

∣

xj

x′′

j

+ 2

∫ xj

x′′

j

y(x)y′′′(x) dx < 0

since y(xj) = y′′(x′′

j ) = 0 and y(x)y′′′(x) < 0 on [x′′

j ;xj ]. The others follow from

y′(x)y′′(x) > 0 on (xj , x
′′

j+1).

Inequalities (3.5) and (3.6) can be proved just in the same way. The inequalities

proved show that for the solution considered the sequence

|y(xj)|
1/4 + |y′(xj)|

1/(k+3) + |y′′(xj)|
1/(2k+2) + |y′′′(xj)|

1/(3k+1)

is strictly increasing, whence B < 1 and the solution y(x) is defined in non-

extensible way on the semi-axis (−∞;x∗) with x∗ = x0 + (x1 − x0)/(1−B) =

xj−1 + (xj − xj−1)/(1 −B), j ∈ Z.

Since equation (3.1) is invariant under substitutions x 7→ −x and x 7→ x+ a with

any a ∈ R, similar solutions can be defined on the semi-axes (−∞;x∗) and (x∗;∞)

with arbitrary x∗.

Now the function h(t) can be defined as h(t) = eαty (x∗ − et) . Its periodicity is

proved by straightforward calculations. Indeed, if x∗−et ∈ [xj ;xj+1] for some j ∈ Z,

then

h(t− logB) = eαtB−αy
(

x∗ −
et

B

)

and, according to (3.2),

h(t) = eαty(x∗ − et) = −eαtB−α y
(x∗ − et − xj

B
+ xj−1

)

.

The expression in the last parentheses is equal to

xj−1 +
xj − xj−1

1−B
− et − xj

B
+ xj−1 = −

xj−1

1−B
+

xj

1−B
−

et

B
+ xj−1 = x∗ −

et

B
.

So, we have h(t− logB) = −h(t) for all t ∈ R and the function h(t) is periodical

with period −2 logB. �

It was proved [2]–[4], [7] that equation (1.1) with n > 2, under some conditions on

the function p(x, y0, . . . , yn−1), has oscillatory solutions. The following theorem was

also proved [2]–[4]:
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Theorem 3.2. For n = 3 there exists a constant B ∈ (0, 1) such that any

oscillatory solution y(x) of (1.2) satisfies the conditions

(1) (xi+1 − xi)/(xi − xi−1) = B−1, i = 2, 3, . . .,

(2) y(x′

i+1)/y(x
′

i) = −B
α, i = 1, 2, 3, . . .,

(3) y′(xi+1)/y
′(xi) = −B

α+1, i = 1, 2, 3, . . .,

(4) |y(x′

i)| = M(x′

i − x∗)
−α, i = 1, 2, 3, . . .,

for certain M > 0 and x∗, where x1 < x2 < . . . < xi < . . . and x′

1 < x′

2 < . . . <

x′

i < . . . are the sequences satisfying y(xj) = 0, y′(x′

j) = 0, y(x) 6= 0 if x ∈ (xi, xi+1),

y′(x) 6= 0 if x ∈ (x′

i, x
′

i+1).

Now, with help of this theorem, the method of proving Theorem 3.1 can be applied

to obtain

Theorem 3.3. For n = 3 and any real k > 1 there exists an oscillatory periodic

function h : R → R such that the functions x 7→ |x − x∗|
−αh(log |x − x∗|) with

α = n/(k − 1) and arbitrary x∗ are solutions respectively to (3.1) if defined on

(−∞;x∗) and to (1.2) if defined on (x∗;∞).
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