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KYBER NET IKA — VOLUM E 5 1 ( 2 0 1 5 ) , NUMBE R 5 , P AGES 8 7 4 – 8 8 9

OUTPUT FEEDBACK REGULATION FOR LARGE-SCALE
UNCERTAIN NONLINEAR SYSTEMS WITH TIME DELAYS

Shutang Liu, Weiyong Yu and Fangfang Zhang

This paper is concerned with the problem of global state regulation by output feedback for
large-scale uncertain nonlinear systems with time delays in the states and inputs. The systems
are assumed to be bounded by a more general form than a class of feedforward systems satisfying
a linear growth condition in the unmeasurable states multiplying by unknown growth rates and
continuous functions of the inputs or delayed inputs. Using the dynamic gain scaling technique
and choosing the appropriate Lyapunov–Krasovskii functionals, we explicitly construct the
universal output feedback controllers such that all the states of the closed-loop system are
globally bounded and the states of large-scale uncertain systems converge to zero.

Keywords: global regulation, large-scale systems, output feedback, time-delay systems,
uncertain nonlinear systems

Classification: 34K35, 62F35, 93A15, 93B52, 93C10, 93C23

1. INTRODUCTION

Large-scale systems, which are composed of a set of interconnected subsystems, can be
found in many practical systems of the real world, such as economic systems, urban traffic
networks, power systems, multi-agent systems and digital communication networks. In
the control of large-scale systems, decentralized control schemes present a practical and
effective means for designing control algorithms that just utilize the local state without
the need for information exchange amongst subsystems. On the other hand, it is widely
known that time-delay phenomenon is frequently encountered in the real control systems,
such as nuclear reactors, chemical process, turbojet engines. All these systems have
the characteristics of time delay. The existence of time delay usually leads to poor
performances and often causes instability (see e. g., [2, 3, 4, 5, 6]). Therefore the problem
of decentralised state feedback or output feedback stabilization of large-scale time-delay
systems has received considerable attention (see e. g., [14, 19, 20, 21, 24, 25]).

In the last decade, the problem of global output feedback control of nonlinear systems
with linear unmeasurable states multiplying by the various growth functions has received
considerable attention and still remains as an active research topic (see e. g., [1, 2, 9, 10,
11, 12, 13, 15, 16, 18, 22, 23, 24, 25, 26]). For example, a time-varying output feedback
controller has been proposed for the global regulation of nonlinear uncertain systems
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with an unbounded time-varying delay in the input in [9]. Specifically, based on the
Lyapunov–Krasovskii theorem, the output feedback controllers have been constructed
to stabilize a class of large-scale nonlinear time-delay systems that are dominated by the
upper or lower triangular time-delay systems in [24] and [25], respectively.

Motivated by [9, 12, 24, 25], in this paper, we consider the problem of global adaptive
regulation via output feedback for large-scale uncertain nonlinear systems with time
delays in the states and inputs. To the best of our knowledge, there is no work dealing
with such a class of large-scale systems satisfying Assumption 2.1 in the literature at
present, see Remark 2.3.

2. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider a large-scale uncertain nonlinear time-delay system composed of N intercon-
nected subsystems

ẋi,1(t) = xi,2(t) + φi,1

(
t, x(t), u(t), x(t− τi1), u(t− τi1)

)
,

...

ẋi,ni−1(t) = xi,ni(t) + φi,ni−1

(
t, x(t), u(t), x(t− τi1), u(t− τi1)

)
,

ẋi,in(t) = ui(t− τi2),
yi(t) = xi,1(t), i = 1, 2, . . . , N,

(1)

where xi(t) = [xi,1(t), xi,2(t), . . . , xi,ni
(t)]T ∈ Rni , ui(t) ∈ R and yi(t) ∈ R are the states,

control input, and output of the ith subsystem, respectively; constants τim satisfying
0 ≤ τim ≤ τ,m = 1, 2 are known time delays of the ith subsystem; in this paper, we
always denote xi(t), εi(t), zi(t) by xi, εi, zi; x = [xT

1 , x
T
2 , . . . , x

T
N ]T, u = [u1, . . . , uN ]T

and y = [y1, y2, . . . , yN ]T. The continuously differentiable uncertain functions φi,j :
R+ × R2(n1+···+nN+N) −→ R, j = 1, . . . , ni − 1, represent the nonlinearities within the
ith subsystem and the nonlinear interconnection effects between the ith subsystem and
other subsystems, and satisfy the following growth condition.

Assumption 2.1. For the unknown functions φi,j(·), there exist an unknown constant

θ > 0 and known nonnegative continuous functions fi
(
u, u(t − τi1)

)
such that for any

s ∈ (0, 1], the following inequality holds

ni−1∑
j=1

sni−j+1|φi,j(·)| ≤ θs2fi

(
u, u(t−τi1)

)[ N∑
p=1

(( np∑
q=1

snp−q+1
(
|xp,q|+|xp,q(t−τi1)|

))

+|up|+ |up(t− τi1)|
)]
, i = 1, . . . , N.

Remark 2.2. It is not difficult to prove that if the following condition for some unknown
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constant θ′ > 0

|φi,j(·)| ≤ θ′fi

(
u, u(t− τi1)

) N∑
p=1

np∑
q=max{2+np+j−ni,1}

(
|xp,q|+ |xp,q(t− τi1)|

+|up|+ |up(t− τi1)|
)
, j = 1, . . . , ni − 1, i = 1, . . . , N (2)

is satisfied, then Assumption 2.1 is always satisfied, but not vice versa. Then system (1)
is a more general form than a class of large-scale feedforward systems satisfying (2).

Remark 2.3. For system (1) satisfying (2) with N = fi(·) = 1, τi1 = τi2 = 0, the output
feedback stabilization or regulation problem has been investigated in [1, 26]. For system
(1) satisfying (2) with τi2 = 0 and θ′ = 1, the output feedback stabilization problem has
been considered in [23, 24]. For system (1) satisfying (2), where N = fi(·) = 1, τ11 = 0
and τ12 is a time-varying functions, the output feedback regulation problem has been
studied in [9]. However, since θ′ is an unknown positive constant and fi(·) are the
inputs or delay inputs functions, system (1) satisfying Assumption 2.1 do not belong
to the systems considered in the existing related literature. Therefore, for system (1)
satisfying Assumption 2.1, the problem of output feedback regulation is unsolvable by
any existing design method, and then is worth of investigation.

We introduce two technical lemmas that will be crucial in establishing our main
result.

Lemma 2.4. (Krishnamurthy and Khorrami [11], Zhang et al. [24]) For i = 1, . . . , N ,
there exist a constant α > 0, symmetric matrices Pi > 0, Qi > 0, and vectors ai =(
ai,1, . . . , ai,ni

)T, bi =
(
bi,1, . . . , bi,ni

)T such that

AT
i Pi + PiAi ≤ −I, and DiPi + PiDi ≥ αI,

BT
i Qi +QiBi ≤ −2I, and DiQi +QiDi ≥ αI, (3)

where

Ai =


−ai,1 1 · · · 0

...
...

. . .
...

−ai,ni−1 0 · · · 1
−ai,ni

0 · · · 0

 , Bi =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−bi,1 −bi,2 · · · −bi,ni

 ,
Di = diag{ni, ni − 1, . . . , 1}.

Lemma 2.5. (Zhang et all. [22]) For any constant τ > 0 and continuous vector
η(t) ∈ Rn, the following inequality holds∫ t

t−τ
ηT(s)ds

∫ t

t−τ
η(s)ds ≤ τ

∫ t

t−τ
‖η(s)‖2ds.



Output feedback regulation for large-scale uncertain systems 877

3. GLOBAL REGULATION BY OUTPUT FEEDBACK

In this section, we will show that under Assumption 2.1, system (1) can be globally
regulated by the output feedback controller. The main results are given below.

Theorem 3.1. Suppose that Assumption 2.1 holds, the states of system (1) achieve
global adaptive regulation by the following output feedback controller

˙̂xi,1 = x̂i,2 +
ai,1
LM

(yi − x̂i,1), i = 1, . . . , N,

... (4)
˙̂xi,ni

= ui +
ai,ni

(LM)ni
(yi − x̂i,1),

ui = −
(
bi,1

x̂i,1
(LM)ni

+ bi,2
x̂i,2

(LM)ni−1
+ · · ·+ bi,ni

x̂i,ni

LM

)
, (5)

Ṁ =
1
αM

max
{
$
(
u, u(t− τ11), . . . , u(t− τN1)

)
− M

2
, 0
}
, (6)

L̇ =
N∑
i=1

M

(LM)2

(
yi − x̂i,1
(LM)ni

)2

, with M(t) = L(t) = 1, for t ∈ [−τ, 0], (7)

where α, ai,j and bi,j , j = 1, . . . , ni − 1, i = 1, . . . , N are the appropriately chosen
parameters such that Lemma 2.4 holds, $(·) ≥ 0 is a continuously differentiable function
to be designed later.

P r o o f . For the convenience of the readers, we break up the proof into four parts.

Part I: The changes of coordinates and the closed-loop system.

For i = 1, . . . , N , let[
x̃i,1, . . . , x̃i,ni−1, x̃i,ni

]T =
[
xi,1, . . . , xi,ni−1, xi,ni

+
∫ t

t−τi2

ui(s)ds
]T
, (8)

and
εi,j =

x̃i,j − x̂i,j
(LM)ni−j+1

, zi,j =
x̂i,j

(LM)ni−j+1
, j = 1, . . . , ni. (9)

Then, for i = 1, . . . , N , based on (1), (4) – (5) and (8) – (9), the dynamics of εi and zi
can be given by the following compact form

ε̇i =
1
LM

Aiεi −
1

(LM)2
Ei

∫ t

t−τi2

ui(s)ds+ Φi(·)−
( L̇
L

+
Ṁ

M

)
Diεi, (10)

żi =
1
LM

Bizi +
1
LM

aiεi,1 −
( L̇
L

+
Ṁ

M

)
Dizi, (11)

where ai, Ai, Bi and Di are defined by Lemma 2.4, εi =
(
εi,1, . . . , εi,ni

)T, zi =(
zi,1, . . . , zi,ni

)T, Φi(·) =
[
φi,1(·)

(LM)ni
,

φi,2(·)
(LM)ni−1 , . . . ,

φi,ni−1(·)
(LM)2 , 0

]T
, Ei = [0, . . . , 0,

1, 0]T ∈ Rni , and we have ui = −bTi zi.
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It is easy to see that the closed-loop system consisting of (5) – (7) and (10) – (11) has
a unique solution (ε, z, L,M) on a small time interval [0, T ), where ε = [εT1 , . . . , ε

T
N ]T,

z = [zT1 , . . . , z
T
N ]T. Without loss of generality, we suppose that this solution can be

extended to the maximal interval [0, Tf ) for some Tf , with 0 < tf ≤ +∞.
From (6) – (7), it can be seen that for ∀t ∈ [0, Tf )

Ṁ ≥ 0, M(t) ≥M(t− τi1) ≥ 1,
M

2
+ αMṀ ≥ $(·), (12a)

L̇ =
N∑
i=1

M

(LM)2
ε2i,1 ≥ 0, L(t) ≥ L(t− τi1) ≥ 1. (12b)

Part II: The choice of Lyapunov–Krasovskii functional and continuously differentiable
function $(·).

Consider the Lyapunov functions Vε =
∑N
i=1(µ+ 1)εiTPiεi and Vz =

∑N
i=1 zi

TQizi,

where Pi and Qi are given by Lemma 2.4, µ = max1≤i≤N

{
‖Qiai‖2

}
. A simple calcu-

lation gives

V̇ε ≤
N∑
i=1

(
−µ+ 1
LM

‖εi‖2 − α(µ+ 1)
Ṁ

M
‖εi‖2

)

+
N∑
i=1

(
−2

µ+ 1
(LM)2

εi
TPiEi

∫ t

t−τi2

ui(s)ds+ 2(µ+ 1)εiTPiΦi(·)
)
, (13)

V̇z ≤
N∑
i=1

(
− 2
LM
‖zi‖2 + 2

1
LM

zTi Qiaiεi,1 − α
Ṁ

M
‖zi‖2

)
. (14)

Note that ui = −bTi zi and Lemma 2.5 holds, then

−
N∑
i=1

2
µ+ 1

(LM)2
εi

TPiEi

∫ t

t−τi2

ui(s)ds

≤
N∑
i=1

1
(LM)2

∥∥∥∥ ∫ t

t−τi2

zi(s)ds
∥∥∥∥2

+
N∑
i=1

µ1

(LM)2
‖εi‖2 (15)

≤
N∑
i=1

τi2

(∫ t

t−τi2

‖zi(s)‖2

(L(s)M(s))2
ds
)

+
N∑
i=1

µ1

(LM)2
‖εi‖2, (16)

where µ1 is a known positive constant.
Using Assumption 2.1 and 2ab ≤ a2 + b2, we obtain

N∑
i=1

2(µ+ 1)εiTPiΦi(·)

≤
N∑
i=1

2θ1‖εi‖
(∣∣∣∣ φi,1(·)

(LM)ni

∣∣∣∣+ · · ·+
∣∣∣∣φi,ni−1(·)

(LM)2

∣∣∣∣)
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≤
N∑
i=1

2θ2‖εi‖
fi(·)

(LM)2

[ N∑
p=1

(( np∑
q=1

(
|xp,q|

(LM)np−q+1
+
|xp,q(t− τi1)|
(LM)np−q+1

))
+|up|+ |up(t− τi1)|

)]
≤

N∑
i=1

2θ2‖εi‖
fi(·)

(LM)2

[ N∑
p=1

(( np∑
q=1

(
|εp,q|+ |zp,q|

+|εp,q(t− τi1)|+ |zp,q(t− τi1)|
))

+

∫ t
t−τp2

|up(s)|ds
LM

+

∫ t
t−τp2

|up(s− τi1)|ds
L(s− τi1)M(s− τi1)

+ |up|+ |up(t− τi1)|
)]

≤
N∑
i=1

2θ3‖εi‖
fi(·)

(LM)2

[ N∑
p=1

(
‖εp‖+ ‖zp‖+ ‖εp(t− τi1)‖

+‖zp(t− τi1)‖
)]

+
N∑
i=1

2θ3‖εi‖
fi(·)
LM

[ N∑
p=1

(∫ t

t−τp2

∥∥∥∥ zp(s)
L(s)M(s)

∥∥∥∥ds

+
∫ t

t−τp2

∥∥∥∥ zp(s− τi1)
L(s− τi1)M(s− τi1)

∥∥∥∥ds
)]

≤
N∑
i=1

f2
i (·)

(LM)2
‖εi‖2 +

N∑
i=1

θ4
(LM)2

(
‖εi‖2 + ‖zi‖2

)
+

N∑
i=1

N∑
p=1

θ4

(
‖εp(t− τi1)‖2 + ‖zp(t− τi1)‖2

L2(t− τi1)M2(t− τi1)

)

+
N∑
p=1

θ4

∫ t

t−τp2

∥∥∥∥ zp(s)
L(s)M(s)

∥∥∥∥2

ds

+
N∑
i=1

N∑
p=1

θ4

(∫ t

t−τp2

∥∥∥∥ zp(s− τi1)
L(s− τi1)M(s− τi1)

∥∥∥∥2

ds
)

(17)

where θi, i = 1, 2, 3, 4 are unknown constants depending on θ. In addition, it is obvious
that

N∑
i=1

2
1
LM

zTi Qiaiεi,1 ≤
N∑
i=1

1
LM
‖zi‖2 +

N∑
i=1

1
LM
‖Qiai‖2ε2i,1

≤
N∑
i=1

1
LM
‖zi‖2 +

N∑
i=1

µ

LM
ε2i,1 (18)

≤
N∑
i=1

1
LM
‖zi‖2 +

N∑
i=1

µ

LM
‖εi‖2. (19)
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Now, define the Lyapunov–Krasovskii functional

V1 = Vε + Vz +
N∑
i=1

N∑
p=1

θ4(1 + τp2)
(∫ t

t−τi1

(
‖εp(s)‖2 + ‖zp(s)‖2

L2(s)M2(s)

)
ds
)

+
N∑
p=1

(θ4 + τp2)
(∫ 0

−τp2

∫ t

t+ρ

∥∥∥∥ zp(s)
L(s)M(s)

∥∥∥∥2

dsdρ
)

+
N∑
i=1

N∑
p=1

θ4

(∫ 0

−τp2

∫ t

t+ρ

∥∥∥∥ zp(s− τi1)
L(s− τi1)M(s− τi1)

∥∥∥∥2

dsdρ
)
. (20)

Using (13) – (20), we get

V̇1 ≤
N∑
i=1

((
− 1
LM

+
θ5M

(LM)2
)(
‖εi‖2 + ‖zi‖2

))

−
N∑
i=1

(
1

(LM)2
(M

2
+ αMṀ − f2

i (·)
)(
‖εi‖2 + ‖zi‖2

))
, (21)

where θ5 is an unknown constant depending on θ. Choosing $(·) ≥ max1≤i≤N{f2
i (·)},

for any u. Accordingly, we obtain

V̇1 ≤ −
N∑
i=1

(
M

(LM)2
(
L− θ5

)(
‖εi‖2 + ‖zi‖2

))
. (22)

Part III: Boundedness of the closed-loop system on [0, Tf ).

Now, we use (22) to prove that the states (ε, z, L,M) of the closed-loop system (5) –
(7) and (10) – (11) are bounded on [0, Tf ).

Firstly, we show that the dynamic gain L is bounded on [0, Tf ). This can be done
by a contradiction argument. Suppose limt→Tf

L(t) = +∞. Combining it and (12b)
together, we get that there exists a finite time t1 ∈ (0, Tf ) such that

L(t) ≥ θ5 + 1, for ∀t ∈ [t1, Tf ).

Substituting the inequality above into (22), we have

V̇1 ≤ −
N∑
i=1

M

(LM)2
(‖εi‖2 + ‖zi‖2), for ∀t ∈ [t1, Tf ). (23)

From (12b) and (23), we obtain

+∞ = L(Tf )− L(t1) =
∫ Tf

t1

L̇(t)dt =
∫ Tf

t1

( N∑
i=1

M(t)ε2i,1(t)
[L(t)M(t)]2

)
dt ≤ V1(t1) = constant,

which is impossible. Therefore, L is bounded on [0, Tf ) and limt→Tf
L(t) < +∞. More-

over, we obtain that
∫ Tf

0

(∑N
i=1

ε2i,1(t)

L2(t)M(t)

)
dt <∞ and

∫ Tf

0

(∑N
i=1

ε2i,1(t)

M(t)

)
dt < +∞.
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Next, we prove that the state z is bounded on [0, Tf ). Using (14), (18) and (12a), we
have

V̇z ≤ −
N∑
i=1

1
LM
‖zi‖2 +

N∑
i=1

µ

LM
ε2i,1

= −
N∑
i=1

1
LM
‖zi‖2 + µLL̇, for ∀t ∈ [0, Tf ).

Consequently, as L is bounded on [0, Tf ), for ∀t ∈ [0, Tf ), we have

N∑
i=1

(
λmin(Qi)‖zi(t)‖2 − zTi (0)Qizi(0)

)
≤ −

∫ t

0

( N∑
i=1

‖z(s)‖2

L(s)M(s)

)
ds+

µ

2
[
L2(t)− 1

]
≤ µ

2
[
L2(t)− 1

]
< +∞

and ∫ t

0

( N∑
i=1

‖z(s)‖2

L(s)M(s)

)
ds ≤

N∑
i=1

zTi (0)Qizi(0) +
µ

2
[
L2(t)− 1

]
< +∞.

Then limt→Tf
‖z(t)‖ < +∞ and

∫ Tf

0

(∑N
i=1

‖zi(t)‖2
M(t)

)
dt < +∞.

Thirdly, we claim that the dynamic gain M is bounded on [0, Tf ). This claim can be
proven again by a contradiction argument. Suppose limt→Tf

M(t) = +∞. Since zi are
bounded on [0, Tf ), we obtain that ui = −bTi zi are bounded, i = 1, . . . , N . Furthermore,
note that $(·) ≥ 0 is a continuous inputs and delay inputs function, then there exists
a constant K > 0 such that $(·) ≤ K. From limt→Tf

M(t) = +∞, we get that there
exists a finite time t2 ∈ (0, Tf ) such that M(t2) ≥ 2K + 1. By (12a), we obtain

M(t) ≥M(t2) ≥ 2K + 1 > 2$(·), for any t ∈ [t2, Tf ).

From (6), we get Ṁ(t) = 0, for any t ∈ [t2, Tf ). Then

M(t) ≡M(t2) = constant, for any t ∈ [t2, Tf ),

which leads to a contradiction. Thus M is bounded on [0, Tf ). Moreover,

limt→Tf
‖M(t)‖ < +∞,

∫ Tf

0

(∑N
i=1 ε

2
i,1(t)

)
dt < +∞ and

∫ Tf

0

(∑N
i=1 ‖zi(t)‖2

)
dt < +∞.

Finally, we verify that the state ε is bounded on [0, Tf ). For this aim, we introduce
two suitable unknown positive constants θ6, θ7 depending on θ, then we define the
following change of coordinates

ηi,j =
x̃i,j − x̂i,j
(L∗)ni−j+1

, j = 1, 2, . . . , ni, i = 1, . . . , N, (24)

where constant L∗ ≥ max{L(Tf ),M(Tf ), θ7 + 1}. Then

η̇i =
1
L∗
Aiηi +

1
L∗
aiηi,1 −

1
L∗

Γiaiηi,1 + Ψ∗i (·) + Φ∗i (·), (25)
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where ai and Ai are defined by Lemma 2.4, ηi =
(
ηi,1, . . . , ηi,ni

)T,

Ψ∗i (·) = Eib
T
i

(L∗)2

∫ t
t−τi2

zi(s)ds, Φ∗i (·) =
[
φi,1(·)
(L∗)ni

,
φi,2(·)

(L∗)ni−1 , . . . ,
φi,ni−1(·)

(L∗)2 , 0
]T

and Γi =

diag
{
L∗

LM , ( L
∗

LM )2, . . . , ( L
∗

LM )ni

}
.

Choose the Lyapunov function Vη =
∑N
i=1 ηi

TPiηi, we get

V̇η ≤ −
N∑
i=1

1
L∗
‖ηi‖2 +

N∑
i=1

2
1
L∗
ηTi Piaiηi,1 −

N∑
i=1

2
1
L∗
ηTi PiΓiaiηi,1

+
N∑
i=1

2ηTi PiΨ
∗
i (·) +

N∑
i=1

2ηTi PiΦ
∗
i (·). (26)

By the completion of square, as L and M are bounded on [0, Tf ), the following estima-
tions can be obtained

N∑
i=1

2
1
L∗
ηTi Piaiηi,1 ≤

N∑
i=1

1
(L∗)2

‖ηi‖2 +
N∑
i=1

θ6
2
η2
i,1 (27)

and

−
N∑
i=1

2
1
L∗
ηTi PiΓiaiηi,1 ≤

N∑
i=1

1
(L∗)2

‖ηi‖2 +
N∑
i=1

θ6
2
η2
i,1. (28)

Moreover, from L∗ ≥ L(Tf ) ≥ L(t) ≥ 1 and Assumption 2.1, recalling that ui are
bounded and fi(·) are continuous inputs and delay inputs functions, i = 1, . . . , N , fol-
lowing the procedure of (16) and (17), we have

N∑
i=1

2ηTi PiΨ
∗
i (·) ≤

N∑
i=1

τi2

(∫ t

t−τi2

‖zi(s)‖2

(L∗)2
ds
)

+
N∑
i=1

θ6
(L∗)2

‖ηi‖2 (29)

and
N∑
i=1

2ηTi PiΦ
∗
i (·) ≤

N∑
i=1

θ6
(L∗)2

‖ηi‖2 +
N∑
i=1

θ6
(L∗)2

(
‖ηi‖2 + ‖zi‖2

)
+

N∑
i=1

N∑
p=1

θ6

(
‖ηp(t− τi1)‖2 + ‖zp(t− τi1)‖2

(L∗)2

)

+
N∑
p=1

θ6

∫ t

t−τp2

‖zp(s)‖2

(L∗)2
ds

+
N∑
i=1

N∑
p=1

θ6

(∫ t

t−τp2

‖zp(s− τi1)‖2

(L∗)2
ds
)
. (30)

Construct the Lyapunov–Krasovskii functional

V2 = Vη +
N∑
i=1

N∑
p=1

∫ t

t−τi1

θ6(1 + τp2)
(
‖ηp(s)‖2 + ‖zp(s)‖2

(L∗)2

)
ds
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+
N∑
p=1

(θ6 + τp2)
∫ 0

−τp2

∫ t

t+ρ

‖zp(s)‖2

(L∗)2
dsdρ

+
N∑
i=1

N∑
p=1

θ6

∫ 0

−τp2

∫ t

t+ρ

‖zp(s− τi1)‖2

(L∗)2
dsdρ. (31)

Substituting (26)-(30) into (31), we obtain

V̇2 ≤
N∑
i=1

(
− L∗ − θ7

(L∗)2
‖ηi‖2 + θ7‖zi‖2 + θ6ε

2
i,1

)

≤
N∑
i=1

(
− 1

(L∗)2
‖ηi‖2 + θ7‖zi‖2 + θ6ε

2
i,1

)
. (32)

From (31) and (32), it follows that for any t ∈ [0, Tf )

N∑
i=1

λmin(Pi)‖ηi(t)‖2 ≤ V2(0) + θ7

∫ t

0

( N∑
i=1

‖zi(s)‖2
)

ds+ θ6

∫ t

0

( N∑
i=1

ε2i,1(s)
)

ds < +∞

(33)
and∫ t

0

( N∑
i=1

‖ηi(s)‖2

(L∗)2

)
ds ≤ V2(0)+θ7

∫ t

0

( N∑
i=1

‖zi(s)‖2
)

ds+θ6
∫ t

0

( N∑
i=1

ε2i,1(s)
)

ds < +∞.

(34)
Then, from (33), (34), (24) and (9), we get limt→Tf

‖ε(t)‖ < +∞ and∫ Tf

0

( N∑
i=1

‖εi(t)‖2
)

dt < +∞.

Part IV: Convergence of the states.
Up to now, we have proved that L, z,M, ε are all bounded on the maximal interval

[0, Tf ). Thus we get Tf = +∞. Furthermore, from Part III, we know that L, z,M, ε are
bounded on [0,+∞) and

∫∞
0
‖z(t)‖2dt < +∞,

∫∞
0
‖ε(t)‖2dt < +∞. It is easy to obtain

the boundedness of ż, ε̇ on [0,+∞) from the boundedness of L,M, z, ε on [0,+∞).
Therefore, we have

ε ∈ L2, ε̇ ∈ L∞ and z ∈ L2, ż ∈ L∞.

Using the Barbalat’s Lemma, we have

lim
t→+∞

z(t) = lim
t→+∞

ε(t) = 0,

which along with (8), (9) and ui = −bTi zi leads to

lim
t→+∞

u(t) = 0 and lim
t→+∞

x(t) = lim
t→+∞

x̂(t) = 0.

�
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Remark 3.2. Since L̇ ≥ 0, Ṁ ≥ 0, and L, M are bounded on [0,+∞), there exist
constants L̄ > 0, M̄ > 0 such that limt→∞ L(t) = L̄, limt→∞M(t) = M̄ . That is to say,
the dynamic gains L and M are time-invariant in nature.

Remark 3.3. From the proof procedure of Theorem 1, we see that the dynamic gains
L and M are introduced to deal with the unknown growth rate θ and the function
fi

(
u, u(t− τi1)

)
, respectively, and both are required.

Remark 3.4. It is worth pointing out that Theorem 1 also holds when the time delays
τi2 are unknown time-varying functions τi2(t) satisfying 0 ≤ τi2(t) ≤ τ and 0 < τ̇i2 ≤
d < 1, i = 1, . . . , N .

From (5) and (6), we know that the inputs ui are dependent on the time delays
τi1, i = 1, . . . , N . As pointed out in [4], it has a crucial fundamental limitation that
the designed delay-dependent controller has to use knowledge of the delay explicitly
and hence require memory, which is difficult to implement in practice especially for
the case of time-varying delay. In what follows, we will introduce another assumption,
under which a delay-independent output feedback controller is proposed for system (1),
where the unknown time delays τim satisfy 0 ≤ τim ≤ τ , τ is a known constant, i =
1, . . . , N,m = 1, 2. The price to be paid for the improvement is that Assumption 3.5 is
more stringent than Assumption 2.1.

Assumption 3.5. For the uncertain functions φi,j(·), there exist an unknown constant
θ > 0 and known nonnegative continuous functions fi(u) such that for any s ∈ (0, 1],
the following inequality holds

ni−1∑
j=1

sni−j+1|φi,j(·)|

≤ θs2fi

(
u(t− τi1)

)[ N∑
p=1

(( np∑
q=1

snp−q+1|xp,q(t− τi1)|
)

+ |up(t− τi1)|
)]

+ θs2fi(u)
[ N∑
p=1

(( np∑
q=1

snp−q+1|xp,q|
)

+ |up|
)]
, i = 1, . . . , N.

Theorem 3.6. Suppose that Assumption 3.5 holds. Appropriately select constants
α, ai,j and bi,j , j = 1, . . . , ni−1, i = 1, . . . , N , and a continuously differentiable function

$(u) ≥ max1≤i≤N

{
f2
i (u)

}
≥ 0, for any u, then the states of system (1) achieve global

adaptive regulation by the output feedback controller consisting of (4), (5), (7) and the
following dynamic equation of M

Ṁ =
1
αM

max
{
$(u)− M

2
, 0
}
. (35)

P r o o f . Since the proof of this theorem is very similar to that of Theorem 3.1, we
omitted it for brevity. �
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4. SIMULATION EXAMPLE

Consider an interconnected time-delay system

ẋ1,1 = x1,2 + c1u1(t− τ1) 5

√
ln
(

1 + x6
1,1

)
ln
(

1 + x6
2,1(t− τ1)

)
+ c2u

2
2(t− τ1),

ẋ1,2 = x1,3 + c3u1(t− τ1)u2

ẋ1,3 = u1(t− τ2)

y1 = x1,1,

ẋ2,1 = x2,2(t) + c4u1(t− τ3)u2(t− τ3),

ẋ2,2 = u2(t− τ4),

y2 = x2,1,

(36)

where ci, i = 1, 2, 3, 4 are totally unknown parameters, and the unknown delay constants
τj satisfy 0 ≤ τj ≤ 1, j = 1, 2, 3, 4.

It is not difficult to verify that system (36) satisfies Assumption 2.1 and 3.5, but does
not satisfy (2). Using Theorem 3.6, we design the controller for (36)

˙̂x1,1 = x̂1,2 +
3
LM

(y1 − x̂1,1),

˙̂x1,2 = x̂1,3 +
3

(LM)2
(y1 − x̂1,1)

˙̂x1,3 = u1 +
1

(LM)3
(y1 − x̂1,1)

˙̂x2,1 = x̂2,2 +
2
LM

(y2 − x̂2,1),

˙̂x2,2 = u2 +
1

(LM)2
(y2 − x̂2,1),

Ṁ =
1

0.4M
max

{
u2

1 + u2
2 + 1

25
− M

2
, 0
}
,

L̇ =
2∑
i=1

M

(LM)2

(
yi − x̂i,1
(LM)4−i

)2

, with M(t) = L(t) = 1, for t ∈ [−1, 0],

(37)

with 
u1 = −

( x̂1,1

(LM)3
+ 3

x̂1,2

(LM)2
+ 3

x̂1,3

LM

)
,

u2 = −
( x̂2,1

(LM)2
+ 2

x̂2,2

LM

)
.

(38)

Let c2 = 0.3, ci = 1, i = 1, 3, 4, and τj = 0.1, j = 1, 2, 3, 4, the simulation results are
shown in Figures 1 – 2 for the closed-loop system consisting of (36) – (38). The initial con-
dition is chosen as, for t ∈ [−1, 0], [x1,1(t), x1,2(t), x1,3(t), x2,1(t), x2,2(t), x̂1,1(t), x̂1,2(t),
x̂1,3(t), x̂2,1(t), x̂2,2(t), L(t),M(t)] = [8, 2,−3,−1, 3,−6, 3,−5, 9,−4, 1, 1].
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(f) The observer’s gain L and M .

Fig. 1. Transient response of the closed-loop system consisting of

(36) – (38).
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Fig. 2. The control inputs u1 and u2

5. CONCLUSION

In this paper, we have investigated the problem of global adaptive output feedback
regulation for a class of large-scale nonlinear time-delay systems whose nonlinearities
satisfy certain growth conditions. By designing the dynamic gain observer and using
the rescaling transformation of coordinates, we propose the dynamic output feedback
controllers, which have a linear-like structure, to achieve global adaptive regulation of
systems. Simulation results have been provided to show the effectiveness of the proposed
approach.
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