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Antiflexible Latin directed triple systems

Andrew R. Kozlik

Abstract. It is well known that given a Steiner triple system one can define a
quasigroup operation · upon its base set by assigning x · x = x for all x and
x · y = z, where z is the third point in the block containing the pair {x, y}. The
same can be done for Mendelsohn triple systems, where (x, y) is considered to be
ordered. But this is not necessarily the case for directed triple systems. However
there do exist directed triple systems, which induce a quasigroup under this
operation and these are called Latin directed triple systems. The quasigroups
associated with Steiner and Mendelsohn triple systems satisfy the flexible law
y · (x ·y) = (y ·x) ·y but those associated with Latin directed triple systems need
not. In this paper we study the Latin directed triple systems where the flexible
identity holds for the least possible number of ordered pairs (x, y). We describe
their geometry, present a surprisingly simple cyclic construction and prove that
they exist if and only if the order n is n ≡ 0 or 1 (mod 3) and n ≥ 13.

Keywords: directed triple system; quasigroup

Classification: Primary 05B07; Secondary 20N05

1. Introduction

A Steiner triple system of order n, STS(n), is a pair (V,B) where V is a set of
n points and B is a collection of triples of distinct points taken from V such that
every pair of distinct points from V appears in precisely one triple. Given an STS
(V,B) one can define a binary operation · on the set V by assigning x · x = x for
all x ∈ V and x · y = z whenever {x, y, z} ∈ B. The induced operation satisfies
the identities

x · x = x, y · (x · y) = x, x · y = y · x

for all x and y in V . Any binary operation satisfying these three identities is
called an idempotent totally symmetric quasigroup. The process described above
is reversible. Given an idempotent totally symmetric quasigroup one can obtain
an STS by assigning {x, y, x · y} ∈ B for all x, y ∈ V , x 6= y. Thus there is a
one-to-one correspondence between Steiner triple systems and idempotent totally
symmetric quasigroups or Steiner quasigroups, as they are commonly known. All
Steiner quasigroups satisfy the flexible law y · (x · y) = (y · x) · y.
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If we consider oriented triples then there are two possibilities. A cyclic triple

(x, y, z) contains the ordered pair (x, y), (y, z) and (z, x). A transitive triple

〈x, y, z〉 contains the ordered pair (x, y), (y, z) and (x, z).
A Mendelsohn triple system of order n, MTS(n), is a pair (V,B) where V is a

set of n points and B is a collection of cyclic triples of distinct points taken from
V such that every ordered pair of distinct points from V appears in precisely one
triple. Quasigroups can be obtained from Mendelsohn triple systems by defining
x · x = x and x · y = z for all x, y ∈ V , x 6= y, where z is the third element in the
transitive triple containing the ordered pair (x, y). These so called Mendelsohn

quasigroups satisfy the same algebraic properties as their Steiner counterparts
with the exception of commutativity. Similarly there is a one-to-one correspon-
dence between Mendelsohn triple systems and Mendelsohn quasigroups. Again,
all Mendelsohn quasigroups satisfy the flexible law.

A directed triple system of order n, DTS(n), is a pair (V,B) where V is a set
of n points and B is a collection of transitive triples of distinct points taken from
V such that every ordered pair of distinct points from V appears in precisely one
triple. Given a DTS(n), an algebraic structure (V, ·) can be obtained as above
by defining x · x = x and x · y = z for all x, y ∈ V , x 6= y, where z is the third
element in the transitive triple containing the ordered pair (x, y). However the
structure obtained need not necessarily be a quasigroup. If for example 〈u, x, y〉
and 〈y, v, x〉 ∈ B, then u · x = v · x = y, but u 6= v. There do however exist DTSs
that yield quasigroups. Such a DTS(n) is called a Latin directed triple system,
denoted by LDTS(n), to reflect the fact that in this case the operation table
forms a Latin square. We call the quasigroup so obtained a DTS-quasigroup. The
binary operation will sometimes be replaced with juxtaposition, for example x ·yz

meaning x · (y · z).
Latin directed triple systems were introduced in [3], where it was shown that

an LDTS(n) exists if and only if n ≡ 0 or 1 (mod 3) and n 6= 4, 6 or 10. The
algebraic and geometrical aspects of LDTSs were studied in [4]. Together these
two papers also give enumeration results for all orders less than or equal to 13.

The following theorem was proved in [4].

Theorem 1.1. Let (V,B) be a directed triple system. Define a binary operation

· on V in such a way that x · y = z, y · z = x and x · z = y whenever 〈x, y, z〉 ∈ B,

and that x · x = x for all x ∈ V . Then (V, ·) is a quasigroup if and only if for all

〈x, y, z〉 ∈ B there exist x′, y′, z′ ∈ V such that

〈z′, y, x〉, 〈z, y′, x〉, 〈z, y, x′〉 ∈ B.

In such a case z′ = y · x, y′ = z · x and x′ = z · y.

It is now easy to see that in an LDTS, (V,B),

(1) 〈x, y, x · y〉 ∈ B ⇒ y · (x · y) = (y · x) · y,

since if 〈x, y, z〉 ∈ B then 〈z′, y, x〉 ∈ B for some z′ and the ordered pair (x, y)
satisfies the flexible identity y · (x · y) = y · z = x = z′ · y = (y · x) · y. However,
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the flexible identity need not be satisfied for all ordered pairs of points from V .
The following theorem proved in [3] gives the necessary and sufficient condition
for an LDTS to be flexible.

Theorem 1.2. A DTS-quasigroup obtained from an LDTS(n), (V,B), satisfies

the flexible law if and only if 〈x, y, z〉 ∈ B ⇒ 〈x, z · x, y · x〉 ∈ B.

In [5] it was shown that a flexible LDTS(n) exists for all n ≡ 0 or 1 (mod 3),
n 6= 4, 6, 10, 12.

In this paper we study the LDTSs whose binary operation satisfies the reverse
of (1), i.e. for all x, y ∈ V , x 6= y,

y · (x · y) = (y · x) · y ⇒ 〈x, y, x · y〉 ∈ B.

An LDTS satisfying this condition is called antiflexible. In other words an anti-
flexible DTS-quasigroup is one where the flexible identity (y ·x)·y = y ·(x·y) holds
for the least possible number of ordered pairs (x, y) ∈ V × V . Thus, in a sense,
antiflexible LDTSs are the LDTSs which are as distant from STSs as possible.

At first glance antiflexible LDTSs may appear to be a very artificial construct.
However, there exists a surprisingly simple cyclic construction of LDTSs which
naturally produces antiflexible LDTSs, see Theorem 3.1.

2. Properties

Let (V,B) be a DTS and denote by F the set of all {x, y, z} such that 〈x, y, z〉 ∈
B. This set is known as the underlying twofold triple system of (V,B). Consider
now F as a set of faces. Each edge {a, b} is incident to two faces, hence the faces
can be sewn together along common edges to form a pseudosurface. Note that
we can orient a face {x, y, z} ∈ F as a cycle (x, y, z) whenever 〈x, y, z〉 ∈ B. It
follows from Theorem 1.1 that this defines a coherent orientation. Hence F is an
orientable pseudosurface.

A DTS is said to be pure if its underlying twofold triple system contains no
repeated blocks. It is easy to see that every antiflexible LDTS is pure. If for
some antiflexible LDTS, (V,B), the triples 〈x, y, z〉 and 〈z, y, x〉 both belonged
to B, then x · (y · x) = x · z = y = z · x = (x · y) · x, which would imply that
〈y, x, y · x〉 ∈ B. But this is a contradiction since 〈z, y, x〉 and 〈y, x, y · x〉 cannot
both belong to B.

With each point x ∈ V we can associate a partition of V \{x} into a set of cycles
(y1,1, . . . , y1,k1

)(y2,1, . . . , y2,k2
) · · · (ym,1, . . . , ym,km

), such that (x, yi,j , yi,j+1) and
(x, yi,ki

, yi,1) are oriented faces of F for all 1 ≤ j ≤ ki−1 and 1 ≤ i ≤ m. If m > 1
then x is said to be a pinch point. A pseudosurface can be turned into a surface
by separating each pinch point into several new points, called vertices, such that
every vertex is associated with a single cycle. The length of the associated cycle
is called the degree of the vertex. Thus we obtain an orientable surface. It follows
from Theorem 1.1 that there are two types of vertices in this surface. A vertex
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may be associated with a point x and a cycle (y1, . . . , yk) such that

〈y2, x, y1〉, 〈y3, x, y2〉, . . . , 〈y1, x, yk〉 ∈ B.

This type of vertex is called a middle vertex to reflect the fact that x appears in
the middle position of each of the k transitive triples. Alternatively, a vertex may
be associated with a point x and a cycle (y1, z1, y2, z2, . . . , yk, zk) such that

〈x, y1, z1〉, 〈z1, y2, x〉, 〈x, y2, z2〉, 〈z2, y3, x〉, . . . , 〈x, yk, zk〉, 〈zk, y1, x〉 ∈ B.

This type of vertex is called a residual vertex in accordance with [4]. The degree
of a residual vertex is always even.

Example 2.1. Let V = Z13 and define the set of starter triples S = {〈1, 4, 0〉,
〈0, 6, 1〉, 〈2, 6, 0〉, 〈0, 5, 2〉}. Let B = { 〈x + i, y + i, z + i〉 : 〈x, y, z〉 ∈ S, i ∈ Zn }.
Then (V,B) is an antiflexible LDTS(13). As one can see from the triples listed be-
low, the set of cycles associated with the point 0 is (7, 9, 10, 8)(5, 2, 6, 1, 4, 11, 3, 12).
Thus the point 0 separates into two vertices. The vertex associated with the cycle
(7, 9, 10, 8) is a middle vertex and it is formed by the triples 〈9, 0, 7〉, 〈10, 0, 9〉,
〈8, 0, 10〉, 〈7, 0, 8〉 in B. The vertex associated with the cycle (5, 2, 6, 1, 4, 11, 3, 12)
is a residual vertex and it is formed by the triples 〈0, 5, 2〉, 〈2, 6, 0〉, 〈0, 6, 1〉,
〈1, 4, 0〉, 〈0, 4, 11〉, 〈11, 3, 0〉, 〈0, 3, 12〉, 〈12, 5, 0〉 in B.

Theorem 2.2. Let (V,B) be an LDTS. Then the following conditions are equi-

valent:

(i) (V,B) is antiflexible;

(ii) 〈x, y, z〉 ∈ B ⇒ 〈x, zx, yx〉 6∈ B;

(iii) every residual vertex has degree at least 6.

Proof: First assume that (V,B) is antiflexible and let 〈x, y, z〉 ∈ B. Then using
Theorem 1.1 the triple 〈yx, y, x〉 belongs to B as well. If it were the case that
〈x, zx, yx〉 ∈ B, then we would have x · yx = zx = xy · x. Then by assumption
〈y, x, yx〉 ∈ B. But this is a contradiction since 〈y, x, yx〉 and 〈yx, y, x〉 cannot
both belong to B. Thus 〈x, zx, yx〉 6∈ B. We see that (i) implies (ii).

Assume that condition (ii) holds. If the cycle about a residual vertex corres-
ponding to a point x were of length 2, say (y1, z1), then we would have 〈x, y1, z1〉,
〈z1, y1, x〉 ∈ B. But then B would contain 〈x, z1 · x, y1 · x〉, since this is the triple
〈x, y1, z1〉. Similarly if the cycle were of length 4, say (y1, z1, y2, z2), then we would
have 〈x, y1, z1〉, 〈z1, y2, x〉, 〈x, y2, z2〉, 〈z2, y1, x〉 ∈ B. But then B would again
contain 〈x, z1 · x, y1 · x〉, since this is the triple 〈x, y2, z2〉. Thus (ii) implies (iii).

Finally assume that condition (iii) holds. Let x, y ∈ V such that x 6= y and y ·
xy = yx·y. Now either 〈xy, x, y〉, 〈x, xy, y〉 or 〈x, y, xy〉 lies in B. However, the first
two of these possibilities violate the assumption. If 〈xy, x, y〉 ∈ B, then 〈y, x, yx〉,
〈yx, yx · y, y〉, 〈y, y · xy, xy〉 ∈ B, i.e. there exists a residual vertex associated with
the point y and the cycle (x, yx, y · xy, xy). If 〈x, xy, y〉 ∈ B, then 〈y, yx, x〉,
〈y, xy, y · xy〉, 〈yx · y, yx, y〉 ∈ B, i.e. there exists a residual vertex associated with
the point y and the cycle (yx, x, xy, y · xy). Thus (iii) implies (i). �
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3. Existence

In this section we investigate the existence spectrum of antiflexible LDTS(n).
It was shown in [3] that there is no pure LDTS(n) for 3 ≤ n ≤ 12. We start with a
cyclic construction. An LDTS(n) is said to be cyclic if it admits an automorphism
which permutes its points in a single cycle of length n. In [11] it was shown that
a pure cyclic LDTS(n) exists if and only if n ≡ 1 (mod 6) and n ≥ 13. The
following theorem shows that the construction used in [11] can always be used to
produce antiflexible LDTSs. It is interesting to note, however, that for certain
orders the construction can also be used to produce flexible LDTSs.

Theorem 3.1. A cyclic antiflexible LDTS(n) exists if and only if n ≡ 1 (mod 6)
and n ≥ 13.

Proof: Let n = 6k + 1 and k ≥ 2. Set V = Zn and define the set of starter
triples

S =
{

〈r, k + 2r, 0〉, 〈0, 3k − r + 1, r〉 : r = 1, 2, . . . , k
}

.

If k ≡ 1 (mod 3), then replace the starter triples

〈2k+1

3
, k + 2 2k+1

3
, 0〉, 〈0, 3k − 2k+1

3
+ 1, 2k+1

3
〉 and 〈k, 3k, 0〉

in S with the starter triples

B1 = 〈4k + 1, 0, 1

3
(5k + 1)〉,

B2 = 〈1

3
(5k + 1), 0, 1

3
(2k + 1)〉 and

B3 = 〈1

3
(2k + 1), 0, 3k + 1〉.

Let B = { 〈x + i, y + i, z + i〉 : 〈x, y, z〉 ∈ S, i ∈ Zn }. Then (V,B) is an LDTS(n).
We check that condition (ii) of Theorem 2.2 is satisfied for each starter triple.

To begin with, let us assume that k 6≡ 1 (mod 3). Let 1 ≤ s ≤ k and consider
the starter triple 〈x, y, z〉 = 〈s, k + 2s, 0〉. We have zx = 0 · s = 3k − s + 1. If s is
even, then 〈3

2
s, k + 2s, s〉 ∈ B (use r = 1

2
s and i = s) i.e. yx = 3

2
s, and if s is odd,

then 〈1

2
(3s−2k−1), k+2s, s〉 ∈ B (use r = 1

2
(2k+1− s) and i = 1

2
(3s−2k−1)),

i.e. yx = 1

2
(3s − 2k − 1). If s ≤ 1

2
k then 〈s, 3k − s + 1, 3s〉 ∈ B (use r = 2s and

i = s), and if s > 1

2
k then 〈s, 3k − s + 1, 3s − 2k − 1〉 ∈ B (use r = 2k + 1 − 2s

and i = 3s − 2k − 1). The first two points in these two triples are x and zx

respectively, but one can check that the third point is not equal to yx for any s.
Thus 〈x, zx, yx〉 6∈ B.

Now consider the starter triple 〈x, y, z〉 = 〈0, 3k−s+1, s〉. We have zx = s ·0 =
k + 2s. If s is odd, then 〈k − 1

2
(s − 1), 3k − s + 1, 0〉 ∈ B (use r = k − 1

2
(s − 1)

and i = 0), i.e. yx = k − 1

2
(s − 1), and if s is even, then 〈− 1

2
s, 3k − s + 1, 0〉 ∈ B

(use r = 1

2
s and i = − 1

2
s), i.e. yx = − 1

2
s. If s ≤ 1

2
k, then 〈0, k + 2s,−2s〉 ∈ B

(use r = 2s and i = −2s), and if s > 1

2
k, then 〈0, k + 2s, 2k − 2s + 1〉 ∈ B (use

r = 2k − 2s + 1 and i = 0). We come to the same conclusion as above.
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When k ≡ 1 (mod 3) the statements above remain valid for all starter triples
except for those that took part in the replacement, the case s = 1

2
(k+1) discussed

in the second paragraph and the cases s ∈ {1, 1

2
k, k} discussed in the third

paragraph. We prove that condition (ii) of Theorem 2.2 is satisfied for these
triples as well:

For 〈x, y, z〉 = 〈4k + 1, 0, 1

3
(5k + 1)〉 we have 〈1

3
(5k + 1), k, 4k + 1〉 ∈ B (use B3

and i = k), i.e. zx = k. If k is odd, then 〈1

2
(3k+1), 0, 4k+1〉 ∈ B (use r = 1

2
(7k+1)

and i = 4k + 1), if k is even, then 〈1

2
k, 0, 4k + 1〉 ∈ B (use r = 1

2
(7k + 2) and

i = 1

2
k). Thus yx ∈ { 1

2
(3k + 1), 1

2
k} but 〈4k + 1, k, 4k + 2〉 ∈ B (use r = 1 and

i = 4k + 1).
For 〈x, y, z〉 = 〈1

3
(5k+1), 0, 1

3
(2k+1)〉 we have 〈1

3
(2k+1), 4

3
(2k+1), 1

3
(5k+1)〉 ∈

B (use r = k and i = 1

3
(2k + 1)), i.e. zx = 4

3
(2k + 1), and from B1 we have

yx = 4k+1. But 〈1

3
(5k+1), 4

3
(2k+1), 1

3
(5k−2)〉 ∈ B (use r = 1 and i = 1

3
(5k−2)).

For 〈x, y, z〉 = 〈1

3
(2k + 1), 0, 3k + 1〉 we have 〈3k + 1,−k, 1

3
(2k + 1)〉 ∈ B (use

B1 and i = −k), i.e. zx = −k, and from B2 we have yx = 1

3
(5k + 1). But

〈1

3
(2k + 1),−k, 1

3
(1 − k)〉 ∈ B (use B2 and i = −k).

If k is odd, then for 〈x, y, z〉 = 〈1

2
(k +1), 2k +1, 0〉 we have 〈0, 1

2
(5k +1), 1

2
(k +

1)〉 ∈ B (use r = 1

2
(k + 1) and i = 0), i.e. zx = 1

2
(5k + 1). If k ≡ 1 (mod 4), then

〈1

4
(1 − k), 2k + 1, 1

2
(k + 1)〉 ∈ B (use r = 1

4
(3k + 1) and i = 1

4
(1 − k)), if k ≡ 3

(mod 4), then 〈3

4
(k+1), 2k+1, 1

2
(k+1)〉 ∈ B (use r = 1

4
(k+1) and i = 1

2
(k+1)).

Thus yx ∈ { 1

4
(1 − k), 3

4
(k + 1)} but 〈1

2
(k + 1), 1

2
(5k + 1), 5

6
(5k + 1)〉 ∈ B (use B1

and i = 1

2
(5k + 1)).

For 〈x, y, z〉 = 〈0, 3k, 1〉 we have zx = k+2 as before and 〈1

3
(11k+1), 3k, 0〉 ∈ B

(use B3 and i = 3k), i.e. yx = 1

3
(11k + 1). But 〈0, k + 2, 6k − 1〉 ∈ B (use r = 2

and i = −2).
For 〈x, y, z〉 = 〈0, 5

2
k + 1, 1

2
k〉 we have zx = 2k as before. If k ≡ 0 (mod 4),

then 〈− 1

4
k, 1

2
(5k + 2), 0〉 ∈ B (use r = 1

4
k and i = − 1

4
k), and if k ≡ 2 (mod 4),

then 〈1

4
(3k + 2), 1

2
(5k + 2), 0〉 ∈ B (use r = 1

4
(3k + 2) and i = 0). Thus yx ∈

{− 1

4
k, 1

4
(3k + 2)} but 〈0, 2k, 1

3
(11k + 1)〉 ∈ B (use B1 and i = 2k).

For 〈x, y, z〉 = 〈0, 2k + 1, k〉 we have 〈k,− 1

3
(2k + 1), 0〉 ∈ B (use B2 and i =

− 1

3
(2k + 1)), i.e. zx = − 1

3
(2k + 1). If k is odd, then 〈1

2
(k + 1), 2k + 1, 0〉 ∈ B (use

r = 1

2
(k + 1) and i = 0), if k is even, then 〈− 1

2
k, 2k + 1, 0〉 ∈ B (use r = 1

2
k and

i = − 1

2
k). Thus yx ∈ { 1

2
(k + 1),− 1

2
k} but 〈0,− 1

3
(2k + 1), 1

3
(7k + 2)〉 ∈ B (use B3

and i = − 1

3
(2k + 1)). �

In [4] all LDTSs of order 13 were enumerated and classified by their
automorphism group. Out of the total of 1 206 969 non-isomorphic
LDTS(13)s 8 444 are pure, but only two of them are antiflexible. They are the
two pure cyclic systems. The starter triples for these two systems are 〈1, 4, 0〉,
〈0, 6, 1〉, 〈2, 6, 0〉, 〈0, 5, 2〉 for one and 〈1, 10, 0〉, 〈0, 8, 1〉, 〈2, 9, 0〉, 〈0, 10, 2〉 for the
other. In comparison, there are 924 flexible LDTS(13)s up to isomorphism.
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Next is an elementary recursive construction adapted from standard design-
theoretic techniques.

Proposition 3.2. If there exists an antiflexible LDTS(n), n > 3, then there

exists

(i) an antiflexible LDTS(3n), and

(ii) an antiflexible LDTS(3n − 2).

Proof: (i) Take three copies of the LDTS(n) on point sets { ij : i ∈ Zn },
j ∈ {0, 1, 2} respectively, then adjoin all transitive triples

〈i0, j1, (i + j)2〉 and 〈(i + j − 1)2, j1, i0〉, i, j ∈ Zn.

The adjoined transitive triples create one new residual vertex of degree 2n

for each of the points in the first and third copies of the LDTS(n). For
any point i0, where i ∈ Zn, the newly created residual vertex corresponds
to the cycle

(01, i2, 11, (i + 1)2, . . . , (n − 1)1, (i − 1)2).

For any point i2, where i ∈ Zn, the newly created residual vertex corres-
ponds to the cycle

(01, (i + 1)0, (n − 1)1, (i + 2)0, . . . , 11, i0).

Thus the resulting system is antiflexible as long as n > 2.
(ii) Take three copies of the LDTS(n) on point sets { ij : i ∈ Zn−1 } ∪ {∞},

j ∈ {0, 1, 2} respectively, then adjoin all transitive triples

〈i0, j1, (i + j)2〉 and 〈(i + j − 1)2, j1, i0〉, i, j ∈ Zn−1.

Similarly this system is antiflexible as long as n > 3.
�

Lemma 3.3. If n ≡ 3 (mod 18) and n 6= 3, then there exists an antiflexible

LDTS(n).

Proof: It follows from Theorem 3.1 and part (i) of Proposition 3.2 that there
exists an antiflexible LDTS(n) for all n ≡ 3 (mod 18), n ≥ 39. An antiflexible
LDTS(21) is given as Example A.4 in the Appendix. �

Proposition 3.4. If there exists an antiflexible LDTS(n), (V,B), and a quasi-

group (V ∪ {∞}, ∗) satisfying

(1) x ∗ x = ∞, and

(2) (x ∗ y = y ∗ z ∧ z ∗ y = y ∗ x) ⇒ x = y = z,

then there exists an antiflexible LDTS(2n + 1).
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Proof: Let W = V ∪ { x′ : x ∈ V } ∪ {∞′}. Form a set of transitive triples
D by starting with the set B and adjoining all triples 〈x′, x ∗ y, y′〉, where x,
y ∈ V ∪ {∞}, x 6= y. Then (W,D) is an LDTS. We verify that (W,D) satisfies
condition (ii) of Theorem 2.2. Let 〈x, y, z〉 ∈ D. If 〈x, y, z〉 ∈ B, then 〈x, z ·x, y ·x〉
does not lie in D, since if it did, then it would have had to come from B, which
would be a contradiction. It remains to deal with the case when 〈x, y, z〉 is of the
form 〈u′, u ∗ v, v′〉, for some u, v ∈ V ∪ {∞}. Clearly z · x = v ∗ u. There exists
w ∈ V ∪ {∞} such that 〈w′, u ∗ v, u′〉 ∈ D, i.e. y ·x = w′. Now since w ∗ u = u ∗ v,
by assumption v ∗ u 6= u ∗ w, and thus 〈x, z · x, y · x〉 = 〈u′, v ∗ u, w′〉 does not lie
in D. �

A quasigroup of order n satisfying conditions (1) and (2) of Proposition 3.4
will be referred to as a unipotent locally self-orthogonal quasigroup, ULSOQ(n).

The remainder of the existence proof in this section uses a standard technique
known as Wilson’s fundamental construction for which we need the concept of a
group divisible design (GDD). Let K be a set of positive integers. A K-GDD of
type gu is an ordered triple (V,G,B) where V is a base set of cardinality v = gu,
G is a partition of V into u subsets of cardinality g called groups and B is a family
of subsets called blocks such that (1) |B| ∈ K for all B ∈ B, and (2) every pair
of distinct elements of V occurs in exacly one block or one group, but not both.
We will also need K-GDDs of type gum1. These are defined analogously, with
the base set V being of cardinality v = gu + m and the partition G being into
u subsets of cardinality g and one set of cardinality m. If K is a singleton, then
instead of {k}-GDD we write simply k-GDD. Necessary and sufficient conditions
for the existence of 3-GDDs of type gu were determined in [10] and for 3-GDDs
of type gum1 in [2]. The existence of the 4-GDDs that we will be using was
determined in [1], [7], [8], [9]. A convenient reference is [6] where the existence of
all the GDDs that are used can be verified.

We will assume that the reader is familiar with this construction but briefly
the basic idea is as follows. Begin with a k-GDD of cardinality v = gu or gu+m,
usually called the master GDD. Each point is then assigned a weight, usually the
same weight, say w. In effect, each point is replaced by w points. Each inflated
block of the master GDD is then replaced by a k-GDD of type wk, called a slave

GDD. We will only need to use the value w = 3, and instead of slave GDDs we will
use partial Latin directed triple systems. When k = 3 we will employ the partial
LDTS(9) whose blocks are 〈a, p, x〉, 〈b, q, y〉, 〈c, r, z〉, 〈a, q, z〉, 〈b, r, x〉, 〈c, p, y〉,
〈a, r, y〉, 〈b, p, z〉, 〈c, q, x〉, 〈x, q, a〉, 〈y, r, b〉, 〈z, p, c〉, 〈z, r, a〉, 〈x, p, b〉, 〈y, q, c〉,
〈y, p, a〉, 〈z, q, b〉, 〈x, r, c〉 and the sets {a, b, c}, {p, q, r}, {x, y, z} play the role
of the groups. When k = 4 we will use the partial LDTS(12) whose blocks
are 〈p, a, x〉, 〈s, a, p〉, 〈x, a, s〉, 〈q, b, y〉, 〈u, b, q〉, 〈y, b, u〉, 〈r, c, z〉, 〈t, c, r〉, 〈z, c, t〉,
〈c, p, u〉, 〈u, p, y〉, 〈y, p, c〉, 〈a, q, t〉, 〈t, q, z〉, 〈z, q, a〉, 〈b, r, s〉, 〈s, r, x〉, 〈x, r, b〉,
〈c, s, y〉, 〈q, s, c〉, 〈y, s, q〉, 〈b, t, x〉, 〈p, t, b〉, 〈x, t, p〉, 〈a, u, z〉, 〈r, u, a〉, 〈z, u, r〉,
〈c, x, q〉, 〈q, x, u〉, 〈u, x, c〉, 〈a, y, r〉, 〈r, y, t〉, 〈t, y, a〉, 〈b, z, p〉, 〈p, z, s〉, 〈s, z, b〉 and
the sets {a, b, c}, {p, q, r}, {s, t, u}, {x, y, z} play the role of the groups. Note that
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both of these partial systems induce a closed surface with all residual vertices
of degree 6. To complete the construction we then “fill in” the groups of the
expanded master GDD, sometimes adjoining an extra point, to all of the groups.
Thus we may need antiflexible Latin directed triple systems of orders gw, mw,
gw + 1 or mw + 1 as appropriate.

In several cases we use a {3, 4}-GDD as the master GDD which requires that
when we replace the inflated blocks, we employ both of the partial systems given
above. Before continuing the existence proof of the antiflexible LDTSs, let us
establish the existence of the {3, 4}-GDDs we will be using.

Proposition 3.5. If g 6∈ {2, 6} and 0 ≤ m ≤ g, then there exists a {3, 4}-GDD

of type g3m1.

Proof: Take a 4-GDD of type g4 with groups Gi = {1i, . . . , gi}, where i ∈
{0, 1, 2, 3}. To get a {3, 4}-GDD of type g3m1 simply remove each of the points
(m + 1)3, (m + 2)3, . . . , g3 from the design. In other words replace every block
{x0, y1, z2, w3} such that m < w ≤ g with the block {x0, y1, z2} to obtain a
{3, 4}-GDD with groups G1, G2, G3 and G′

4 = {13, . . . , m3}. �

Example 3.6. {3, 4}-GDD of type 63 51.
The groups are Gj = { ij : i ∈ Z6 }, where j ∈ {0, 1, 2}, and G3 = { i3 : i ∈
Z2 } ∪ {∞0,∞1,∞2}.

To obtain the blocks, develop the following starter blocks under the action of
the mapping ij 7→ (i+1)j, with ∞0, ∞1 and ∞2 as fixed points: {00, 01, 02,∞0},
{00, 11, 22,∞1}, {00, 21, 42,∞2}, {00, 31, 12}, {00, 41, 32}, {00, 51, 03}, {00, 52, 13},
{01, 32, 03}.

Lemma 3.7. If n ≡ 0 (mod 6) and n ≥ 18, then there exists an antiflexible

LDTS(n).

Proof: Table 1 gives the schema for antiflexible LDTS(n), n ≡ 0 (mod 6). No
extra points are adjoined in this case. The missing antiflexible LDTSs of orders 36
and 42 as well as the systems of orders 18, 24 and 30 which are needed to con-
struct the infinite classes are all given in the Appendix. The missing antiflexible
LDTS(48) and LDTS(66) can be obtained using part (i) of Proposition 3.2 from
the LDTS(16) and LDTS(22) given in the Appendix. The antiflexible LDTS(60)
can be constructed by taking a master 4-GDD of type 54, inflating each point by
a factor of 3 and using the antiflexible LDTS(15) given in the Appendix. �

Type of Orders of Residue classes Missing
master 3-GDD LDTS(n) needed covered modulo 18 values
6s, s ≥ 3 18 0 36
6s 81, s ≥ 3 18, 24 6 42, 60
6s 101, s ≥ 3 18, 30 12 48, 66

Table 1. Schema for antiflexible LDTS(n), n ≡ 0 (mod 6).
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Lemma 3.8. If n ≡ 16 (mod 18), then there exists an antiflexible LDTS(n).

Proof: It follows from the previous lemma and part (ii) of Proposition 3.2 that
there exists an antiflexible LDTS(n) for all n ≡ 16 (mod 18), n ≥ 52. Antiflexible
LDTSs of orders 16 and 34 are given in the Appendix. �

Lemma 3.9. If n ≡ 15 (mod 18), then there exists an antiflexible LDTS(n).

Proof: Table 2 gives the schema for antiflexible LDTS(n), n ≡ 15 (mod 18).
Once again, no extra points are adjoined in this case. The required antiflexi-
ble LDTS(n)s of orders n = 15 and 27 are given in the Appendix. The anti-
flexible LDTS(33) can be obtained by taking an antiflexible LDTS(16) given in
the Appendix together with the quasigroup given in Example A.14 and applying
Proposition 3.4. Similarly the antiflexible LDTS(51) can be obtained by taking
a (cyclic) antiflexible LDTS(25) together with the quasigroup given in Exam-
ple A.15. The missing antiflexible LDTS(69) can be constructed using a master
{3, 4}-GDD of type 63 51 given in Example 3.6 and the antiflexible LDTS(15) and
LDTS(18) given in the Appendix. The antiflexible LDTS(87) can be constructed
using a master 3-GDD of type 54 91 together with the antiflexible LDTS(15) and
LDTS(27) and the antiflexible LDTS(105) can be constructed using a master 3-
GDD of type 57 and the LDTS(15). �

Type of Orders of Residue classes Missing
master 3-GDD LDTS(n) needed covered modulo 54 values
92s 51, s ≥ 2 15, 27 15 69
92s 111, s ≥ 2 27, 33 33 87
92s 171, s ≥ 2 27, 51 51 105

Table 2. Schema for antiflexible LDTS(n), n ≡ 15 (mod 18).

Lemma 3.10. If n ≡ 4, 9 or 10 (mod 18) and n ≥ 22, then there exists an

antiflexible LDTS(n).

Proof: Table 3 gives the schema for antiflexible LDTS(n), n ≡ 4, 9 or 10
(mod 18). The required antiflexible LDTS(n)s of orders n = 18, 22, 27, 28 and 40
are given in the Appendix and the ones of orders 13 and 19 exist by Theorem 3.1.
For the missing n = 45, 63 and 81 use part (i) of Proposition 3.2 and for n = 46,
64 and 82 use part (ii) of Proposition 3.2. To do this we need systems of orders 15,
21, 27, 16, 22 and 28, respectively, all of which are given in the Appendix. The
missing antiflexible LDTS(58) and LDTS(76) can be constructed using master
{3, 4}-GDDs of types 53 41 and 73 41, respectively, adjoining an extra point and
taking the antiflexible LDTSs of orders 13, 16 and 22. The missing antiflexible
LDTS(112) can be constructed using a master 3-GDD of type 56 71, adjoining an
extra point and taking the antiflexible LDTSs of orders 16 and 22. �
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Orders of Residue
Type of Points LDTS(n) classes covered Missing

master 4-GDD adjoined needed modulo 36 values
43s 71, s ≥ 2 1 13, 22 22 58
43s 131, s ≥ 3 1 13, 40 4 76, 112
6s 91, s ≥ 4 0 18, 27 9, 27 45, 63, 81
6s 91, s ≥ 4 1 19, 28 10, 28 46, 64, 82

Table 3. Schema for antiflexible LDTS(n), n ≡ 4, 9 or 10 (mod 18).

Theorem 3.11. An antiflexible LDTS(n) exists if and only if n ≡ 0 or 1 (mod 3)
and n ≥ 13.

Appendix. Examples of antiflexible LDTSs

The following examples were obtained by computer with the help of the model
builder Mace4 [12] using an algebraic description of a DTS-quasigroup, see [4].
We denote the elements (i, j) ∈ Zm × Zn as ij . For simplicity, we omit commas
from the triples.

Example A.1. Antiflexible LDTS(15).
V = (Z7 × Z2) ∪ {∞}.
The system is defined by the triples obtained from the following starter blocks
under the action of the mapping ij 7→ (i + 1)j, with ∞ as a fixed point.
〈20 00 21〉, 〈21 00 11〉, 〈11 00 51〉, 〈51 00 31〉, 〈31 00 41〉, 〈41 00 61〉, 〈61 00 60〉,
〈60 00 20〉, 〈00 ∞ 40〉, 〈01 ∞ 31〉.

Example A.2. Antiflexible LDTS(16).
V = Z8 × Z2.
The system is defined by the triples obtained from the following starter blocks
under the action of the mapping ij 7→ (i + 1)j.
〈20 00 71〉, 〈71 00 70〉, 〈70 00 20〉, 〈00 21 40〉, 〈40 21 41〉, 〈41 21 10〉, 〈10 21 60〉,
〈60 21 11〉, 〈11 21 51〉, 〈51 21 00〉.

Example A.3. Antiflexible LDTS(18).
V = Z3 × Z6.
The system is defined by the triples obtained from the following starter blocks
under the action of the mapping ij 7→ (i + 1)j.
〈10 00 02〉, 〈02 00 01〉, 〈01 00 10〉, 〈10 21 15〉, 〈15 21 25〉, 〈25 21 02〉, 〈02 21 10〉,
〈01 03 24〉, 〈24 03 15〉, 〈15 03 01〉, 〈01 04 23〉, 〈23 04 12〉, 〈12 04 24〉, 〈24 04 01〉,
〈10 14 01〉, 〈01 14 15〉, 〈15 14 10〉, 〈12 00 13〉, 〈13 00 14〉, 〈14 00 25〉, 〈25 00 15〉,
〈15 00 24〉, 〈24 00 23〉, 〈23 00 03〉, 〈03 00 12〉, 〈21 01 22〉, 〈22 01 13〉, 〈13 01 21〉,
〈22 02 15〉, 〈15 02 04〉, 〈04 02 22〉, 〈02 05 13〉, 〈13 05 03〉, 〈03 05 02〉.

Example A.4. Antiflexible LDTS(21).
V = (Z10 × Z2) ∪ {∞}.
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The system is defined by the triples obtained from the following starter blocks
under the action of the mapping ij 7→ (i + 1)j, with ∞ as a fixed point.
〈20 00 01〉, 〈01 00 91〉, 〈91 00 61〉, 〈61 00 41〉, 〈41 00 51〉, 〈51 00 11〉, 〈11 00 31〉,
〈31 00 71〉, 〈71 00 21〉, 〈21 00 40〉, 〈40 00 90〉, 〈90 00 20〉, 〈00 ∞ 70〉, 〈01 ∞ 31〉.

Example A.5. Antiflexible LDTS(22).
V = Z11 × Z2.
The system is defined by the triples obtained from the following starter blocks
under the action of the mapping ij 7→ (i + 1)j.
〈10 00 50〉, 〈50 00 21〉, 〈21 00 01〉, 〈01 00 30〉, 〈30 00 10〉, 〈00 11 20〉, 〈20 11 90〉,
〈90 11 51〉, 〈51 11 70〉, 〈70 11 21〉, 〈21 11 41〉, 〈41 11 80〉, 〈80 11 61〉, 〈61 11 00〉.

Example A.6. Antiflexible LDTS(24).
V = Z4 × Z6.
The system is defined by the triples obtained from the following starter blocks
under the action of the mapping ij 7→ (i + 1)j.
〈10 00 21〉, 〈21 00 33〉, 〈33 00 03〉, 〈03 00 01〉, 〈01 00 10〉, 〈23 10 24〉, 〈24 10 05〉,
〈05 10 25〉, 〈25 10 15〉, 〈15 10 04〉, 〈04 10 14〉, 〈14 10 33〉, 〈33 10 23〉, 〈23 01 04〉,
〈04 01 15〉, 〈15 01 23〉, 〈33 01 24〉, 〈24 01 14〉, 〈14 01 34〉, 〈34 01 33〉, 〈00 02 20〉,
〈20 02 11〉, 〈11 02 31〉, 〈31 02 21〉, 〈21 02 25〉, 〈25 02 04〉, 〈04 02 32〉, 〈32 02 00〉,
〈30 02 15〉, 〈15 02 24〉, 〈24 02 33〉, 〈33 02 13〉, 〈13 02 05〉, 〈05 02 01〉, 〈01 02 30〉,
〈02 03 14〉, 〈14 03 05〉, 〈05 03 15〉, 〈15 03 22〉, 〈22 03 02〉, 〈20 04 12〉, 〈12 04 05〉,
〈05 04 20〉, 〈11 05 21〉, 〈21 05 23〉, 〈23 05 11〉.

Example A.7. Antiflexible LDTS(27).
V = (Z13 × Z2) ∪ {∞}.
The system is defined by the triples obtained from the following starter blocks
under the action of the mapping ij 7→ (i + 1)j, with ∞ as a fixed point.
〈10 00 50〉, 〈50 00 01〉, 〈01 00 30〉, 〈30 00 10〉, 〈20 01 110〉, 〈110 01 81〉, 〈81 01 20〉,
〈00 11 20〉, 〈20 11 90〉, 〈90 11 01〉, 〈01 11 50〉, 〈50 11 111〉, 〈111 11 70〉, 〈70 11 101〉,
〈101 11 31〉, 〈31 11 00〉, 〈00 ∞ 60〉, 〈01 ∞ 71〉.

Example A.8. Antiflexible LDTS(28).
V = Z14 × Z2.
The system is defined by the triples obtained from the following starter blocks
under the action of the mappings ij 7→ (i + 1)j and ij 7→ ij+1.
〈10 00 50〉, 〈50 00 121〉, 〈121 00 41〉, 〈41 00 61〉, 〈61 00 131〉, 〈131 00 91〉, 〈91 00 31〉,
〈31 00 30〉, 〈30 00 10〉.

Example A.9. Antiflexible LDTS(30).
V = Z5 × Z6.
The system is defined by the triples obtained from the following starter blocks
under the action of the mapping ij 7→ (i + 1)j.
〈05 00 35〉, 〈35 00 45〉, 〈45 00 15〉, 〈15 00 05〉, 〈00 01 10〉, 〈10 01 40〉, 〈40 01 30〉,
〈30 01 00〉, 〈31 00 42〉, 〈42 00 12〉, 〈12 00 02〉, 〈02 00 32〉, 〈32 00 31〉, 〈21 04 15〉,
〈15 04 42〉, 〈42 04 02〉, 〈02 04 21〉, 〈31 44 02〉, 〈02 44 25〉, 〈25 44 13〉, 〈13 44 15〉,
〈15 44 31〉, 〈01 05 13〉, 〈13 05 02〉, 〈02 05 31〉, 〈31 05 12〉, 〈12 05 01〉, 〈22 00 33〉,
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〈33 00 43〉, 〈43 00 44〉, 〈44 00 14〉, 〈14 00 04〉, 〈04 00 34〉, 〈34 00 25〉, 〈25 00 24〉,
〈24 00 13〉, 〈13 00 03〉, 〈03 00 23〉, 〈23 00 22〉, 〈31 01 15〉, 〈15 01 33〉, 〈33 01 24〉,
〈24 01 31〉, 〈41 01 42〉, 〈42 01 43〉, 〈43 01 04〉, 〈04 01 03〉, 〈03 01 41〉, 〈23 02 35〉,
〈35 02 33〉, 〈33 02 15〉, 〈15 02 24〉, 〈24 02 34〉, 〈34 02 43〉, 〈43 02 23〉, 〈31 03 24〉,
〈24 03 25〉, 〈25 03 31〉.

Example A.10. Antiflexible LDTS(34).
V = Z17 × Z2.
The system is defined by the triples obtained from the following starter blocks
under the action of the mapping ij 7→ (i + 1)j.
〈10 00 50〉, 〈50 00 70〉, 〈70 00 30〉, 〈30 00 10〉, 〈60 00 11〉, 〈11 00 80〉, 〈80 00 21〉,
〈21 00 91〉, 〈91 00 51〉, 〈51 00 01〉, 〈01 00 60〉, 〈11 20 51〉, 〈51 20 101〉, 〈101 20 161〉,
〈161 20 91〉, 〈91 20 11〉, 〈31 50 111〉, 〈111 50 91〉, 〈91 50 31〉, 〈40 01 141〉, 〈141 01 161〉,
〈161 01 40〉.

Example A.11. Antiflexible LDTS(36).
V = (Z7 × Z5) ∪ {∞}.
The system is defined by the triples obtained from the following starter blocks
under the action of the mapping ij 7→ (i + 1)j, with ∞ as a fixed point.
〈20 00 21〉, 〈21 00 61〉, 〈61 00 60〉, 〈60 00 20〉, 〈20 01 60〉, 〈60 01 12〉, 〈12 01 52〉,
〈52 01 51〉, 〈51 01 20〉, 〈41 00 42〉, 〈42 00 03〉, 〈03 00 04〉, 〈04 00 63〉, 〈63 00 54〉,
〈54 00 32〉, 〈32 00 64〉, 〈64 00 34〉, 〈34 00 02〉, 〈02 00 41〉, 〈02 10 43〉, 〈43 10 63〉,
〈63 10 02〉, 〈13 01 24〉, 〈24 01 04〉, 〈04 01 34〉, 〈34 01 44〉, 〈44 01 64〉, 〈64 01 54〉,
〈54 01 ∞〉, 〈∞ 01 14〉, 〈14 01 13〉, 〈23 01 53〉, 〈53 01 43〉, 〈43 01 23〉, 〈21 11 52〉,
〈52 11 43〉, 〈43 11 13〉, 〈13 11 21〉, 〈20 02 51〉, 〈51 02 11〉, 〈11 02 03〉, 〈03 02 60〉,
〈60 02 04〉, 〈04 02 22〉, 〈22 02 14〉, 〈14 02 23〉, 〈23 02 62〉, 〈62 02 44〉, 〈44 02 20〉,
〈30 03 54〉, 〈54 03 62〉, 〈62 03 22〉, 〈22 03 44〉, 〈44 03 30〉, 〈30 04 43〉, 〈43 04 53〉,
〈53 04 30〉, 〈00 ∞ 23〉, 〈23 ∞ 52〉, 〈52 ∞ 30〉.

Example A.12. Antiflexible LDTS(40).
V = Z20 × Z2.
The system is defined by the triples obtained from the following starter blocks
under the action of the mappings ij 7→ (i + 1)j and ij 7→ ij+1.
〈10 00 50〉, 〈50 00 11〉, 〈11 00 110〉, 〈110 00 181〉, 〈181 00 81〉, 〈81 00 120〉, 〈120 00 31〉,
〈31 00 51〉, 〈51 00 140〉, 〈140 00 141〉, 〈141 00 70〉, 〈70 00 30〉, 〈30 00 10〉.

Example A.13. Antiflexible LDTS(42).
V = Z7 × Z6.
The system is defined by the triples obtained from the following starter blocks
under the action of the mappings ij 7→ (i + 1)j .
〈01 05 15〉, 〈15 05 51〉, 〈51 05 25〉, 〈25 05 11〉, 〈11 05 45〉, 〈45 05 01〉, 〈20 00 21〉,
〈21 00 61〉, 〈61 00 60〉, 〈60 00 20〉, 〈20 01 60〉, 〈60 01 12〉, 〈12 01 52〉, 〈52 01 51〉,
〈51 01 20〉, 〈50 04 15〉, 〈15 04 43〉, 〈43 04 53〉, 〈53 04 42〉, 〈42 04 50〉, 〈30 05 24〉,
〈24 05 43〉, 〈43 05 52〉, 〈52 05 30〉, 〈41 00 42〉, 〈42 00 53〉, 〈53 00 34〉, 〈34 00 04〉,
〈04 00 63〉, 〈63 00 05〉, 〈05 00 03〉, 〈03 00 23〉, 〈23 00 65〉, 〈65 00 44〉, 〈44 00 02〉,
〈02 00 41〉, 〈12 50 63〉, 〈63 50 65〉, 〈65 50 34〉, 〈34 50 05〉, 〈05 50 12〉, 〈11 01 42〉,
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〈42 01 33〉, 〈33 01 03〉, 〈03 01 11〉, 〈13 01 24〉, 〈24 01 04〉, 〈04 01 34〉, 〈34 01 44〉,
〈44 01 64〉, 〈64 01 54〉, 〈54 01 55〉, 〈55 01 14〉, 〈14 01 13〉, 〈03 21 63〉, 〈63 21 43〉,
〈43 21 03〉, 〈20 02 51〉, 〈51 02 11〉, 〈11 02 03〉, 〈03 02 04〉, 〈04 02 60〉, 〈60 02 45〉,
〈45 02 33〉, 〈33 02 24〉, 〈24 02 55〉, 〈55 02 54〉, 〈54 02 05〉, 〈05 02 62〉, 〈62 02 22〉,
〈22 02 14〉, 〈14 02 20〉, 〈30 03 44〉, 〈44 03 52〉, 〈52 03 65〉, 〈65 03 30〉, 〈40 03 32〉,
〈32 03 25〉, 〈25 03 40〉, 〈42 05 14〉, 〈14 05 23〉, 〈23 05 42〉.

Example A.14. ULSOQ(17).
Q = Z4 × Z4 ∪ {∞}.
The quasigroup is obtained by defining ∞ ∗ x = x and developing the following
partial Cayley table under the action of the automorphism ij 7→ (i + 1)j with ∞
as a fixed point:

∗ ∞ 00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33

00 10 ∞ 30 01 00 33 31 20 03 21 22 11 12 02 23 32 13

01 11 30 01 02 31 ∞ 33 23 12 13 10 03 22 21 32 20 00

02 12 11 02 03 32 10 01 00 20 ∞ 13 31 23 33 30 21 22

03 13 03 22 33 23 12 02 31 32 01 30 10 00 ∞ 21 11 20

Example A.15. ULSOQ(26).
Q = Z5 × Z5 ∪ {∞}.
The quasigroup is obtained by defining ∞ ∗ x = x and developing the following
partial Cayley table under the action of the automorphism ij 7→ (i + 1)j with ∞
as a fixed point:

∗ ∞ 00 10 20 30 40 01 11 21 31 41 02 12 22 32 42 03 13 23 33 43 04 14 24 34 44

00 10 ∞ 01 40 31 00 11 44 34 30 20 22 21 32 12 41 13 03 43 02 42 23 24 14 04 33

01 11 30 02 41 20 01 ∞ 43 14 04 44 24 10 40 34 03 31 21 00 42 22 13 12 32 33 23

02 12 31 22 02 03 42 10 01 40 11 30 ∞ 13 43 44 23 33 34 24 14 04 00 32 21 41 20

03 13 22 03 23 43 04 21 02 32 12 42 34 01 10 24 33 ∞ 20 14 30 11 40 44 41 00 31

04 14 33 04 44 34 24 22 03 23 43 13 21 41 30 10 32 42 11 40 20 31 ∞ 02 01 12 00
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