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KYBER NET IKA — VOLUM E 5 1 ( 2 0 1 5 ) , NUMBE R 5 , P AGES 8 9 0 – 9 0 8

SOLVING A CLASS OF NON-CONVEX QUADRATIC
PROBLEMS BASED ON GENERALIZED KKT CONDITIONS
AND NEURODYNAMIC OPTIMIZATION TECHNIQUE

Alaeddin Malek and Najmeh Hosseinipour-Mahani

In this paper, based on a generalized Karush–Kuhn–Tucker (KKT) method a modified recur-
rent neural network model for a class of non-convex quadratic programming problems involving
a so-called Z-matrix is proposed. The basic idea is to express the optimality condition as a
mixed nonlinear complementarity problem. Then one may specify conditions for guaranteeing
the global solutions of the original problem by using results from the S-lemma. This process
is proved by building up a dynamic system from the optimality condition whose equilibrium
point is exactly the solution of the mixed nonlinear complementarity problem. By the study
of the resulting dynamic system it is shown that under given assumptions, steady states of the
dynamic system are stable. Numerical simulations and comparisons with the other methods are
presented to illustrate the efficiency of the practical technique that is proposed in this paper.

Keywords: non-convex quadratic optimization, recurrent neural network model, global
optimality conditions, global convergence

Classification: 90C26, 37N40

1. INTRODUCTION

Although there are many Recurrent Neural Network (RNN) to solve the constraint/ un-
constraint convex programming problems [12] – [17],[24, 25, 27] there are few non-convex
problem solvers. In addition, a very broad class of difficult combinatorial optimization
problems such as integer programming, Celis–Dennis–Tapia (CDT) problem, quadratic
assignment and the maximum clique problem can be formulated as non-convex quadratic
programming problems. However, the neural network models for convex optimization
problems are not successful in solving non-convex optimization problems, hence, the
study of neural network models for non-convex optimization problems, is of quite im-
portance. In last decade, some RNN models are used to solve non-convex optimization
problems. Two neural network models for unconstrained non-convex optimization prob-
lems are presented by Beyer and Ogier [2] and Sun and Feng [20]. Two neural network
models for non-convex quadratic objective function subject to a set of affine constraints
and a box set are presented in [5] and [21], respectively. Xia et al. [24] and Hu [7]
studied two different neural network models for solving differentiable and non-convex
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optimization problems. In the year 2009, a neural network model based on differential
inclusion for nonsmooth and non-convex optimization problems is introduced [3]. Yan et
al. [26] presented a collective neurodynamic optimization method for solving non-convex
optimization problems with bound constraints. Their approach is based on the KKT
conditions that is necessary condition for the optimal point in the non-convex problems.
The practical technique in this paper uses both necessary and sufficient conditions to
solve the specified class of non-convex optimization problems.
In this paper, we consider a non-convex quadratic optimization problem with finitely
many quadratic inequality constraints involving Z-matrices, which are matrices with
non-positive off diagonal elements. Then, by designing a neurodynamic system (RNN
model), we establish a practical way of finding the global optimal solution while we obey
the corresponding sufficient conditions. First, we establish a relationship between opti-
mality condition of the problem and mixed nonlinear complementarity problem. Then
we propose a modified RNN model to transfer the non-convex quadratic problem into
a specific dynamical system of the first order differential equations along with a modifi-
cation parameter which leads to the stability of its equilibrium points. In the following,
everything is boiled down to the study of the resulting dynamical system.
The outline of the paper is as follows. In Section 2, we introduce some preliminary defi-
nitions, lemmas and theorems for global optimality conditions for a class of non-convex
constrained quadratic optimization problems. In Section 3, a RNN model is designed
based on necessary and sufficient conditions for non-convex quadratic objective func-
tion subject to quadratic constraints. Moreover, the global convergence of the proposed
neural network is analyzed. In Section 4, numerical examples are given to illustrate the
efficiency of the proposed model. Comparisons with two other existing models are made.
As an application, we apply the proposed neural network model for solving the CDT
subproblem, which arises in some trust region algorithms for nonlinear optimization
problems. Finally, some concluding remarks will be drawn in Section 5.

2. PROBLEM FORMULATION

In this section, we present basic results on global optimality and Lagrange multipliers for
non-convex constrained quadratic optimization problems. In what follows, ‖.‖ denotes
l2-norm on Rn (‖x‖ = (

∑n
i=1 x

2
i )

1/2) and ei denotes the column vector with a 1 in the
ith coordinate and 0’s elsewhere. The space of all n× n symmetric matrices is denoted
by Sn. For g : Rn → R, 5g(x ) ∈ Rn and 52g(x ) ∈ Rn×n stand for gradient and the
Hessian of g at x . For vectors x ,y ∈ Rn,x ≥ y means that xi ≥ yi, for i = 1, . . . , n. The
notation A � 0 (A � 0) shows that the matrix A is positive (negative) semi-definite.
Furthermore, if there exists a nonzero vector x ∈ Rn such that xTAx < 0 then we write
A � 0. Consider the following smooth non-convex quadratic optimization problem:

min f(x ) s.t. gi(x ) ≤ 0, i = 1, . . . ,m, (1)

where f, gi : Rn → R are defined by f(x) = 1
2x

TAfx +bT
f x +cf and gi(x) = 1

2x
TAgix +

bT
gi

x + cgi
, Af � 0 and S0 = {x ∈ Rn|gi(x) ≤ 0} is the feasible set. Define Hf ,Hgi

for
i = 1, . . . ,m by

Hf =

„
Af bf
bT
f 2cf

«
, Hgi =

„
Agi bgi

bT
gi

2cgi

«
. (2)
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Definition 2.1. (Malek et al. [14]) A mixed nonlinear complementarity problem
(MNCP) is finding a point x ∈ Rn such that

MNCP(F )
{
xiFi(x ) = 0, Fi(x ) ≥ 0, xi ≥ 0, ∀i ∈ I,
Fi(x ) = 0, ∀i ∈ N\I, (3)

where F is a continuously differentiable mapping from X = {x ∈ Rn|xi ≥ 0, i ∈ I} into
Rn, N = {1, 2, . . . , n} and I ⊆ N .

Remark 2.2. A matrix A ∈ Sn is called a Z-matrix if aij ≤ 0 for all i 6= j. Therefore
any diagonal matrix is a Z-matrix.

The fundamental lemma which has played a key role in many areas of optimization
and control theory is given as follows.

Lemma 2.3. (S-Lemma) (Polik and Terlaky [19]) Let f, g : Rn → R be quadratic
functions, defined by

f(x) =
1
2
xTAfx + bT

f x + cf , g(x) =
1
2
xTAgx + bT

g x + cg

where Af ,Ag ∈ Sn,bf ,bg ∈ Rn and cf , cg ∈ R. Suppose that there exists x0 ∈ Rn such
that g(x0) < 0. Then the following statements are equivalent

(i) g(x ) ≤ 0⇒ f(x ) ≥ 0.

(ii) ∃ λ ≥ 0,∀x ∈ Rn, f(x ) + λg(x ) ≥ 0.

Theorem 2.4. (Jeyakumar et al. [9]) Let fi = 1
2x

TAix + bT
i x + ci, i = 1, . . . ,m.

Suppose that Hfi
, i = 1 . . . ,m are all Z-matrices. Then, exactly one of the following

two statements holds.

(i) (∃ x ∈ Rn) fi(x ) < 0, i = 1, . . . ,m.

(ii) (∃ λ ∈ Rm+ \ {0}) (∀x ∈ Rn)
∑m
i=1 λifi(x ) ≥ 0.

Proposition 2.5. (Jeyakumar et al. [8]) For general non-convex quadratic program-
ming problem (1), let x ∗ ∈ S0. If there exists λ = (λ1, . . . , λm)T ∈ Rm+ \ {0} such that
the following conditions

(a) Af +
∑m
i=1 λiAgi � 0;

(b) (Afx
∗ + bf ) +

∑m
i=1(λiAgi

x ∗ + λibgi
) = 0;

(c)
∑m
i=1 λigi(x

∗) = 0;
(4)

hold, then x ∗ is a global minimizer of (1).

Remark 2.6. For the non-convex optimization problem (1) when m = 1 and the
strict feasibility condition holds, then conditions (4) are necessary and sufficient condi-
tions [10].
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A relevant counterexample for m > 1: Consider the following non-convex prob-
lem [8]:

min f(x ) = (x1 − 1)2 + x2
2 − 10x2

3 − 6x2

s.t. g1(x ) = x2
1 + x2

2 + x2
3 − 2 ≤ 0,

g2(x ) = (x1 − 2)2 + x2
2 + x2

3 − 2 ≤ 0.

For the feasible point x ∗ = (1, 1, 0)T and λ∗ = (1, 1)T > 0, the following KKT necessary
conditions hold at x ∗:

∇f(x ∗) + λ∗1∇g1(x ∗) + λ∗2∇g2(x ∗) =
(

0
−4

)
+
(

2
2

)
+
(
−2
2

)
=
(

0
0

)
,

λ∗1g1(x∗) = 0 and λ∗2g2(x∗) = 0. Indeed Af+
∑2
i=1 λ

∗
iAgi

= diag(2, 2,−20)+diag(2, 2, 2)+
diag(2, 2, 2) = diag(6, 6,−16) � 0. Thus the sufficient optimality conditions (4) do not
hold at this point (see also Example 4.4). Hence for m > 1 the condition (a) of (4) is
just a sufficient (not necessary) global optimality condition.

Theorem 2.7. (Jeyakumar et al. [9]) For the non-convex quadratic problem (1),
suppose that Hf and Hgi , i = 1, . . . ,m are Z-matrices and the Slater condition holds,
i. e., there exists x 0 ∈ Rn such that gi(x 0) < 0, i = 1, . . . ,m. Then a feasible point x ∗

is a global optimal solution if and only if (4) holds.

Theorem 2.8. For the non-convex quadratic problem (1), suppose that Hgi , i =
1, . . . ,m are Z-matrices. In the feasible set S0, assume that there exists a Z-matrix
Q ∈ Sn such that Af − Q � 0. Also there exists x 0 ∈ Rn such that gi(x 0) < 0, i =
1, . . . ,m. If x ∗ is a global optimal solution of (1) and ∇f(x∗) − Qx∗ ≤ 0, then there
exists (λ1, . . . , λm) ∈ Rm+ \ {0} such that

Q +
m∑
i=1

λiAgi
� 0, ∇

(
f +

m∑
i=1

λigi

)
(x ∗) = 0 and λigi(x ∗) = 0, i = 1, . . . ,m.

(5)

P r o o f . See Appendix. �

3. DYNAMICAL SYSTEM

In this section, first we reformulate the optimality conditions of the problem (1) as
the mixed nonlinear complementarity problem. Then we design a neurodynamic system
along with a modification parameter to guarantee the stability of the equilibrium points.
Hereafter, for the non-convex quadratic problem (1) suppose that Hf and Hgi

, i =
1, . . . ,m are Z-matrices. Let x ∗ be a global optimal solution of (1) and the Slater
condition holds. According to the Theorem 2.7, there exists λ∗ = (λ∗1, . . . , λ

∗
m)T ∈

Rm+ \ {0} such that (x ∗T, λ∗T)T satisfies the following generalized KKT conditions for
i = 1, . . . ,m:
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
Af +

∑m
i=1 λ

∗
iAgi � 0,

∇f(x ∗) +
∑m
i=1 λ

∗
i∇gi(x ∗) = 0 ,

λ∗i
(

1
2x
∗TAgix

∗ + bT
gi
x ∗ + cgi

)
= 0,

−
(

1
2x
∗TAgi

x ∗ + bT
gi
x ∗ + cgi

)
≥ 0,

λ∗i ≥ 0 .

(6)

Consider the continuously differentiable function G : Y → Rn+m as follows:

G(y) =

0BBB@
∇(f +

Pm
i=1 λigi)(x )

−g1(x )
...

−gm(x )

1CCCA =

0BBB@
(Afx + bf ) +

Pm
i=1 λi(Agix + bgi)

−
`

1
2
xTAg1x + bT

g1x + cg1
´

...
−
`

1
2
xTAgmx + bT

gm
x + cgm

´
1CCCA , (7)

for Y = {y = (xT, λT)T|x ∈ Rn, λ ∈ Rm+}. We show y∗ = (x ∗T, λ∗T)T is a solution
of MNCP(G). Let N = {1, 2, . . . , n + m} and I = {n + 1, . . . , n + m}, it is obvious
that yn+i = λi ≥ 0, Gn+i(y) = −gi(x ) ≥ 0, yn+iGn+i(y) = 0, i = 1, . . . ,m and
Gi(y) = ∇(f+

∑m
i=1 λigi)(x ) = 0, i = 1, . . . , n for y = y∗. Therefore y∗ = (x ∗T, λ∗T)T

is a solution of MNCP(G).
Conversely, let y∗ = (x ∗T, λ∗T) be a solution of MNCP(G) such that Af+

∑m
i=1 λ

∗
iAgi

� 0. From the definition of MNCP(G), we conclude that y∗ satisfies the generalized
KKT conditions (6). Thus x ∗ is a global optimal solution for problem (1) by Theo-
rem 2.7. This proves the following proposition.

Proposition 3.1. For the non-convex quadratic problem (1), suppose that Hf and
Hgi

, i = 1, . . . ,m are Z-matrices. Then x ∗ ∈ S0 is a global solution of the problem (1),
if and only if there exists λ∗ = (λ∗1, . . . , λ

∗
m)T ∈ Rm+ \{0}, such that Af+

∑m
i=1 λ

∗
iAgi

� 0
and y∗ = (x ∗T, λ∗T) is a solution of MNCP(G), where G is defined as in (7).

3.1. Neurodynamic model (RNN model)

Now, let x (.), λ(.) and y(.) be some time dependent variables. The aim is to construct a
continuous-time dynamical system that will settle down to the global optimal solution of
the problem (1). We propose a modified recurrent neural network model for solving (1),
whose dynamical system for initial point (xT

0 , λ
T
0 )T is defined as follows:

dx
dt

= −(Afx + bf )−
m∑
i=1

(λi + (λi + 1
2x

TAgi
x + bT

gi
x + cgi

)+)
2

(Agix + bgi), (8)

dλi
dt

= (λi +
1
2
xTAgi

x + bT
gi
x + cgi

)+ − λi, i = 1, . . . ,m. (9)

Define

H(y) =

(
−∇f(x )−∇g(x )T

(
λ+(λ+g(x))+

2

)
(λ+ g(x ))+ − λ

)
, (10)

where g(x ) = [g1(x ), g2(x ), . . . , gm(x )]T, (z )+ = [(z1)+, . . . , (zn)+]T, (zi)+ = max{0, zi}.
We propose the following neurodynamic model (RNN model):{

dy
dt = H(y),
x (t) = (In,0)y(t)

(11)
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where y(t) = (x (t)T, λ(t)T)T is the state vector, x (t) is the output vector and
(
λ
2 +

(λ+g(x))+

2

)
is modification parameter. Model (11) is a modification of the neural net-

work model in Ref [6] with (λ+ g(x ))+ replaced by
(
λ+(λ+g(x))+

2

)
to solve non-convex

optimization problem (1). This kind of modification have a serious role in making the
RNN model (11) stable.

3.2. Connection between equilibrium point and global solution

Proposition 3.2. Let Ω∗ be the set of equilibrium points of the model (11) in Rn+m.
Then y∗ ∈ Ω∗ if and only if y∗ = (x ∗T, λ∗T)T is the solution for MNCP(G).

P r o o f . Let y∗ ∈ Ω∗, since dy
dt |y=y∗ = 0 then H(y∗) = 0. It follows that

(Afx
∗ + bf ) +

m∑
i=1

(
λ∗i
2

+
(λ∗i + 1

2x
∗TAgix

∗ + bT
gi
x ∗ + cgi)

+

2

)
(Agix

∗ + bgi) = 0, (12)

(λ∗i +
1
2
x ∗TAgi

x ∗ + bT
gi
x ∗ + cgi

)+ − λ∗i = 0, i = 1, . . . ,m. (13)

Now by substituting (13) into (12) we have

(Afx
∗ + bf ) +

m∑
i=1

λ∗i (Agix + bgi) = 0 (14)

Moreover, it is clear that (λ∗i + 1
2x
∗TAgix

∗ + bT
gi

x∗ + cgi)
+ = λ∗i for i = 1, . . . ,m if and

only if

λ∗i

(
1
2
x ∗TAgix

∗ + bT
gi
x ∗ + cgi

)
= 0, λ∗i ≥ 0, −

(
1
2
x ∗TAgix

∗ + bT
gi
x ∗ + cgi

)
≥ 0.

(15)
From (14) and (15) we conclude that y∗ = (x ∗T, λ∗T)T is a solution of MNCP(G) when
N = {1, 2, . . . , n+m} and I = {n+ 1, . . . , n+m}. The converse is immediate. �

Theorem 3.3. Let y∗ ∈ Ω∗ and Af +
∑m
i=1 λ

∗
iAgi

� 0 for λ∗i = eT
n+iy

∗, i = 1, . . . ,m,
then x ∗ = (In,0n×m)y∗ is a global optimal solution for (1). On the other hand, if Hf

and Hgi , i = 1, . . . ,m are Z-matrices and x ∗ is a global optimal solution of (1), then
there exists λ∗ ∈ Rm \ {0} such that (x ∗T, λ∗T)T is an equilibrium point of the RNN
model (11).

P r o o f . Let y∗ be an equilibrium point for the modified neural network model (11) and
its associated λ∗ satisfies Af+

∑m
i=1 λ

∗
iAgi

� 0. It follows from Proposition 3.2 that y∗ is
a solution of MNCP(G) and it satisfies in the conditions (4). Hence x ∗ = (In,0n×m)y∗

is a global optimal solution for the problem (1) by Proposition 2.5. The converse is
straightforward. �
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3.3. Stability and convergent analysis

Definition 3.4. (Miller and Michel [18]) A continuous-time neural network model is
said to be globally convergent, if for any given initial point, the corresponding trajectory
of the related dynamical system converges to an equilibrium point.

Definition 3.5. (Khalil [11]) The equilibrium point y∗ is Lyapunov stable if, for each
ε > 0, there is δ > 0 such that if ‖y(t0)− y∗‖ < δ, then ‖y(t)− y∗‖ < ε, for t ≥ t0.

Theorem 3.6. (Khalil [11]) Let y∗ be an equilibrium point for (11) and D ⊂ Rn+m

be a domain containing y∗. Let E : D → R be a continuously differentiable function
such that 

E(y) ≥ 0, ∀y ∈ D \ {y∗},
E(y) = 0 iff y = y∗,
dE(y(t))

dt ≤ 0, ∀y ∈ D,
(16)

then y∗ is stable.

A continuously differentiable function E(y) satisfying (16) is called a Lyapunov func-
tion.

Lemma 3.7. For any initial point y(t0) there exists a unique continuous solution y(t)
for model (11).

P r o o f . It is easily to verify that the right-hand term of (11) are locally Lipschitz
continuous. According to the local existence uniqueness theorem of ODEs [4], there
exists a unique local continuous solution for model (11) in the interval (t0, t0 +τ), where
τ > 0. �

Theorem 3.8. Let there exists ℵ ⊆ Rn+m such that for any y = (xT, λT)T ∈ ℵ we have
Af +

∑m
i=1

λi

2 Agi
� 0. Then the Jacobian matrix ∇H(y) of the mapping H defined

in (10) is a negative semi-definite matrix for y ∈ ℵ.

P r o o f . See Appendix. �

Theorem 3.9. Let Ω∗ ⊆ ℵ ⊆ Y , the set ℵ being as in Theorem 3.8. Then

(i) equilibrium point of the model (11) is stable in the sense of Lyapunov,

(ii) the model (11) is globally convergent to the stationary point y∗ = (x ∗T, λ∗T)T

of (11).

P r o o f . See Appendix. �

4. NUMERICAL EXAMPLES

In order to demonstrate the efficiency and performance of the RNN model (11) in solving
a class of non-convex quadratic optimization problems, we give several illustrative ex-
amples in this section. Codes are written in MATLAB and have done on a Core i3-380M
PC (2.53GHz) Processor.
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Example 4.1. (Zheng et al. [29]) (General non-convex problem that its solution sat-
isfies the sufficient global optimality condition)
Consider

min 8x1x2 + 3x2
2 + 14x1 + 12x2

s.t. 18x2
1 + 8x2

2 + 2x1 − 1 ≤ 0,
13x2

1 − 4x1x2 + 8x2
2 + 4x2 − 1 ≤ 0,

5x2
1 − 10x1x2 + 5x2

2 + 16x1 + 18x2 − 1 ≤ 0.

We use the proposed model (11) for solving this problem, it is seen that the state trajec-
tory converges to (x ∗T, λ∗T) where x ∗ = (−0.2190,−0.2680)T and λ∗ = (2.0148, 0, 0)T.
We have

Af + Σ3
i=1λ

∗
iAgi =

(
36.2664 4

4 19.1184

)
� 0.

Therefore x ∗ is a global optimal solution by Theorem 3.3. In Figure 1 (a) the trajectories
of the RNN model (11) with ten random initial vector points are illustrated. Figure 1 (b)
displays the transient behavior of x (t) with five random initial points starting from
outside of the feasible region S0.

Note that if we use an adjusted parameter κ in RNN model (11), we will have

dy
dt

= κH(y), (17)

then a sufficiently large κ could accelerate the neurodynamic. This means that, it is
possible for the RNN model to converge in millisecond scale, or even micro second scale.
For κ = 2000, the state trajectories of the RNN model (18) with ten random initial points
are converged in 6 milisecond (see Figure 1 (c)). Comparison between Figure 1 (a) and
Figure 1 (c) shows that increasing the adjustable parameter κ leads to an appropriate
gain.
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Fig. 1. (a) The transient behavior of the model (11) with ten

different initial points, (b) The feasible region S0 and the trajectories

of the (x1(t), x2(t)) started from five different points, (c) The

transient behavior of the mode (18) with κ = 2000 started from ten

initial points for Example 4.1.
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Example 4.2. (Tian and Lu [22]) (The non-convex problem that its solution does not
satisfy the sufficient global optimality condition)
Consider the following subclass of mixed integer quadratic programming problem:

min
1
2
xTAfx + bT

f x , s.t. x i ∈ [0, 1], i = 1, . . . , n (18)

with

Af =

0BBBBBBBBBBBBBB@

263 −97 62 217 52 621 935 258 −61 −10
−97 299 −17 9 −4 −123 −17 −40 −3 37
62 −17 178 71 −118 −83 −110 9 −56 42
217 9 71 143 −5 842 228 42 58 −41
52 −4 −118 −5 177 102 −15 120 13 −52
621 −123 −83 842 102 219 574 22 73 −53
935 −17 −110 228 −15 574 457 154 −25 84
258 −40 9 42 120 22 154 473 18 −29
−61 −3 −56 58 13 73 −25 18 −4 −79
−10 37 42 −41 −52 −53 84 −29 −79 224

1CCCCCCCCCCCCCCA
,

bf = (−20,−314, 46,−83.45,−128.7, 41.3, 43.85,−341.8,−34.05,−34.6)T. In order to
solve this mixed integer programming problem by the theories of this paper, we refor-
mulate (18) by

min
1
2
xTAfx + bT

f x ,

s.t. x 2
i − x i ≤ 0, i = 1, . . . , n.

This problem is solved by the RNN model (11) and the global minimizer x ∗ is cal-
culated successfully. The output trajectories are converged to the global minimizer
x ∗ = (0, 1.00, 0.50, 0, 0.75, 0, 0, 0.60, 1.00, 0.49)T. Trajectories of the neural network
model (11) with six random initial vector points are illustrated in Figure 2 (a). Fig-
ure 2 (b) displays the convergence behavior of the l2-norm error ‖x (t) − x ∗‖ based on
the model (11) with fifteen initial points.

Now, it is obvious that there exists λ∗ = (41.17, 35.15, 0, 20.05, 0, 13.14, 70.15, 0, 88.03, 0)T

such that (x ∗T, λ∗T) satisfies the KKT necessary condition, while (x ∗T, λ∗T) does not
satisfy the global optimality sufficient condition (4) (a). However, if Hf could be estab-
lished such that satisfies in Z-matrix definition, then one must have the global optimality
sufficient condition by Theorem 2.7.

In the following it is shown that non-convex problems involving Z-matrices (see Ex-
amples 4.3 and 4.4) satisfy both necessary and sufficient global optimality conditions (6).

Example 4.3. (Global solution for CDT problem) Consider the following problem

min f(d) =
1
2
dTBd + bTd ,

s.t. ‖ATd + a‖ ≤ θ, (19)
‖d‖ ≤ δ,
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Fig. 2. The transient behavior of the RNN model (11) with six

random initial vector points, (b) Convergence behavior of the output

trajectory norm error based on (11) with fifteen random initial points

in Example 4.2.

where B ∈ Sn, A ∈ Rn×m(m ≤ n), b ∈ Rn, a ∈ Rm, θ > 0 and δ > 0. In this paper,
it is assumed that f(d) is non-convex quadratic function, namely, B may be indefinite.

The problem (19) comes from applying the successive quadratic programming (SQP)
method and a trust-region technique to minimize a general function q(x ) subject to
h(x ) = 0. At the kth iteration, one must calculate the correction step dk to the current
xk by minimizing a quadratic function bTd+ 1

2d
TBd subject to the norm of the linearized

constraints ATd + a , in a given tolerance where b = ∇q(xk), B is the Hessian or an
approximate Hessian of the Lagrangian function with respect to x , A = ∇h(xk) and
a = h(xk). Meanwhile, the trust-region restriction ‖d‖ ≤ δ must be impose [28].

In order to solve the CDT problem (19) by the theories of this paper, we replace (19)
by

min f(d) =
1
2
dTBd + bTd ,

s.t. g1(d) = ‖ATd + a‖2 − θ2 ≤ 0,
g2(d) = ‖d‖2 − δ2 ≤ 0.

For n = m = 2, B =
(
−2 0
0 2

)
and A =

(
1 0
0 1

)
, a = (0,−6)T, b = (0,−6)T,

δ = 5, θ = 5, it is clear that Hf =
(

B b
b 0

)
, Hg1 = 2

(
AAT Aa
(Aa)T ‖a‖2 − θ2

)
and Hg2 =

2
(

In 0
0 −δ2

)
are Z-matrices and the Slater condition holds. Let y∗ = (d∗T, λ∗T)T

and y∗∗ = (d∗∗T, λ∗∗T)T where d∗ = (4, 3)T, d∗∗ = (−4, 3)T and λ∗ = λ∗∗ = (1, 1)T.
Simulation results show that the state trajectories of the proposed model (11) converge to
y∗ and y∗∗ in which y∗ and y∗∗ satisfy the global optimality conditions in Theorem 2.7.
Hence d∗ = (4, 3)T and d∗∗ = (−4, 3)T are two different global optimal solutions for
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Model Initial point Solution CPU time (sec.) l2-norm error

PNN (-5,4,-3,2) (-3.9024,3.0000) 0.33 0.09

ALN (-5,4,-3,2) (-3.9998,3.0000) 0.17 2.11× 10−4

Current (-5,4,-3,2) (-3.9999,3.0000) 0.05 6.28× 10−5

PNN (2,2,2,2) (3.8656,3.0000) 0.37 0.1344

ALN (2,2,2,2) (3.9992,3.0000) 0.14 7.92× 10−4

Current (2,2,2,2) (3.9999,3.0000) 0.04 6.2998× 10−5

PNN (-5,-5,-5,-5) (-4.3653,3.0000) 0.34 0.36

ALN (-5,-5,-5,-5) (-4.0009,3.0000) 0.15 8.51× 10−4

Current (-5,-5,-5,5) (-3.9999,3.0000) 0.04 9.92× 10−5

Tab. 1. Comparison of the results for three RNN models with

different initial points for Example 4.3.

Example 4.3. Figure 3 (a) shows that the trajectories of the neural network model (11)
with fifteen random initial vector points converge to the global optimal solutions of
this problem. Figure 3 (b) displays the transient behavior of d(t) when one may start
from points inside, outside and on the boundary of the feasible region. Furthermore, we
compare the modified neural network with the existing projection neural network (PNN)
defined in Ref. [24] and the augmented Lagrange network (ALN) algorithm defined in
Ref. [7], where adjusted parameters in PNN and ALN algorithms are assumed to be 1.
Table 1 gives their computational results under different initial points. It shows that
the modified neural network has a better performance in convergence time and solution
accuracy than the PNN and ALN algorithms.
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Fig. 3. (a) The transient behavior of the RNN model (11) with two

initial points, (b) The objective function contours, the feasible region

and the output trajectories started from different points, (c) The

transient behavior of the PNN model with fifteen initial points for

Example 4.3.
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Model Initial point Solution CPU time l2-norm

(sec.) error

PNN (2,2,2,2,2) (5.142,0.000,0.000,0.933,0.049) 0.11 1.538

ALN (2,2,2,2,2) (3.608,0.000,0.000,0.990,0.054) 1.36 0.011

Current (2,2,2,2,2) (3.605,0.000,0.000,0.999,0.055) 0.27 2.193× 10−4

PNN (-1,-1,-1,-1,-1) (-5.811,0.000,0.946,0.048) 0.12 2.206

ALN (-1,-1,-1,-1,-1) (3.664,0.000,0.000,0.977,0.053) 0.28 0.063

Current (-1,-1,-1,-1,-1) (-3.6051,-0.000,-0.000,1.000,0.055) 0.29 1.222× 10−4

PNN (2,-1,3,-2,4) (2.458,0.000,0.000,1.028,0.056) 0.10 1.147

ALN (2,-1,3,-2,4) (3.602,0.000,0.000,0.985,0.054) 1.95 0.015

Current (2,-1,3,-2,4) (3.605,0.000,0.000,0.999,0.055) 0.28 5.547× 10−4

Tab. 2. Comparison of the results for three different RNN models

with different initial points for Example 4.4.

Example 4.4. Consider the following non-convex programming problem:

min −3x2
1 + x2

2 +
3
2
x2

3 + 2x2
4 + 3x2

5

s.t.
1
4

(x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 14) ≤ 0,

1
4

(x2
1 + x2

2 + x2
3 + (x4 − 3)2 + x2

5 − 17) ≤ 0,

−x2x3 − 0.5x2
3 − 1.5x4 + x2

5 − 2.5 ≤ 0,
−2x2x3 + 0.5x2

4 − 9x5 ≤ 0, − x2x3 − 9x5 ≤ 0.

This problem is solved using the proposed model (11). Simulation results show that the
state trajectories of the model (11) converge to x∗ = (3.6051, 0.0000, 0.0000, 1.0000, 0.0556)T

and x∗∗ = (−3.6051, 0.0000, 0.0000, 1.0000, 0.0556)T with λ∗ = λ∗∗ = (5.2840, 6.7160, 0.0000,

0.0741, 0.0000)T. Then for λ∗ we have Af + Σ5
i=1λ

∗
iAgi � 0 and since Hf and Hgi

, i =
1, . . . ,m are Z-matrices, thus we can conclude by Theorem 3.3 that x∗ and x∗∗ are two
different global solutions of this problem. Trajectories of the neural network model (11)
with ten random initial vector points, are shown in Figure 4 (a). The RNN model (11),
the PNN and ALN algorithms are compared in Table 2. Simulation results show that
the trajectory of the PNN algorithm does not converge to the global solutions, whereas
the RNN (11) calculates converge to x∗ and x∗∗ as global solutions.

Note: The ALN algorithm converges while the PNN algorithm does not converge, when
dealing with the non-convex quadratic problem in Examples 4.3 and 4.4. The Xia ap-
proach (PNN algorithm) provides unstable solution (see Figures 3 (c) and 4 (b)), while
the Hu approach (ALN algorithm) provides the equilibrium points which satisfy the
global optimality conditions in Theorem 2.7, hence the ALN algorithm converges to the
global optimal solutions of Examples 4.3 and 4.4.



902 A. MALEK AND N. HOSSEINIPOUR-MAHANI

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−8

−6

−4

−2

0

2

4

6

8

Time

X
(t

)

 

 

x
1

x
2

x
3

x
4

x
5

(a)

0 10 20 30 40 50 60 70 80 90
−15

−10

−5

0

5

10

15

Time

X
(t

)

 

 

x
1

x
2

x
3

x
4

x
5

(b)

Fig. 4. (a) The transient behavior of the model (11) with two

random initial points, (b) The transient behavior of the PNN model

with ten various initial points for Example 4.4.

Practical neurodynamic optimization technique: Theories that is proposed in this
paper may be applied to the PNN algorithm, in order to make this algorithm stable.
This may be done by

Step 1: Replacing the given non-convex quadratic problem by a problem of the type:

min
1
2
xTQx

s.t.
1
2
xTAgi

x + bT
gi
x + cgi

≤ 0, i = 1, . . . ,m, (20)

where Q is a Z-matrix and Af −Q � 0.

Step 2: Solve (20) by the PNN algorithm and find x ∗ as a global optimal solution.

Step 3: If ∇f(x ∗)−Qx ∗ ≤ 0 and there exists λ ≥ 0 such that (x ∗T, λT)T satisfies in
condition (5), Go to Step 4. Otherwise, Go to Step 1.

Step 4: If x ∗ satisfies (4) (a), then the necessary and sufficient condition holds, Stop.
Otherwise, Go to Step 1.

This practical technique is explained in the following example.

Example 4.5. Consider the CDT problem in Example 4.3. For Z-matrix Q = diag(−2, 2),
solve (20) using the PNN algorithm. This algorithm calculates d1 = (4, 3)T and
d2 = (−4, 3)T. It is easy to check that d1 and d2 satisfy (5) with this choice of Q

and λ = (1, 1)T. Moreover ∇f(d)−Qd = (0,−6)T ≤ 0 for d1 and d2. Thus by Theo-
rem 2.7, d1 and d2 are global optimal solutions. This gives a practical way of finding
global minimizers for Example 4.3 when one uses the PNN algorithm.

Example 4.6. In the similar way we propose Q = diag(−5, 2, 3, 8, 6) and obtain λ =
(5.2840, 6.7160, 0.0000, 0.0741, 0.0000)T for the PNN algorithm in Example 4.4, in order
to find stable global optimal solutions as those are given by current method.
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5. CONCLUSION

In this paper, we have established a connection between the global optimality conditions
of a class of non-convex quadratic optimization problems and mixed nonlinear comple-
mentarity problems. Based on this connection, we have proposed a neurodynamic model
with a modification parameter which leads to the stability condition for RNN equilibrium
points. It is proved that steady states of the dynamic system is exactly the solution of
MNCP problem. Then by using results from S-lemma, we have shown certain conditions
for guaranteeing the global solutions. Furthermore, we obtained necessary condition for
global minimizers of a class of non-convex quadratic programming problems involving Z-
matrices. We have given a practical neurodynamic optimization technique to determine
global solutions for some algorithms that fail to solve some non-convex problems.

FUTURE WORK

The proposed RNN model in this paper is based on the KKT conditions, which is
generally not the sufficient for global optimality. The proposed RNN model can converge
to a KKT point from any initial state, but this solution may not be the global optimal
solution. Idea here to compute the global optimal solution from a KKT point is based
on the sufficient condition that is related to the matrices Af +

∑m
i=1 λ

∗
iAgi , Hf and

Hgi for i = 1, . . . ,m. If matrix Af +
∑m
i=1 λ

∗
iAgi is a positive semi-definite matrix

or Hf and Hgi
for i = 1, . . . ,m are Z-matrices, then the candidate KKT point is

a global optimal solution. This idea is highlighted in Propositions 3.1 and 3.2 and
Theorem 3.3. Any idea to further research for the global optimal solution from a KKT
point which Af +

∑m
i=1 λ∗iAgi

is not positive semi-definite, may be considered by using
underestimators and/or overestimators for the objective function. This is the plan for
the next investigation of the authors.

APPENDIX

P r o o f . o f T h e o r e m 2.8. Suppose that x ∗ is a global minimizer of (1). Let
h(x) = 1

2x
TQx + (∇f(x∗) − Qx∗)Tx . Define φ(x ) = f(x ) − h(x ), x ∈ S0. Then

∇2φ(x) = ∇2f(x) − ∇2h(x) = Af − Q � 0, ∀x ∈ S0. So φ is a concave function
over S0. Moreover ∇φ(x ∗) = ∇f(x ∗) − ∇h(x ∗) = 0. Hence, by concavity, φ(x ) ≤
φ(x ∗), ∀x ∈ S0. Thus f(x )− f(x ∗) ≤ h(x )− h(x ∗), ∀x ∈ S0. Since f(x )− f(x ∗) ≥ 0
hence h(x )− h( x ∗) ≥ 0. Let h̃(x ) = h(x )− h(x ∗) and

Hh̃ =

(
Q ∇f(x ∗)−Qx ∗

(∇f(x ∗)−Qx ∗)T x ∗TQx ∗ − 2∇f(x ∗)Tx ∗

)
.

Note that Hh̃ is a Z-matrix if and only if Q is a Z-matrix and ∇f(x∗) −Qx∗ ≤ 0.
Then the system h̃(x ) < 0, gi(x ) < 0, i = 1, . . . ,m, has no solution. Thus, from
Theorem 2.4, there exists (µ0, . . . , µm) ∈ Rm+1

+ \ {0} such that for all x ∈ S0

µ0h̃(x ) +
m∑
i=1

µigi(x ) = µ0(h(x )− h(x ∗)) +
m∑
i=1

µigi(x ) ≥ 0.
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In particular, one has µigi(x ∗) = 0, i = 1, . . . ,m. Thus, µ0h(x ) +
∑m
i=1 µigi(x )

attains its minimum at x ∗ over S0. Thus µ0∇f(x ∗) +
∑m
i=1 µi∇gi(x ∗) = 0 and

µ0Q+
∑m
i=1 µiAgi

� 0. We next, show that µ0 > 0. Suppose, contrary to our claim, that
µ0 = 0, then

∑m
i=1 µigi(x ) ≥ 0 for all x ∈ S0. Note that gi(x 0) < 0, i = 1, . . . ,m under

the hypothesis that the Slater condition holds. It follows that µi = 0, i = 1, . . . ,m. This
contradicts the fact that (µ0, . . . , µm) 6= (0, . . . , 0). Hence h(x )+

∑m
i=1 λigi(x ) ≥ h(x ∗),

where λi = µi/µ0. This implies that λigi(x ∗) = 0 for i = 1, . . . ,m. Therefore, x ∗ is a
global minimizer of h(x ) +

∑m
i=1 λigi(x ) over S0. This gives us that

∇f(x ∗) +
m∑
i=1

λi∇gi(x ∗) = 0 and Q +
m∑
i=1

λiAgi � 0. (21)

�

P r o o f . o f T h e o r e m 3.8. For y ∈ ℵ consider the following three cases.

Case 1. Without loss of generality, assume that there exists 0 < p < m such that

(λ+ g(x ))+ = (λ1 + g1(x ), . . . , λp + gp(x ), 0, 0, . . . , 0︸ ︷︷ ︸
m−p

)T ≥ 0.

An easy computation shows that the Jacobian matrix of H is0BBBBBBBBBBB@

−ξ −∇g1(x ) · · · − ∇gp(x ) − 1
2
∇gp+1(x ) · · · − 1

2
∇gm(x )

∇g1(x )T 0 . . . 0 0 . . . 0
...

... . . .
...

...
...

...
∇gp(x )T 0 . . . 0 0 . . . 0

0 0 . . . 0 −1 . . . 0
...

... . . .
...

...
...

...
0 0 . . . 0 0 . . . −1

1CCCCCCCCCCCA
,

where

ξ = Af +
p∑
i=1

(
λi + (λi + gi(x ))

2

)
Agi

+
1
2

p∑
i=1

∇gi(x )∇gi(x )T +
m∑

j=p+1

λj
2

Agj
.

It is clear that xT(∇gi(x )∇gi(x )T)x = xT(Agix + bgi)(Agix + bgi)
Tx = (xTAgix +

bT
gi
x )2 ≥ 0, thus ∇gi(x )∇gi(x )T is a positive semi-definite matrix. Moreover, since

Af +
∑m
i=1

λi

2 Agi and Agi , i = 1, . . . ,m are positive semi-definite matrices and λi +
gi(x ) ≥ 0 for i = 1, . . . , p, we see that

Af +
p∑
i=1

(
λi + (λi + gi(x ))

2

)
Agi +

m∑
j=p+1

λj
2

Agj

= (Af +
m∑
i=1

λi
2

Agi
) +

p∑
i=1

λi + gi(x )
2

Agi
� 0.
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Therefore −ξ � 0 and we conclude that ∇H(y) is negative semi-definite.

Case 2. If p = m, i. e. (λ + g(x))+ = (λ1 + g1(x), λ2 + g2(x), . . . , λm + gm(x))T, then
we obtain ∇H(y) is0BBBBB@
−Af −

Pm
i=1 αiAgi − 1

2

Pm
i=1∇gi(x )∇gi(x )T −∇g1(x ) · · · − ∇gm(x )

∇g1(x )T 0 · · · 0

...
... · · ·

...

∇gm(x )T 0 · · · 0

1CCCCCA ,

where αi = λi+(λi+gi(x))
2 . Similar to the previous case, it is easily proved that ∇H(y) is

a negative semi-definite.

Case 3. Finally if p = 0, i. e. (λ+ g(x ))+ = (0, 0, . . . , 0︸ ︷︷ ︸
m

), then

∇H(y) =


−Af −

Pm
i=1

λi
2
Agi − 1

2
(Ag1x + bg1) · · · − 1

2
(Agmx + bgm)

01×n − 1 · · · 0
...

... · · ·
...

01×n 0 · · · − 1

 .

In this case, the Jacobian matrix∇H(y) is a negative semi-definite since Af+
∑m
i=1

λi

2 Agi

is positive semi-definite for y ∈ ℵ. �

P r o o f . o f T h e o r e m 3.9. (i) We first prove that the equilibrium point of the
model (11) is stable in the sense of Lyapunov. Let y(t) be the trajectory of the model
(11) with arbitrary initial point y(t0) and ỹ as an equilibrium point of (11). Consider
the Lyapunov function E : ℵ → R as

E(y) = ‖H(y)‖2 + β‖y − ỹ‖2, (22)

where β is a positive constant. By the definition of H(y) it is seen that

dH(y)
dt

=
∂H(y)
∂y

dy
dt

= ∇H(y)H(y). (23)

Calculating the derivative of E(y(t)) along the trajectory of the proposed neural net-
work (11), we have

dE(y(t))
dt

=
(

dH(y)
dt

)T

H(y) +H(y)T

(
dH(y)

dt

)
+ 2β(y − ỹ)T dy(t)

dt

= H(y)T(∇H(y)T +∇H(y))H(y) + 2β(y − ỹ)TH(y). (24)

Theorem 3.8 now shows that ∇H(y) � 0 for y ∈ ℵ. Thus, we have

dE(y(t))
dt

≤ 2β(y − ỹ)TH(y). (25)
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Now, according to the mean value theorem, there exists ŷ = γy + (1 − γ)ỹ , where
0 < γ < 1, such that

H(y)−H(ỹ) = ∇H(ŷ)(y − ỹ).

Since y , ỹ ∈ ℵ then ŷ ∈ ℵ and consequently ∇H(ŷ) � 0. By multiplying both sides of
the above equation by (y − ỹ)T, we have

(y − ỹ)T(H(y)−H(ỹ)) = (y − ỹ)T∇H(ŷ)(y − ỹ) ≤ 0. (26)

Hence

(y − ỹ)T(H(y)−H(ỹ)) = (y − ỹ)TH(y) ≤ 0. (27)

We conclude from (25) and (27) that

dE(y(t))
dt

≤ 0. (28)

It follows from Theorem 3.6 that ỹ is stable in the sense of Lyapunov.

(ii) It remains to prove that the proposed model (11) is globally convergent. Since
β‖y − ỹ‖2 ≤ E(y), then y is bounded for t ≥ t0. It follows that for any initial point
y(t0) ∈ Y , there exists a convergent subsequence {y(tk)}+∞k=1 such that, limk→+∞ y(tk) =
y∗. Thus y∗ is a positive limit point of y(t). Let L+ denote the set of all positive limit
point of y(t). Since L+ is a compact and invariant set [11], we have dE(y)

dt = 0 on
L+ [11]. But dE(y)

dt = 0 only at equilibrium points. This means that for y ∈ Y

dE(y)
dt

= 0 if and only if
dy
dt

= 0. (29)

Clearly, if dy
dt = 0, then dE(y(t))

dt =
(

dE(y)
dy

)T(
dy
dt

)
= 0. Conversely, let dE(y(t))

dt = 0. We

conclude from (25) that (y − ỹ)TH(y) ≥ 0 and from (27) that (y − ỹ)TH(y) ≤ 0, thus
(y − ỹ)TH(y) = 0 which leads to y = ỹ or H(y) = 0. In either case, it is clear that
y is an equilibrium point of the (11) and hence dy

dt = 0. Therefore from (29), L+ ⊆ Ω∗

and consequently y∗ ∈ Ω∗.
Now we are in the stage to define the following Lyapunov function that works for the

new task.

Ē(y) =
1
2
‖y − y∗‖2, (30)

Then Ē(y) is continuously differentiable and Ē(y∗) = 0. Therefore we have

lim
k→+∞

Ē(y(tk)) = Ē(y∗).

So, ∀ε ≥ 0 there exists q ≥ 0 such that for all t ≥ tq, we have Ē(y(t)) ≤ ε. Similarly, we
can obtain dĒ(y(t))

dt ≤ 0. It follows that for t ≥ tq
1
2
‖y(t)− y∗‖2 ≤ Ē(y(t)) ≤ ε.

Thus limt→+∞ ‖y(t)− y∗‖ = 0 and limt→+∞ y(t) = y∗. Therefore the proposed neural
network model (11) is globally convergent to an equilibrium point y∗ = (x ∗T, λ∗)T.

�



Solving non-convex quadratic problems based on neurodynamic optimization technique 907

(Received December 30, 2014)

R E F E R E N C E S

[1] M. S. Bazaraa and C. M. Shetty: Nonlinear Programming Theory and Algorithms. Wiley
and Sons, New York 1990.

[2] D. Beyer and R. Ogier: Tabu learning: A neural network search method for solving
nonconvex optimization problems. IEEE Int. Joint Conf. Neural Networks 2 (2000),
953–961.

[3] W. Bian and X. Xue: Subgradient-based neural networks for nonsmooth noncon-
vex optimization problems. IEEE Trans. Neural Networks 20 (2009), 6, 1024–1038.
DOI:10.1109/tnn.2009.2016340

[4] C. Chicone: Ordinary Differential Equations with Applications. Second edition. Springer–
Verlag, New York 2006.

[5] M. Forti, P. Nistri, and M. Quincampoix: Convergence of neural networks for program-
ming problems via a nonsmooth Lojasiewicz inequality. IEEE Trans. Neural Networka
17 (2006), 6, 1471–1486. DOI:10.1109/tnn.2006.879775

[6] X. B. Gao: A novel neural network for nonlinear convex programming problems. IEEE
Trans. Neural Network 15 (2004), 613–621. DOI:10.1109/tnn.2004.824425

[7] X. Hu: Neurodynamic optimization: Towards nonconvexity. In: Recurrent Neu-
ral Networks ( X. Hu and P. Balasubramaniam, ed.), IN-TECH, 2008, pp. 289–308.
DOI:10.5772/5551

[8] V. Jeyakumar, A. M. Rubinov, and Z. Y. Wu: Non-convex quadratic minimization prob-
lems with quadratic constraints: global optimality conditions. Math. Program., Ser. A
110 (2007), 521–541. DOI:10.1007/s10107-006-0012-5

[9] V. Jeyakumar, G. M. Lee, and G. Y. Li: Alternative theorems for quadratic inequality
systems and global quadratic optimization. SIAM J. Optim 20 (2009), 2, 983–1001.
DOI:10.1137/080736090

[10] V. Jeyakumar and S. Srisatkunarajah: Lagrange multiplier necessary condition for global
optimality for non-convex minimization over a quadratic constraint via S-lemma. Optim.
Lett. 3 (2009), 23–33. DOI:10.1007/s11590-008-0088-3

[11] H. K. Khalil: Nonlinear Systems. Third edition. Prentice Hall, 2002.

[12] A. Malek: Application of recurrent neural networks to optimization problems. In: Recur-
rent Neural Networks ( X. Hu and P. Balasubramaniam, eds.), IN-TECH, 2008, pp. 255–
288. DOI:10.5772/5556

[13] A. Malek and M. Alipour: Numerical solution for linear and quadratic programming
problems using a recurrent neural network. Appl. Math. Comput 192 (2007), 27–39.
DOI:10.1016/j.amc.2007.02.149

[14] A. Malek, N. Hosseinipour-Mahani, and S. Ezazipour: Efficient recurrent neural network
model for the solution of general nonlinear optimization problems. Optimization Methods
and Software 25 (2010), 489–506. DOI:10.1080/10556780902856743

[15] A. Malek, S. Ezazipour, and N. Hosseinipour-Mahani: Double projection neural net-
work for solving pseudomonotone variational inequalities. Fixed Point Theory 12
(2011), 2, 401–418.

http://dx.doi.org/10.1109/tnn.2009.2016340
http://dx.doi.org/10.1109/tnn.2006.879775
http://dx.doi.org/10.1109/tnn.2004.824425
http://dx.doi.org/10.5772/5551
http://dx.doi.org/10.1007/s10107-006-0012-5
http://dx.doi.org/10.1137/080736090
http://dx.doi.org/10.1007/s11590-008-0088-3
http://dx.doi.org/10.5772/5556
http://dx.doi.org/10.1016/j.amc.2007.02.149
http://dx.doi.org/10.1080/10556780902856743


908 A. MALEK AND N. HOSSEINIPOUR-MAHANI

[16] A. Malek, S. Ezazipour, and N. Hosseinipour-Mahani: Projected dynamical systems and
optimization problems. Bull. Iranian Math. Soc. 37 (2011), 2, 81–96.

[17] A. Malek and A. Yari: Primal-dual solution for the linear programming
problem using neural network. Appl. Math. Comput. 169 (2005), 198–211.
DOI:10.1016/j.amc.2004.06.081

[18] R. K. Miller and A. N. Michel: Ordinary Differential Equations. Academic Press, 1982.
DOI:10.1016/b978-0-12-497280-3.50008-6

[19] I. Polik and T. Terlaky: A survey of the S-Lemma. SIAM Rev. 49 (2007), 371–418.
DOI:10.1137/s003614450444614x

[20] C. Y. Sun and C. B. Feng: Neural networks for nonconvex nonlinear programming prob-
lems: A switching control approach. In: Lecture Notes in Computer Science 3495,
Springer–Verlag, Berlin 2005, pp. 694–699. DOI:10.1007/11427391 111

[21] Q. Tao, X. Liu, and M. S. Xue: A dynamic genetic algorithm based on continuous neural
networks for a kind of non-convex optimization problems. Appl. Math. Comput. 150
(2004), 811–820. DOI:10.1016/s0096-3003(03)00309-6

[22] Y. Tian and Ch. Lu: Nonconvex quadratic reformulations and solvable conditions for
mixed integer quadratic programming problems J. Industr. Managment Optim. 7 (2011),
1027–1039. DOI:10.3934/jimo.2011.7.1027

[23] Y. Xia, G. Feng, and J. Wang: A recurrent neural network with exponential conver-
gence for solving convex quadratic program and related linear piecewise equation. Neural
Networks 17 (2004), 1003–1015. DOI:10.1016/j.neunet.2004.05.006

[24] Y. S. Xia, G. Feng, and J. Wang: A novel recurrent neural network for solving nonlinear
optimization problems with inequality constraints. IEEE Trans. Neural Networks 19
(2008), 1340–1353. DOI:10.1109/tnn.2008.2000273

[25] X. Xue and W. Bian: A project neural network for solving degenerate convex quadratic
program. Neurocomputing 70 (2007), 2449–2459. DOI:10.1016/j.neucom.2006.10.038

[26] Z. Yan, J. Wang, and G. Li: A collective neurodynamic optimization approach
to bound-constrained nonconvex optimization. Neural networks 55 (2014), 20–29.
DOI:10.1016/j.neunet.2014.03.006

[27] M. Yashtini and A. Malek: Solving complementarity and variational inequali-
ties problems using neural networks. Appl. Math. Comput. 190 (2007), 216–230.
DOI:10.1016/j.amc.2007.01.036

[28] Y. Zhang: Computing a Celis–Dennis–Tapia trust-region step for equality constrained
optimization. Math. Programming 55 (1992), 109–124. DOI:10.1007/bf01581194

[29] X. J. Zheng, X. L. Sun, D. Li, and Y. F. Xu: On zero duality gap in nonconvex quadratic
programming problems. Global Optim. 52 (2012), 229–242. DOI:10.1007/s10898-011-
9660-y

Alaeddin Malek, Department of Applied Mathematics, Faculty of Mathematical Sciences,
Tarbiat Modares University, P.O. Box 14115-134, Tehran. Iran.

e-mail: mala@modares.ac.ir

Najmeh Hosseinipour-Mahani, Department of Applied Mathematics, Faculty of Mathe-
matical Sciences, Tarbiat Modares University, Tehran. Iran.

e-mail: n.mahani@modares.ac.ir

http://dx.doi.org/10.1016/j.amc.2004.06.081
http://dx.doi.org/10.1016/b978-0-12-497280-3.50008-6
http://dx.doi.org/10.1137/s003614450444614x
http://dx.doi.org/10.1007/11427391_111
http://dx.doi.org/10.1016/s0096-3003(03)00309-6
http://dx.doi.org/10.3934/jimo.2011.7.1027
http://dx.doi.org/10.1016/j.neunet.2004.05.006
http://dx.doi.org/10.1109/tnn.2008.2000273
http://dx.doi.org/10.1016/j.neucom.2006.10.038
http://dx.doi.org/10.1016/j.neunet.2014.03.006
http://dx.doi.org/10.1016/j.amc.2007.01.036
http://dx.doi.org/10.1007/bf01581194
http://dx.doi.org/10.1007/s10898-011-9660-y
http://dx.doi.org/10.1007/s10898-011-9660-y

		webmaster@dml.cz
	2018-01-10T11:09:59+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




