Commentationes Mathematicae Universitatis Caroline

Andrew R. Kozlik
Antiflexible Latin directed triple systems

Commentationes Mathematicae Universitatis Carolinae, Vol. 56 (2015), No. 4, 417-431
Persistent URL: http://dml.cz/dmlcz/144752

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

Antiflexible Latin directed triple systems

Andrew R. Kozlik

Abstract

It is well known that given a Steiner triple system one can define a quasigroup operation . upon its base set by assigning $x \cdot x=x$ for all x and $x \cdot y=z$, where z is the third point in the block containing the pair $\{x, y\}$. The same can be done for Mendelsohn triple systems, where (x, y) is considered to be ordered. But this is not necessarily the case for directed triple systems. However there do exist directed triple systems, which induce a quasigroup under this operation and these are called Latin directed triple systems. The quasigroups associated with Steiner and Mendelsohn triple systems satisfy the flexible law $y \cdot(x \cdot y)=(y \cdot x) \cdot y$ but those associated with Latin directed triple systems need not. In this paper we study the Latin directed triple systems where the flexible identity holds for the least possible number of ordered pairs (x, y). We describe their geometry, present a surprisingly simple cyclic construction and prove that they exist if and only if the order n is $n \equiv 0$ or $1(\bmod 3)$ and $n \geq 13$.

Keywords: directed triple system; quasigroup
Classification: Primary 05B07; Secondary 20N05

1. Introduction

A Steiner triple system of order $n, \operatorname{STS}(n)$, is a pair (V, \mathcal{B}) where V is a set of n points and \mathcal{B} is a collection of triples of distinct points taken from V such that every pair of distinct points from V appears in precisely one triple. Given an STS (V, \mathcal{B}) one can define a binary operation \cdot on the set V by assigning $x \cdot x=x$ for all $x \in V$ and $x \cdot y=z$ whenever $\{x, y, z\} \in \mathcal{B}$. The induced operation satisfies the identities

$$
x \cdot x=x, \quad y \cdot(x \cdot y)=x, \quad x \cdot y=y \cdot x
$$

for all x and y in V. Any binary operation satisfying these three identities is called an idempotent totally symmetric quasigroup. The process described above is reversible. Given an idempotent totally symmetric quasigroup one can obtain an STS by assigning $\{x, y, x \cdot y\} \in \mathcal{B}$ for all $x, y \in V, x \neq y$. Thus there is a one-to-one correspondence between Steiner triple systems and idempotent totally symmetric quasigroups or Steiner quasigroups, as they are commonly known. All Steiner quasigroups satisfy the flexible law $y \cdot(x \cdot y)=(y \cdot x) \cdot y$.

If we consider oriented triples then there are two possibilities. A cyclic triple (x, y, z) contains the ordered pair $(x, y),(y, z)$ and (z, x). A transitive triple $\langle x, y, z\rangle$ contains the ordered pair $(x, y),(y, z)$ and (x, z).

A Mendelsohn triple system of order $n, \operatorname{MTS}(n)$, is a pair (V, \mathcal{B}) where V is a set of n points and \mathcal{B} is a collection of cyclic triples of distinct points taken from V such that every ordered pair of distinct points from V appears in precisely one triple. Quasigroups can be obtained from Mendelsohn triple systems by defining $x \cdot x=x$ and $x \cdot y=z$ for all $x, y \in V, x \neq y$, where z is the third element in the transitive triple containing the ordered pair (x, y). These so called Mendelsohn quasigroups satisfy the same algebraic properties as their Steiner counterparts with the exception of commutativity. Similarly there is a one-to-one correspondence between Mendelsohn triple systems and Mendelsohn quasigroups. Again, all Mendelsohn quasigroups satisfy the flexible law.

A directed triple system of order $n, \operatorname{DTS}(n)$, is a pair (V, \mathcal{B}) where V is a set of n points and \mathcal{B} is a collection of transitive triples of distinct points taken from V such that every ordered pair of distinct points from V appears in precisely one triple. Given a $\operatorname{DTS}(n)$, an algebraic structure (V, \cdot) can be obtained as above by defining $x \cdot x=x$ and $x \cdot y=z$ for all $x, y \in V, x \neq y$, where z is the third element in the transitive triple containing the ordered pair (x, y). However the structure obtained need not necessarily be a quasigroup. If for example $\langle u, x, y\rangle$ and $\langle y, v, x\rangle \in \mathcal{B}$, then $u \cdot x=v \cdot x=y$, but $u \neq v$. There do however exist DTSs that yield quasigroups. Such a $\operatorname{DTS}(n)$ is called a Latin directed triple system, denoted by $\operatorname{LDTS}(n)$, to reflect the fact that in this case the operation table forms a Latin square. We call the quasigroup so obtained a DTS-quasigroup. The binary operation will sometimes be replaced with juxtaposition, for example $x \cdot y z$ meaning $x \cdot(y \cdot z)$.

Latin directed triple systems were introduced in [3], where it was shown that an $\operatorname{LDTS}(n)$ exists if and only if $n \equiv 0$ or $1(\bmod 3)$ and $n \neq 4,6$ or 10 . The algebraic and geometrical aspects of LDTSs were studied in [4]. Together these two papers also give enumeration results for all orders less than or equal to 13 .

The following theorem was proved in [4].
Theorem 1.1. Let (V, \mathcal{B}) be a directed triple system. Define a binary operation - on V in such a way that $x \cdot y=z, y \cdot z=x$ and $x \cdot z=y$ whenever $\langle x, y, z\rangle \in \mathcal{B}$, and that $x \cdot x=x$ for all $x \in V$. Then (V, \cdot) is a quasigroup if and only if for all $\langle x, y, z\rangle \in \mathcal{B}$ there exist $x^{\prime}, y^{\prime}, z^{\prime} \in V$ such that

$$
\left\langle z^{\prime}, y, x\right\rangle,\left\langle z, y^{\prime}, x\right\rangle, \quad\left\langle z, y, x^{\prime}\right\rangle \in \mathcal{B} .
$$

In such a case $z^{\prime}=y \cdot x, y^{\prime}=z \cdot x$ and $x^{\prime}=z \cdot y$.
It is now easy to see that in an $\operatorname{LDTS},(V, \mathcal{B})$,

$$
\begin{equation*}
\langle x, y, x \cdot y\rangle \in \mathcal{B} \quad \Rightarrow \quad y \cdot(x \cdot y)=(y \cdot x) \cdot y \tag{1}
\end{equation*}
$$

since if $\langle x, y, z\rangle \in \mathcal{B}$ then $\left\langle z^{\prime}, y, x\right\rangle \in \mathcal{B}$ for some z^{\prime} and the ordered pair (x, y) satisfies the flexible identity $y \cdot(x \cdot y)=y \cdot z=x=z^{\prime} \cdot y=(y \cdot x) \cdot y$. However,
the flexible identity need not be satisfied for all ordered pairs of points from V. The following theorem proved in [3] gives the necessary and sufficient condition for an LDTS to be flexible.

Theorem 1.2. A DTS-quasigroup obtained from an $\operatorname{LDTS}(n),(V, \mathcal{B})$, satisfies the flexible law if and only if $\langle x, y, z\rangle \in \mathcal{B} \Rightarrow\langle x, z \cdot x, y \cdot x\rangle \in \mathcal{B}$.

In [5] it was shown that a flexible $\operatorname{LDTS}(n)$ exists for all $n \equiv 0$ or $1(\bmod 3)$, $n \neq 4,6,10,12$.

In this paper we study the LDTSs whose binary operation satisfies the reverse of (1), i.e. for all $x, y \in V, x \neq y$,

$$
y \cdot(x \cdot y)=(y \cdot x) \cdot y \quad \Rightarrow \quad\langle x, y, x \cdot y\rangle \in \mathcal{B} .
$$

An LDTS satisfying this condition is called antiflexible. In other words an antiflexible DTS-quasigroup is one where the flexible identity $(y \cdot x) \cdot y=y \cdot(x \cdot y)$ holds for the least possible number of ordered pairs $(x, y) \in V \times V$. Thus, in a sense, antiflexible LDTSs are the LDTSs which are as distant from STSs as possible.

At first glance antiflexible LDTSs may appear to be a very artificial construct. However, there exists a surprisingly simple cyclic construction of LDTSs which naturally produces antiflexible LDTSs, see Theorem 3.1.

2. Properties

Let (V, \mathcal{B}) be a DTS and denote by \mathcal{F} the set of all $\{x, y, z\}$ such that $\langle x, y, z\rangle \in$ \mathcal{B}. This set is known as the underlying twofold triple system of (V, \mathcal{B}). Consider now \mathcal{F} as a set of faces. Each edge $\{a, b\}$ is incident to two faces, hence the faces can be sewn together along common edges to form a pseudosurface. Note that we can orient a face $\{x, y, z\} \in \mathcal{F}$ as a cycle (x, y, z) whenever $\langle x, y, z\rangle \in \mathcal{B}$. It follows from Theorem 1.1 that this defines a coherent orientation. Hence \mathcal{F} is an orientable pseudosurface.

A DTS is said to be pure if its underlying twofold triple system contains no repeated blocks. It is easy to see that every antiflexible LDTS is pure. If for some antiflexible LDTS, (V, \mathcal{B}), the triples $\langle x, y, z\rangle$ and $\langle z, y, x\rangle$ both belonged to \mathcal{B}, then $x \cdot(y \cdot x)=x \cdot z=y=z \cdot x=(x \cdot y) \cdot x$, which would imply that $\langle y, x, y \cdot x\rangle \in \mathcal{B}$. But this is a contradiction since $\langle z, y, x\rangle$ and $\langle y, x, y \cdot x\rangle$ cannot both belong to \mathcal{B}.

With each point $x \in V$ we can associate a partition of $V \backslash\{x\}$ into a set of cycles $\left(y_{1,1}, \ldots, y_{1, k_{1}}\right)\left(y_{2,1}, \ldots, y_{2, k_{2}}\right) \cdots\left(y_{m, 1}, \ldots, y_{m, k_{m}}\right)$, such that $\left(x, y_{i, j}, y_{i, j+1}\right)$ and $\left(x, y_{i, k_{i}}, y_{i, 1}\right)$ are oriented faces of \mathcal{F} for all $1 \leq j \leq k_{i}-1$ and $1 \leq i \leq m$. If $m>1$ then x is said to be a pinch point. A pseudosurface can be turned into a surface by separating each pinch point into several new points, called vertices, such that every vertex is associated with a single cycle. The length of the associated cycle is called the degree of the vertex. Thus we obtain an orientable surface. It follows from Theorem 1.1 that there are two types of vertices in this surface. A vertex
may be associated with a point x and a cycle $\left(y_{1}, \ldots, y_{k}\right)$ such that

$$
\left\langle y_{2}, x, y_{1}\right\rangle,\left\langle y_{3}, x, y_{2}\right\rangle, \ldots,\left\langle y_{1}, x, y_{k}\right\rangle \in \mathcal{B} .
$$

This type of vertex is called a middle vertex to reflect the fact that x appears in the middle position of each of the k transitive triples. Alternatively, a vertex may be associated with a point x and a cycle $\left(y_{1}, z_{1}, y_{2}, z_{2}, \ldots, y_{k}, z_{k}\right)$ such that

$$
\left\langle x, y_{1}, z_{1}\right\rangle,\left\langle z_{1}, y_{2}, x\right\rangle,\left\langle x, y_{2}, z_{2}\right\rangle,\left\langle z_{2}, y_{3}, x\right\rangle, \ldots,\left\langle x, y_{k}, z_{k}\right\rangle,\left\langle z_{k}, y_{1}, x\right\rangle \in \mathcal{B} .
$$

This type of vertex is called a residual vertex in accordance with [4]. The degree of a residual vertex is always even.

Example 2.1. Let $V=\mathbb{Z}_{13}$ and define the set of starter triples $\mathcal{S}=\{\langle 1,4,0\rangle$, $\langle 0,6,1\rangle,\langle 2,6,0\rangle,\langle 0,5,2\rangle\}$. Let $\mathcal{B}=\left\{\langle x+i, y+i, z+i\rangle:\langle x, y, z\rangle \in \mathcal{S}, i \in \mathbb{Z}_{n}\right\}$. Then (V, \mathcal{B}) is an antiflexible $\operatorname{LDTS}(13)$. As one can see from the triples listed below, the set of cycles associated with the point 0 is $(7,9,10,8)(5,2,6,1,4,11,3,12)$. Thus the point 0 separates into two vertices. The vertex associated with the cycle $(7,9,10,8)$ is a middle vertex and it is formed by the triples $\langle 9,0,7\rangle,\langle 10,0,9\rangle$, $\langle 8,0,10\rangle,\langle 7,0,8\rangle$ in \mathcal{B}. The vertex associated with the cycle $(5,2,6,1,4,11,3,12)$ is a residual vertex and it is formed by the triples $\langle 0,5,2\rangle,\langle 2,6,0\rangle,\langle 0,6,1\rangle$, $\langle 1,4,0\rangle,\langle 0,4,11\rangle,\langle 11,3,0\rangle,\langle 0,3,12\rangle,\langle 12,5,0\rangle$ in \mathcal{B}.

Theorem 2.2. Let (V, \mathcal{B}) be an LDTS. Then the following conditions are equivalent:
(i) (V, \mathcal{B}) is antiflexible;
(ii) $\langle x, y, z\rangle \in \mathcal{B} \Rightarrow\langle x, z x, y x\rangle \notin \mathcal{B}$;
(iii) every residual vertex has degree at least 6 .

Proof: First assume that (V, \mathcal{B}) is antiflexible and let $\langle x, y, z\rangle \in \mathcal{B}$. Then using Theorem 1.1 the triple $\langle y x, y, x\rangle$ belongs to \mathcal{B} as well. If it were the case that $\langle x, z x, y x\rangle \in \mathcal{B}$, then we would have $x \cdot y x=z x=x y \cdot x$. Then by assumption $\langle y, x, y x\rangle \in \mathcal{B}$. But this is a contradiction since $\langle y, x, y x\rangle$ and $\langle y x, y, x\rangle$ cannot both belong to \mathcal{B}. Thus $\langle x, z x, y x\rangle \notin \mathcal{B}$. We see that (i) implies (ii).

Assume that condition (ii) holds. If the cycle about a residual vertex corresponding to a point x were of length 2 , say $\left(y_{1}, z_{1}\right)$, then we would have $\left\langle x, y_{1}, z_{1}\right\rangle$, $\left\langle z_{1}, y_{1}, x\right\rangle \in \mathcal{B}$. But then \mathcal{B} would contain $\left\langle x, z_{1} \cdot x, y_{1} \cdot x\right\rangle$, since this is the triple $\left\langle x, y_{1}, z_{1}\right\rangle$. Similarly if the cycle were of length 4 , say $\left(y_{1}, z_{1}, y_{2}, z_{2}\right)$, then we would have $\left\langle x, y_{1}, z_{1}\right\rangle,\left\langle z_{1}, y_{2}, x\right\rangle,\left\langle x, y_{2}, z_{2}\right\rangle,\left\langle z_{2}, y_{1}, x\right\rangle \in \mathcal{B}$. But then \mathcal{B} would again contain $\left\langle x, z_{1} \cdot x, y_{1} \cdot x\right\rangle$, since this is the triple $\left\langle x, y_{2}, z_{2}\right\rangle$. Thus (ii) implies (iii).

Finally assume that condition (iii) holds. Let $x, y \in V$ such that $x \neq y$ and y. $x y=y x \cdot y$. Now either $\langle x y, x, y\rangle,\langle x, x y, y\rangle$ or $\langle x, y, x y\rangle$ lies in \mathcal{B}. However, the first two of these possibilities violate the assumption. If $\langle x y, x, y\rangle \in \mathcal{B}$, then $\langle y, x, y x\rangle$, $\langle y x, y x \cdot y, y\rangle,\langle y, y \cdot x y, x y\rangle \in \mathcal{B}$, i.e. there exists a residual vertex associated with the point y and the cycle $(x, y x, y \cdot x y, x y)$. If $\langle x, x y, y\rangle \in \mathcal{B}$, then $\langle y, y x, x\rangle$, $\langle y, x y, y \cdot x y\rangle,\langle y x \cdot y, y x, y\rangle \in \mathcal{B}$, i.e. there exists a residual vertex associated with the point y and the cycle $(y x, x, x y, y \cdot x y)$. Thus (iii) implies (i).

3. Existence

In this section we investigate the existence spectrum of antiflexible $\operatorname{LDTS}(n)$. It was shown in [3] that there is no pure $\operatorname{LDTS}(n)$ for $3 \leq n \leq 12$. We start with a cyclic construction. An $\operatorname{LDTS}(n)$ is said to be cyclic if it admits an automorphism which permutes its points in a single cycle of length n. In [11] it was shown that a pure cyclic $\operatorname{LDTS}(n)$ exists if and only if $n \equiv 1(\bmod 6)$ and $n \geq 13$. The following theorem shows that the construction used in [11] can always be used to produce antiflexible LDTSs. It is interesting to note, however, that for certain orders the construction can also be used to produce flexible LDTSs.

Theorem 3.1. A cyclic antiflexible $\operatorname{LDTS}(n)$ exists if and only if $n \equiv 1(\bmod 6)$ and $n \geq 13$.

Proof: Let $n=6 k+1$ and $k \geq 2$. Set $V=\mathbb{Z}_{n}$ and define the set of starter triples

$$
\mathcal{S}=\{\langle r, k+2 r, 0\rangle,\langle 0,3 k-r+1, r\rangle: r=1,2, \ldots, k\} .
$$

If $k \equiv 1(\bmod 3)$, then replace the starter triples

$$
\left\langle\frac{2 k+1}{3}, k+2 \frac{2 k+1}{3}, 0\right\rangle, \quad\left\langle 0,3 k-\frac{2 k+1}{3}+1, \frac{2 k+1}{3}\right\rangle \quad \text { and } \quad\langle k, 3 k, 0\rangle
$$

in \mathcal{S} with the starter triples

$$
\begin{aligned}
B_{1} & =\left\langle 4 k+1,0, \frac{1}{3}(5 k+1)\right\rangle \\
B_{2} & =\left\langle\frac{1}{3}(5 k+1), 0, \frac{1}{3}(2 k+1)\right\rangle \text { and } \\
B_{3} & =\left\langle\frac{1}{3}(2 k+1), 0,3 k+1\right\rangle
\end{aligned}
$$

Let $\mathcal{B}=\left\{\langle x+i, y+i, z+i\rangle:\langle x, y, z\rangle \in \mathcal{S}, i \in \mathbb{Z}_{n}\right\}$. Then (V, \mathcal{B}) is an $\operatorname{LDTS}(n)$.
We check that condition (ii) of Theorem 2.2 is satisfied for each starter triple. To begin with, let us assume that $k \not \equiv 1(\bmod 3)$. Let $1 \leq s \leq k$ and consider the starter triple $\langle x, y, z\rangle=\langle s, k+2 s, 0\rangle$. We have $z x=0 \cdot s=3 k-s+1$. If s is even, then $\left\langle\frac{3}{2} s, k+2 s, s\right\rangle \in \mathcal{B}$ (use $r=\frac{1}{2} s$ and $i=s$) i.e. $y x=\frac{3}{2} s$, and if s is odd, then $\left\langle\frac{1}{2}(3 s-2 k-1), k+2 s, s\right\rangle \in \mathcal{B}$ (use $r=\frac{1}{2}(2 k+1-s)$ and $i=\frac{1}{2}(3 s-2 k-1)$), i.e. $y x=\frac{1}{2}(3 s-2 k-1)$. If $s \leq \frac{1}{2} k$ then $\langle s, 3 k-s+1,3 s\rangle \in \mathcal{B}$ (use $r=2 s$ and $i=s$), and if $s>\frac{1}{2} k$ then $\langle s, 3 k-s+1,3 s-2 k-1\rangle \in \mathcal{B}$ (use $r=2 k+1-2 s$ and $i=3 s-2 k-1$). The first two points in these two triples are x and $z x$ respectively, but one can check that the third point is not equal to $y x$ for any s. Thus $\langle x, z x, y x\rangle \notin \mathcal{B}$.

Now consider the starter triple $\langle x, y, z\rangle=\langle 0,3 k-s+1, s\rangle$. We have $z x=s \cdot 0=$ $k+2 s$. If s is odd, then $\left\langle k-\frac{1}{2}(s-1), 3 k-s+1,0\right\rangle \in \mathcal{B}$ (use $r=k-\frac{1}{2}(s-1)$ and $i=0$), i.e. $y x=k-\frac{1}{2}(s-1)$, and if s is even, then $\left\langle-\frac{1}{2} s, 3 k-s+1,0\right\rangle \in \mathcal{B}$ (use $r=\frac{1}{2} s$ and $i=-\frac{1}{2} s$), i.e. $y x=-\frac{1}{2} s$. If $s \leq \frac{1}{2} k$, then $\langle 0, k+2 s,-2 s\rangle \in \mathcal{B}$ (use $r=2 s$ and $i=-2 s$), and if $s>\frac{1}{2} k$, then $\langle 0, k+2 s, 2 k-2 s+1\rangle \in \mathcal{B}$ (use $r=2 k-2 s+1$ and $i=0$). We come to the same conclusion as above.

When $k \equiv 1(\bmod 3)$ the statements above remain valid for all starter triples except for those that took part in the replacement, the case $s=\frac{1}{2}(k+1)$ discussed in the second paragraph and the cases $s \in\left\{1, \frac{1}{2} k, k\right\}$ discussed in the third paragraph. We prove that condition (ii) of Theorem 2.2 is satisfied for these triples as well:

For $\langle x, y, z\rangle=\left\langle 4 k+1,0, \frac{1}{3}(5 k+1)\right\rangle$ we have $\left\langle\frac{1}{3}(5 k+1), k, 4 k+1\right\rangle \in \mathcal{B}$ (use B_{3} and $i=k$), i.e. $z x=k$. If k is odd, then $\left\langle\frac{1}{2}(3 k+1), 0,4 k+1\right\rangle \in \mathcal{B}$ (use $r=\frac{1}{2}(7 k+1)$ and $i=4 k+1$), if k is even, then $\left\langle\frac{1}{2} k, 0,4 k+1\right\rangle \in \mathcal{B}$ (use $r=\frac{1}{2}(7 k+2)$ and $i=\frac{1}{2} k$). Thus $y x \in\left\{\frac{1}{2}(3 k+1), \frac{1}{2} k\right\}$ but $\langle 4 k+1, k, 4 k+2\rangle \in \mathcal{B}$ (use $r=1$ and $i=4 k+1$).

For $\langle x, y, z\rangle=\left\langle\frac{1}{3}(5 k+1), 0, \frac{1}{3}(2 k+1)\right\rangle$ we have $\left\langle\frac{1}{3}(2 k+1), \frac{4}{3}(2 k+1), \frac{1}{3}(5 k+1)\right\rangle \in$ \mathcal{B} (use $r=k$ and $i=\frac{1}{3}(2 k+1)$), i.e. $z x=\frac{4}{3}(2 k+1)$, and from B_{1} we have $y x=4 k+1$. But $\left\langle\frac{1}{3}(5 k+1), \frac{4}{3}(2 k+1), \frac{1}{3}(5 k-2)\right\rangle \in \mathcal{B}$ (use $r=1$ and $\left.i=\frac{1}{3}(5 k-2)\right)$.

For $\langle x, y, z\rangle=\left\langle\frac{1}{3}(2 k+1), 0,3 k+1\right\rangle$ we have $\left\langle 3 k+1,-k, \frac{1}{3}(2 k+1)\right\rangle \in \mathcal{B}$ (use B_{1} and $\left.i=-k\right)$, i.e. $z x=-k$, and from B_{2} we have $y x=\frac{1}{3}(5 k+1)$. But $\left\langle\frac{1}{3}(2 k+1),-k, \frac{1}{3}(1-k)\right\rangle \in \mathcal{B}$ (use B_{2} and $\left.i=-k\right)$.

If k is odd, then for $\langle x, y, z\rangle=\left\langle\frac{1}{2}(k+1), 2 k+1,0\right\rangle$ we have $\left\langle 0, \frac{1}{2}(5 k+1), \frac{1}{2}(k+\right.$ $1)\rangle \in \mathcal{B}\left(\right.$ use $r=\frac{1}{2}(k+1)$ and $\left.i=0\right)$, i.e. $z x=\frac{1}{2}(5 k+1)$. If $k \equiv 1(\bmod 4)$, then $\left\langle\frac{1}{4}(1-k), 2 k+1, \frac{1}{2}(k+1)\right\rangle \in \mathcal{B}$ (use $r=\frac{1}{4}(3 k+1)$ and $\left.i=\frac{1}{4}(1-k)\right)$, if $k \equiv 3$ $(\bmod 4)$, then $\left\langle\frac{3}{4}(k+1), 2 k+1, \frac{1}{2}(k+1)\right\rangle \in \mathcal{B}\left(\right.$ use $r=\frac{1}{4}(k+1)$ and $\left.i=\frac{1}{2}(k+1)\right)$. Thus $y x \in\left\{\frac{1}{4}(1-k), \frac{3}{4}(k+1)\right\}$ but $\left\langle\frac{1}{2}(k+1), \frac{1}{2}(5 k+1), \frac{5}{6}(5 k+1)\right\rangle \in \mathcal{B}$ (use B_{1} and $\left.i=\frac{1}{2}(5 k+1)\right)$.

For $\langle x, y, z\rangle=\langle 0,3 k, 1\rangle$ we have $z x=k+2$ as before and $\left\langle\frac{1}{3}(11 k+1), 3 k, 0\right\rangle \in \mathcal{B}$ (use B_{3} and $i=3 k$), i.e. $y x=\frac{1}{3}(11 k+1)$. But $\langle 0, k+2,6 k-1\rangle \in \mathcal{B}$ (use $r=2$ and $i=-2$).

For $\langle x, y, z\rangle=\left\langle 0, \frac{5}{2} k+1, \frac{1}{2} k\right\rangle$ we have $z x=2 k$ as before. If $k \equiv 0(\bmod 4)$, then $\left\langle-\frac{1}{4} k, \frac{1}{2}(5 k+2), 0\right\rangle \in \mathcal{B}$ (use $r=\frac{1}{4} k$ and $\left.i=-\frac{1}{4} k\right)$, and if $k \equiv 2(\bmod 4)$, then $\left\langle\frac{1}{4}(3 k+2), \frac{1}{2}(5 k+2), 0\right\rangle \in \mathcal{B}$ (use $r=\frac{1}{4}(3 k+2)$ and $\left.i=0\right)$. Thus $y x \in$ $\left\{-\frac{1}{4} k, \frac{1}{4}(3 k+2)\right\}$ but $\left\langle 0,2 k, \frac{1}{3}(11 k+1)\right\rangle \in \mathcal{B}$ (use B_{1} and $\left.i=2 k\right)$.

For $\langle x, y, z\rangle=\langle 0,2 k+1, k\rangle$ we have $\left\langle k,-\frac{1}{3}(2 k+1), 0\right\rangle \in \mathcal{B}$ (use B_{2} and $i=$ $-\frac{1}{3}(2 k+1)$), i.e. $z x=-\frac{1}{3}(2 k+1)$. If k is odd, then $\left\langle\frac{1}{2}(k+1), 2 k+1,0\right\rangle \in \mathcal{B}$ (use $r=\frac{1}{2}(k+1)$ and $i=0$), if k is even, then $\left\langle-\frac{1}{2} k, 2 k+1,0\right\rangle \in \mathcal{B}$ (use $r=\frac{1}{2} k$ and $\left.i=-\frac{1}{2} k\right)$. Thus $y x \in\left\{\frac{1}{2}(k+1),-\frac{1}{2} k\right\}$ but $\left\langle 0,-\frac{1}{3}(2 k+1), \frac{1}{3}(7 k+2)\right\rangle \in \mathcal{B}$ (use B_{3} and $\left.i=-\frac{1}{3}(2 k+1)\right)$.

In [4] all LDTSs of order 13 were enumerated and classified by their automorphism group. Out of the total of 1206969 non-isomorphic LDTS(13)s 8444 are pure, but only two of them are antiflexible. They are the two pure cyclic systems. The starter triples for these two systems are $\langle 1,4,0\rangle$, $\langle 0,6,1\rangle,\langle 2,6,0\rangle,\langle 0,5,2\rangle$ for one and $\langle 1,10,0\rangle,\langle 0,8,1\rangle,\langle 2,9,0\rangle,\langle 0,10,2\rangle$ for the other. In comparison, there are 924 flexible LDTS(13)s up to isomorphism.

Next is an elementary recursive construction adapted from standard designtheoretic techniques.

Proposition 3.2. If there exists an antiflexible $\operatorname{LDTS}(n), n>3$, then there exists
(i) an antiflexible $\operatorname{LDTS}(3 n)$, and
(ii) an antiflexible $\operatorname{LDTS}(3 n-2)$.

Proof: (i) Take three copies of the $\operatorname{LDTS}(n)$ on point sets $\left\{i_{j}: i \in \mathbb{Z}_{n}\right\}$, $j \in\{0,1,2\}$ respectively, then adjoin all transitive triples

$$
\left\langle i_{0}, j_{1},(i+j)_{2}\right\rangle \quad \text { and } \quad\left\langle(i+j-1)_{2}, j_{1}, i_{0}\right\rangle, \quad i, j \in \mathbb{Z}_{n} .
$$

The adjoined transitive triples create one new residual vertex of degree $2 n$ for each of the points in the first and third copies of the $\operatorname{LDTS}(n)$. For any point i_{0}, where $i \in \mathbb{Z}_{n}$, the newly created residual vertex corresponds to the cycle

$$
\left(0_{1}, i_{2}, 1_{1},(i+1)_{2}, \ldots,(n-1)_{1},(i-1)_{2}\right)
$$

For any point i_{2}, where $i \in \mathbb{Z}_{n}$, the newly created residual vertex corresponds to the cycle

$$
\left(0_{1},(i+1)_{0},(n-1)_{1},(i+2)_{0}, \ldots, 1_{1}, i_{0}\right)
$$

Thus the resulting system is antiflexible as long as $n>2$.
(ii) Take three copies of the $\operatorname{LDTS}(n)$ on point sets $\left\{i_{j}: i \in \mathbb{Z}_{n-1}\right\} \cup\{\infty\}$, $j \in\{0,1,2\}$ respectively, then adjoin all transitive triples

$$
\left\langle i_{0}, j_{1},(i+j)_{2}\right\rangle \quad \text { and } \quad\left\langle(i+j-1)_{2}, j_{1}, i_{0}\right\rangle, \quad i, j \in \mathbb{Z}_{n-1}
$$

Similarly this system is antiflexible as long as $n>3$.

Lemma 3.3. If $n \equiv 3(\bmod 18)$ and $n \neq 3$, then there exists an antiflexible $\operatorname{LDTS}(n)$.

Proof: It follows from Theorem 3.1 and part (i) of Proposition 3.2 that there exists an antiflexible $\operatorname{LDTS}(n)$ for all $n \equiv 3(\bmod 18), n \geq 39$. An antiflexible $\operatorname{LDTS}(21)$ is given as Example A. 4 in the Appendix.

Proposition 3.4. If there exists an antiflexible $\operatorname{LDTS}(n),(V, \mathcal{B})$, and a quasigroup $(V \cup\{\infty\}, *)$ satisfying
(1) $x * x=\infty$, and
(2) $(x * y=y * z \wedge z * y=y * x) \Rightarrow x=y=z$,
then there exists an antiflexible $\operatorname{LDTS}(2 n+1)$.

Proof: Let $W=V \cup\left\{x^{\prime}: x \in V\right\} \cup\left\{\infty^{\prime}\right\}$. Form a set of transitive triples \mathcal{D} by starting with the set \mathcal{B} and adjoining all triples $\left\langle x^{\prime}, x * y, y^{\prime}\right\rangle$, where x, $y \in V \cup\{\infty\}, x \neq y$. Then (W, \mathcal{D}) is an LDTS. We verify that (W, \mathcal{D}) satisfies condition (ii) of Theorem 2.2. Let $\langle x, y, z\rangle \in \mathcal{D}$. If $\langle x, y, z\rangle \in \mathcal{B}$, then $\langle x, z \cdot x, y \cdot x\rangle$ does not lie in \mathcal{D}, since if it did, then it would have had to come from \mathcal{B}, which would be a contradiction. It remains to deal with the case when $\langle x, y, z\rangle$ is of the form $\left\langle u^{\prime}, u * v, v^{\prime}\right\rangle$, for some $u, v \in V \cup\{\infty\}$. Clearly $z \cdot x=v * u$. There exists $w \in V \cup\{\infty\}$ such that $\left\langle w^{\prime}, u * v, u^{\prime}\right\rangle \in \mathcal{D}$, i.e. $y \cdot x=w^{\prime}$. Now since $w * u=u * v$, by assumption $v * u \neq u * w$, and thus $\langle x, z \cdot x, y \cdot x\rangle=\left\langle u^{\prime}, v * u, w^{\prime}\right\rangle$ does not lie in \mathcal{D}.

A quasigroup of order n satisfying conditions (1) and (2) of Proposition 3.4 will be referred to as a unipotent locally self-orthogonal quasigroup, ULSOQ (n).

The remainder of the existence proof in this section uses a standard technique known as Wilson's fundamental construction for which we need the concept of a group divisible design (GDD). Let K be a set of positive integers. A K-GDD of type g^{u} is an ordered triple $(V, \mathcal{G}, \mathcal{B})$ where V is a base set of cardinality $v=g u$, \mathcal{G} is a partition of V into u subsets of cardinality g called groups and \mathcal{B} is a family of subsets called blocks such that (1) $|B| \in K$ for all $B \in \mathcal{B}$, and (2) every pair of distinct elements of V occurs in exacly one block or one group, but not both. We will also need K-GDDs of type $g^{u} m^{1}$. These are defined analogously, with the base set V being of cardinality $v=g u+m$ and the partition G being into u subsets of cardinality g and one set of cardinality m. If K is a singleton, then instead of $\{k\}$-GDD we write simply k-GDD. Necessary and sufficient conditions for the existence of 3-GDDs of type g^{u} were determined in [10] and for 3-GDDs of type $g^{u} m^{1}$ in [2]. The existence of the 4-GDDs that we will be using was determined in [1], [7], [8], [9]. A convenient reference is [6] where the existence of all the GDDs that are used can be verified.

We will assume that the reader is familiar with this construction but briefly the basic idea is as follows. Begin with a k-GDD of cardinality $v=g u$ or $g u+m$, usually called the master $G D D$. Each point is then assigned a weight, usually the same weight, say w. In effect, each point is replaced by w points. Each inflated block of the master GDD is then replaced by a k-GDD of type w^{k}, called a slave $G D D$. We will only need to use the value $w=3$, and instead of slave GDDs we will use partial Latin directed triple systems. When $k=3$ we will employ the partial LDTS(9) whose blocks are $\langle a, p, x\rangle,\langle b, q, y\rangle,\langle c, r, z\rangle,\langle a, q, z\rangle,\langle b, r, x\rangle,\langle c, p, y\rangle$, $\langle a, r, y\rangle,\langle b, p, z\rangle,\langle c, q, x\rangle,\langle x, q, a\rangle,\langle y, r, b\rangle,\langle z, p, c\rangle,\langle z, r, a\rangle,\langle x, p, b\rangle,\langle y, q, c\rangle$, $\langle y, p, a\rangle,\langle z, q, b\rangle,\langle x, r, c\rangle$ and the sets $\{a, b, c\},\{p, q, r\},\{x, y, z\}$ play the role of the groups. When $k=4$ we will use the partial $\operatorname{LDTS}(12)$ whose blocks are $\langle p, a, x\rangle,\langle s, a, p\rangle,\langle x, a, s\rangle,\langle q, b, y\rangle,\langle u, b, q\rangle,\langle y, b, u\rangle,\langle r, c, z\rangle,\langle t, c, r\rangle,\langle z, c, t\rangle$, $\langle c, p, u\rangle,\langle u, p, y\rangle,\langle y, p, c\rangle,\langle a, q, t\rangle,\langle t, q, z\rangle,\langle z, q, a\rangle,\langle b, r, s\rangle,\langle s, r, x\rangle,\langle x, r, b\rangle$, $\langle c, s, y\rangle,\langle q, s, c\rangle,\langle y, s, q\rangle,\langle b, t, x\rangle,\langle p, t, b\rangle,\langle x, t, p\rangle,\langle a, u, z\rangle,\langle r, u, a\rangle,\langle z, u, r\rangle$, $\langle c, x, q\rangle,\langle q, x, u\rangle,\langle u, x, c\rangle,\langle a, y, r\rangle,\langle r, y, t\rangle,\langle t, y, a\rangle,\langle b, z, p\rangle,\langle p, z, s\rangle,\langle s, z, b\rangle$ and the sets $\{a, b, c\},\{p, q, r\},\{s, t, u\},\{x, y, z\}$ play the role of the groups. Note that
both of these partial systems induce a closed surface with all residual vertices of degree 6. To complete the construction we then "fill in" the groups of the expanded master GDD, sometimes adjoining an extra point, to all of the groups. Thus we may need antiflexible Latin directed triple systems of orders $g w, m w$, $g w+1$ or $m w+1$ as appropriate.

In several cases we use a $\{3,4\}$-GDD as the master GDD which requires that when we replace the inflated blocks, we employ both of the partial systems given above. Before continuing the existence proof of the antiflexible LDTSs, let us establish the existence of the $\{3,4\}$-GDDs we will be using.
Proposition 3.5. If $g \notin\{2,6\}$ and $0 \leq m \leq g$, then there exists a $\{3,4\}$-GDD of type $g^{3} m^{1}$.
Proof: Take a 4-GDD of type g^{4} with groups $G_{i}=\left\{1_{i}, \ldots, g_{i}\right\}$, where $i \in$ $\{0,1,2,3\}$. To get a $\{3,4\}$-GDD of type $g^{3} m^{1}$ simply remove each of the points $(m+1)_{3},(m+2)_{3}, \ldots, g_{3}$ from the design. In other words replace every block $\left\{x_{0}, y_{1}, z_{2}, w_{3}\right\}$ such that $m<w \leq g$ with the block $\left\{x_{0}, y_{1}, z_{2}\right\}$ to obtain a $\{3,4\}$-GDD with groups G_{1}, G_{2}, G_{3} and $G_{4}^{\prime}=\left\{1_{3}, \ldots, m_{3}\right\}$.
Example 3.6. $\{3,4\}$-GDD of type $6^{3} 5^{1}$.
The groups are $G_{j}=\left\{i_{j}: i \in \mathbb{Z}_{6}\right\}$, where $j \in\{0,1,2\}$, and $G_{3}=\left\{i_{3}: i \in\right.$ $\left.\mathbb{Z}_{2}\right\} \cup\left\{\infty_{0}, \infty_{1}, \infty_{2}\right\}$.

To obtain the blocks, develop the following starter blocks under the action of the mapping $i_{j} \mapsto(i+1)_{j}$, with ∞_{0}, ∞_{1} and ∞_{2} as fixed points: $\left\{0_{0}, 0_{1}, 0_{2}, \infty_{0}\right\}$, $\left\{0_{0}, 1_{1}, 2_{2}, \infty_{1}\right\},\left\{0_{0}, 2_{1}, 4_{2}, \infty_{2}\right\},\left\{0_{0}, 3_{1}, 1_{2}\right\},\left\{0_{0}, 4_{1}, 3_{2}\right\},\left\{0_{0}, 5_{1}, 0_{3}\right\},\left\{0_{0}, 5_{2}, 1_{3}\right\}$, $\left\{0_{1}, 3_{2}, 0_{3}\right\}$.

Lemma 3.7. If $n \equiv 0(\bmod 6)$ and $n \geq 18$, then there exists an antiflexible $\operatorname{LDTS}(n)$.
Proof: Table 1 gives the schema for antiflexible $\operatorname{LDTS}(n), n \equiv 0(\bmod 6)$. No extra points are adjoined in this case. The missing antiflexible LDTSs of orders 36 and 42 as well as the systems of orders 18,24 and 30 which are needed to construct the infinite classes are all given in the Appendix. The missing antiflexible LDTS(48) and LDTS(66) can be obtained using part (i) of Proposition 3.2 from the $\operatorname{LDTS}(16)$ and $\operatorname{LDTS}(22)$ given in the Appendix. The antiflexible LDTS(60) can be constructed by taking a master 4-GDD of type 5^{4}, inflating each point by a factor of 3 and using the antiflexible $\operatorname{LDTS}(15)$ given in the Appendix.

Type of master 3-GDD	Orders of LDTS (n) needed	Residue classes covered modulo 18	Missing values
$6^{s}, \quad s \geq 3$	18	0	36
$6^{s} 8^{1}, s \geq 3$	18,24	6	42,60
$6^{s} 10^{1}, s \geq 3$	18,30	12	48,66

TABLE 1. Schema for antiflexible $\operatorname{LDTS}(n), n \equiv 0(\bmod 6)$.

Lemma 3.8. If $n \equiv 16(\bmod 18)$, then there exists an antiflexible $\operatorname{LDTS}(n)$.
Proof: It follows from the previous lemma and part (ii) of Proposition 3.2 that there exists an antiflexible $\operatorname{LDTS}(n)$ for all $n \equiv 16(\bmod 18), n \geq 52$. Antiflexible LDTSs of orders 16 and 34 are given in the Appendix.

Lemma 3.9. If $n \equiv 15(\bmod 18)$, then there exists an antiflexible $\operatorname{LDTS}(n)$.
Proof: Table 2 gives the schema for antiflexible $\operatorname{LDTS}(n), n \equiv 15(\bmod 18)$. Once again, no extra points are adjoined in this case. The required antiflexible $\operatorname{LDTS}(n)$ s of orders $n=15$ and 27 are given in the Appendix. The antiflexible LDTS(33) can be obtained by taking an antiflexible LDTS(16) given in the Appendix together with the quasigroup given in Example A. 14 and applying Proposition 3.4. Similarly the antiflexible LDTS(51) can be obtained by taking a (cyclic) antiflexible $\operatorname{LDTS}(25)$ together with the quasigroup given in Example A.15. The missing antiflexible $\operatorname{LDTS}(69)$ can be constructed using a master $\{3,4\}$-GDD of type $6^{3} 5^{1}$ given in Example 3.6 and the antiflexible LDTS(15) and LDTS(18) given in the Appendix. The antiflexible LDTS(87) can be constructed using a master $3-G D D$ of type $5^{4} 9^{1}$ together with the antiflexible LDTS(15) and LDTS(27) and the antiflexible LDTS(105) can be constructed using a master 3GDD of type 5^{7} and the $\operatorname{LDTS}(15)$.

Type of master 3-GDD	Orders of LDTS (n) needed	Residue classes covered modulo 54	Missing values
$9^{2 s} 5^{1}, s \geq 2$	15,27	15	69
$9^{2 s} 11^{1}, s \geq 2$	27,33	33	87
$9^{2 s} 17^{1}, s \geq 2$	27,51	51	105

Table 2. Schema for antiflexible $\operatorname{LDTS}(n), n \equiv 15(\bmod 18)$.

Lemma 3.10. If $n \equiv 4,9$ or $10(\bmod 18)$ and $n \geq 22$, then there exists an antiflexible $\operatorname{LDTS}(n)$.

Proof: Table 3 gives the schema for antiflexible $\operatorname{LDTS}(n)$, $n \equiv 4,9$ or 10 $(\bmod 18)$. The required antiflexible $\operatorname{LDTS}(n)$ s of orders $n=18,22,27,28$ and 40 are given in the Appendix and the ones of orders 13 and 19 exist by Theorem 3.1. For the missing $n=45,63$ and 81 use part (i) of Proposition 3.2 and for $n=46$, 64 and 82 use part (ii) of Proposition 3.2. To do this we need systems of orders 15 , $21,27,16,22$ and 28 , respectively, all of which are given in the Appendix. The missing antiflexible $\operatorname{LDTS}(58)$ and $\operatorname{LDTS}(76)$ can be constructed using master $\{3,4\}$-GDDs of types $5^{3} 4^{1}$ and $7^{3} 4^{1}$, respectively, adjoining an extra point and taking the antiflexible LDTSs of orders 13,16 and 22 . The missing antiflexible LDTS(112) can be constructed using a master 3-GDD of type $5^{6} 7^{1}$, adjoining an extra point and taking the antiflexible LDTSs of orders 16 and 22 .

Type of master 4-GDD	Points adjoined	Orders of LDTS (n) needed	Residue classes covered modulo 36	Missing values
$4^{3 s} 7^{1}, \quad s \geq 2$	1	13,22	22	58
$4^{3 s} 13^{1}, s \geq 3$	1	13,40	4	76,112
$6^{s} 9^{1}, \quad s \geq 4$	0	18,27	9,27	$45,63,81$
$6^{s} 9^{1}, \quad s \geq 4$	1	19,28	10,28	$46,64,82$

Table 3. Schema for antiflexible $\operatorname{LDTS}(n), n \equiv 4,9$ or $10(\bmod 18)$.

Theorem 3.11. An antiflexible LDTS(n) exists if and only if $n \equiv 0$ or $1(\bmod 3)$ and $n \geq 13$.

Appendix. Examples of antiflexible LDTSs

The following examples were obtained by computer with the help of the model builder Mace4 [12] using an algebraic description of a DTS-quasigroup, see [4]. We denote the elements $(i, j) \in \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ as i_{j}. For simplicity, we omit commas from the triples.

Example A.1. Antiflexible LDTS(15).
$V=\left(\mathbb{Z}_{7} \times \mathbb{Z}_{2}\right) \cup\{\infty\}$.
The system is defined by the triples obtained from the following starter blocks under the action of the mapping $i_{j} \mapsto(i+1)_{j}$, with ∞ as a fixed point.
$\left\langle 2_{0} 0_{0} 2_{1}\right\rangle, \quad\left\langle 2_{1} 0_{0} 1_{1}\right\rangle, \quad\left\langle 1_{1} 0_{0} 5_{1}\right\rangle, \quad\left\langle 5_{1} 0_{0} 3_{1}\right\rangle, \quad\left\langle 3_{1} 0_{0} 4_{1}\right\rangle, \quad\left\langle 4_{1} 0_{0} 6_{1}\right\rangle, \quad\left\langle 6_{1} 0_{0} 6_{0}\right\rangle$, $\left\langle 6_{0} 0_{0} 2_{0}\right\rangle,\left\langle 0_{0} \infty 4_{0}\right\rangle,\left\langle 0_{1} \infty 3_{1}\right\rangle$.

Example A.2. Antiflexible LDTS(16).
$V=\mathbb{Z}_{8} \times \mathbb{Z}_{2}$.
The system is defined by the triples obtained from the following starter blocks under the action of the mapping $i_{j} \mapsto(i+1)_{j}$.
$\left\langle 2_{0} 0_{0} 7_{1}\right\rangle, \quad\left\langle 7_{1} 0_{0} 7_{0}\right\rangle, \quad\left\langle 7_{0} 0_{0} 2_{0}\right\rangle, \quad\left\langle 0_{0} 2_{1} 4_{0}\right\rangle, \quad\left\langle 4_{0} 2_{1} 4_{1}\right\rangle, \quad\left\langle 4_{1} 2_{1} 1_{0}\right\rangle, \quad\left\langle 1_{0} 2_{1} 6_{0}\right\rangle$, $\left\langle 6_{0} 2_{1} 1_{1}\right\rangle,\left\langle 1_{1} 2_{1} 5_{1}\right\rangle,\left\langle 5_{1} 2_{1} 0_{0}\right\rangle$.

Example A.3. Antiflexible LDTS(18).
$V=\mathbb{Z}_{3} \times \mathbb{Z}_{6}$.
The system is defined by the triples obtained from the following starter blocks under the action of the mapping $i_{j} \mapsto(i+1)_{j}$.
$\left\langle 1_{0} 0_{0} 0_{2}\right\rangle, \quad\left\langle 0_{2} 0_{0} 0_{1}\right\rangle, \quad\left\langle 0_{1} 0_{0} 1_{0}\right\rangle, \quad\left\langle 1_{0} 2_{1} 1_{5}\right\rangle, \quad\left\langle 1_{5} 2_{1} 2_{5}\right\rangle, \quad\left\langle 2_{5} 2_{1} 0_{2}\right\rangle, \quad\left\langle 0_{2} 2_{1} 1_{0}\right\rangle$, $\left\langle 0_{1} 0_{3} 2_{4}\right\rangle, \quad\left\langle 2_{4} 0_{3} 1_{5}\right\rangle, \quad\left\langle 1_{5} 0_{3} 0_{1}\right\rangle, \quad\left\langle 0_{1} 0_{4} 2_{3}\right\rangle, \quad\left\langle 2_{3} 0_{4} 1_{2}\right\rangle,\left\langle 1_{2} 0_{4} 2_{4}\right\rangle, \quad\left\langle 2_{4} 0_{4} 0_{1}\right\rangle$, $\left\langle 1_{0} 1_{4} 0_{1}\right\rangle, \quad\left\langle 0_{1} 1_{4} 1_{5}\right\rangle, \quad\left\langle 1_{5} 1_{4} 1_{0}\right\rangle, \quad\left\langle 1_{2} 0_{0} 1_{3}\right\rangle, \quad\left\langle 1_{3} 0_{0} 1_{4}\right\rangle, \quad\left\langle 1_{4} 0_{0} 2_{5}\right\rangle, \quad\left\langle 2_{5} 0_{0} 1_{5}\right\rangle$, $\left\langle 1_{5} 0_{0} 2_{4}\right\rangle, \quad\left\langle 2_{4} 0_{0} 2_{3}\right\rangle, \quad\left\langle 2_{3} 0_{0} 0_{3}\right\rangle, \quad\left\langle 0_{3} 0_{0} 1_{2}\right\rangle, \quad\left\langle 2_{1} 0_{1} 2_{2}\right\rangle,\left\langle 2_{2} 0_{1} 1_{3}\right\rangle, \quad\left\langle 1_{3} 0_{1} 2_{1}\right\rangle$, $\left\langle 2_{2} 0_{2} 1_{5}\right\rangle,\left\langle 1_{5} 0_{2} 0_{4}\right\rangle,\left\langle 0_{4} 0_{2} 2_{2}\right\rangle,\left\langle 0_{2} 0_{5} 1_{3}\right\rangle,\left\langle 1_{3} 0_{5} 0_{3}\right\rangle,\left\langle 0_{3} 0_{5} 0_{2}\right\rangle$.

Example A.4. Antiflexible LDTS(21).
$V=\left(\mathbb{Z}_{10} \times \mathbb{Z}_{2}\right) \cup\{\infty\}$.

The system is defined by the triples obtained from the following starter blocks under the action of the mapping $i_{j} \mapsto(i+1)_{j}$, with ∞ as a fixed point.
$\left\langle 2_{0} 0_{0} 0_{1}\right\rangle, \quad\left\langle 0_{1} 0_{0} 9_{1}\right\rangle, \quad\left\langle 9_{1} 0_{0} 6_{1}\right\rangle,\left\langle 6_{1} 0_{0} 4_{1}\right\rangle, \quad\left\langle 4_{1} 0_{0} 5_{1}\right\rangle, \quad\left\langle 5_{1} 0_{0} 1_{1}\right\rangle, \quad\left\langle 1_{1} 0_{0} 3_{1}\right\rangle$, $\left\langle 3_{1} 0_{0} 7_{1}\right\rangle,\left\langle 7_{1} 0_{0} 2_{1}\right\rangle,\left\langle 2_{1} 0_{0} 4_{0}\right\rangle,\left\langle 4_{0} 0_{0} 9_{0}\right\rangle,\left\langle 9_{0} 0_{0} 2_{0}\right\rangle,\left\langle 0_{0} \infty 7_{0}\right\rangle,\left\langle 0_{1} \infty 3_{1}\right\rangle$.
Example A.5. Antiflexible LDTS(22).
$V=\mathbb{Z}_{11} \times \mathbb{Z}_{2}$.
The system is defined by the triples obtained from the following starter blocks under the action of the mapping $i_{j} \mapsto(i+1)_{j}$.
$\left\langle 1_{0} 0_{0} 5_{0}\right\rangle, \quad\left\langle 5_{0} 0_{0} 2_{1}\right\rangle, \quad\left\langle 2_{1} 0_{0} 0_{1}\right\rangle,\left\langle 0_{1} 0_{0} 3_{0}\right\rangle, \quad\left\langle 3_{0} 0_{0} 1_{0}\right\rangle, \quad\left\langle 0_{0} 1_{1} 2_{0}\right\rangle, \quad\left\langle 2_{0} 1_{1} 9_{0}\right\rangle$, $\left\langle 9_{0} 1_{1} 5_{1}\right\rangle,\left\langle 5_{1} 1_{1} 7_{0}\right\rangle,\left\langle 7_{0} 1_{1} 2_{1}\right\rangle,\left\langle 2_{1} 1_{1} 4_{1}\right\rangle,\left\langle 4_{1} 1_{1} 8_{0}\right\rangle,\left\langle 8_{0} 1_{1} 6_{1}\right\rangle,\left\langle 6_{1} 1_{1} 0_{0}\right\rangle$.
Example A.6. Antiflexible LDTS(24).
$V=\mathbb{Z}_{4} \times \mathbb{Z}_{6}$.
The system is defined by the triples obtained from the following starter blocks under the action of the mapping $i_{j} \mapsto(i+1)_{j}$.

$\left\langle 1_{0} 0_{0} 2_{1}\right\rangle$,	$\left\langle 2_{1} 0_{0} 3_{3}\right\rangle$,	$\left\langle 3_{3} 0_{0} 0_{3}\right\rangle$,	$\left\langle 0_{3} 0_{0} 0_{1}\right\rangle$,	$\left\langle 0_{1} 0_{0} 1_{0}\right\rangle$,	$\left\langle 2_{3} 1_{0} 2_{4}\right\rangle$,	$\left\langle 2_{4} 1_{0} 0_{5}\right\rangle$,
$\left\langle 0_{5} 1_{0} 2_{5}\right\rangle$,	$\left\langle 2_{5} 1_{0} 1_{5}\right\rangle$,	$\left\langle 1_{5} 1_{0} 0_{4}\right\rangle$,	$\left\langle 0_{4} 1_{0} 1_{4}\right\rangle$,	$\left\langle 1_{1} 1_{0} 3_{3}\right\rangle$,	$\left\langle 3_{3} 1_{0} 2_{3}\right\rangle$,	$\left\langle 2_{3} 0_{1} 0_{4}\right\rangle$,
$\left\langle 0_{4} 0_{1} 1_{5}\right\rangle$,	$\left\langle 1_{5} 0_{1} 2_{3}\right\rangle$,	$\left\langle 3_{3} 0_{1} 2_{4}\right\rangle$,	$\left\langle 2_{4} 0_{1} 1_{4}\right\rangle$,	$\left\langle 1_{4} 0_{1} 3_{4}\right\rangle$,	$\left\langle 3_{4} 0_{1} 3_{3}\right\rangle$,	$\left\langle 0_{0} 0_{2} 2_{0}\right\rangle$,
$\left\langle 2_{0} 0_{2} 1_{1}\right\rangle$,	$\left\langle 1_{1} 0_{2} 3_{1}\right\rangle$,	$\left\langle 3_{1} 0_{2} 2_{1}\right\rangle$,	$\left\langle 2_{1} 0_{2} 2_{5}\right\rangle$,	$\left\langle 2_{5} 0_{2} 0_{4}\right\rangle$,	$\left\langle 0_{4} 0_{2} 3_{2}\right\rangle$,	$\left\langle 3_{2} 0_{2} 0_{0}\right\rangle$,
$\left\langle 3_{0} 0_{2} 1_{5}\right\rangle$,	$\left\langle 1_{5} 0_{2} 2_{4}\right\rangle$,	$\left\langle 2_{4} 0_{2} 3_{3}\right\rangle$,	$\left\langle 3_{3} 0_{2} 1_{3}\right\rangle$,	$\left\langle 1_{3} 0_{2} 0_{5}\right\rangle$,	$\left\langle 0_{5} 0_{2} 0_{1}\right\rangle$,	$\left\langle 0_{1} 0_{2} 3_{0}\right\rangle$,
$\left\langle 0_{2} 0_{3} 1_{4}\right\rangle$,	$\left\langle 1_{4} 0_{3} 0_{5}\right\rangle$,	$\left\langle 0_{5} 0_{3} 1_{5}\right\rangle$,	$\left\langle 1_{5} 0_{3} 2_{2}\right\rangle$,	$\left\langle 2_{2} 0_{3} 0_{2}\right\rangle$,	$\left\langle 2_{0} 0_{4} 1_{2}\right\rangle$,	$\left\langle 1_{2} 0_{4} 0_{5}\right\rangle$,
$\left\langle 0_{5} 0_{4} 2_{0}\right\rangle$,	$\left\langle 1_{1} 0_{5} 2_{1}\right\rangle,\left\langle 2_{1} 0_{5} 2_{3}\right\rangle$,	$\left\langle 2_{3} 0_{5} 1_{1}\right\rangle$.				

Example A.7. Antiflexible LDTS(27).
$V=\left(\mathbb{Z}_{13} \times \mathbb{Z}_{2}\right) \cup\{\infty\}$.
The system is defined by the triples obtained from the following starter blocks under the action of the mapping $i_{j} \mapsto(i+1)_{j}$, with ∞ as a fixed point.
$\left\langle 1_{0} 0_{0} 5_{0}\right\rangle,\left\langle 5_{0} 0_{0} 0_{1}\right\rangle,\left\langle 0_{1} 0_{0} 3_{0}\right\rangle,\left\langle 3_{0} 0_{0} 1_{0}\right\rangle,\left\langle 2_{0} 0_{1} 11_{0}\right\rangle,\left\langle 11_{0} 0_{1} 8_{1}\right\rangle,\left\langle 8_{1} 0_{1} 2_{0}\right\rangle$, $\left\langle 0_{0} 1_{1} 2_{0}\right\rangle,\left\langle 2_{0} 1_{1} 9_{0}\right\rangle,\left\langle 9_{0} 1_{1} 0_{1}\right\rangle,\left\langle 0_{1} 1_{1} 5_{0}\right\rangle,\left\langle 5_{0} 1_{1} 11_{1}\right\rangle,\left\langle 11_{1} 1_{1} 7_{0}\right\rangle,\left\langle 7_{0} 1_{1} 10_{1}\right\rangle$, $\left\langle 10_{1} 1_{1} 3_{1}\right\rangle,\left\langle 3_{1} 1_{1} 0_{0}\right\rangle,\left\langle 0_{0} \infty 6_{0}\right\rangle,\left\langle 0_{1} \infty 7_{1}\right\rangle$.

Example A.8. Antiflexible LDTS(28).
$V=\mathbb{Z}_{14} \times \mathbb{Z}_{2}$.
The system is defined by the triples obtained from the following starter blocks under the action of the mappings $i_{j} \mapsto(i+1)_{j}$ and $i_{j} \mapsto i_{j+1}$.
$\left\langle 1_{0} 0_{0} 5_{0}\right\rangle,\left\langle 5_{0} 0_{0} 12_{1}\right\rangle,\left\langle 12_{1} 0_{0} 4_{1}\right\rangle,\left\langle 4_{1} 0_{0} 6_{1}\right\rangle,\left\langle 6_{1} 0_{0} 13_{1}\right\rangle,\left\langle 13_{1} 0_{0} 9_{1}\right\rangle,\left\langle 9_{1} 0_{0} 3_{1}\right\rangle$, $\left\langle 3_{1} 0_{0} 3_{0}\right\rangle,\left\langle 3_{0} 0_{0} 1_{0}\right\rangle$.

Example A.9. Antiflexible LDTS(30).
$V=\mathbb{Z}_{5} \times \mathbb{Z}_{6}$.
The system is defined by the triples obtained from the following starter blocks under the action of the mapping $i_{j} \mapsto(i+1)_{j}$.

$\left\langle 0_{5} 0_{0} 3_{5}\right\rangle$,	$\left\langle 3_{5} 0_{0} 4_{5}\right\rangle$,	$\left\langle 4_{5} 0_{0} 1_{5}\right\rangle$,	$\left\langle 1_{5} 0_{0} 0_{5}\right\rangle$,	$\left\langle 0_{0} 0_{1} 1_{0}\right\rangle$,	$\left\langle 1_{0} 0_{1} 4_{0}\right\rangle$,	$\left\langle 4_{0} 0_{1} 3_{0}\right\rangle$,
$\left\langle 3_{0} 0_{1} 0_{0}\right\rangle$,	$\left\langle 3_{1} 0_{0} 4_{2}\right\rangle$,	$\left\langle 4_{2} 0_{0} 1_{2}\right\rangle$,	$\left\langle 1_{2} 0_{0} 0_{2}\right\rangle$,	$\left\langle 0_{2} 0_{0} 3_{2}\right\rangle$,	$\left\langle 3_{2} 0_{0} 3_{1}\right\rangle$,	$\left\langle 2_{1} 0_{4} 1_{5}\right\rangle$,
$\left\langle 1_{5} 0_{4} 4_{2}\right\rangle$,	$\left\langle 4_{2} 0_{4} 0_{2}\right\rangle$,	$\left\langle 0_{2} 0_{4} 2_{1}\right\rangle$,	$\left\langle 3_{1} 4_{4} 0_{2}\right\rangle$,	$\left\langle 0_{2} 4_{4} 2_{5}\right\rangle$,	$\left\langle 2_{5} 4_{4} 1_{3}\right\rangle$,	$\left\langle 1_{3} 4_{4} 1_{5}\right\rangle$,
$\left\langle 1_{5} 4_{4} 3_{1}\right\rangle$,	$\left\langle 0_{1} 0_{5} 1_{3}\right\rangle$,	$\left\langle 1_{3} 0_{5} 0_{2}\right\rangle$,	$\left\langle 0_{2} 0_{5} 3_{1}\right\rangle$,	$\left\langle 3_{1} 0_{5} 1_{2}\right\rangle$,	$\left\langle 1_{2} 0_{5} 0_{1}\right\rangle$,	$\left\langle 2_{2} 0_{0} 3_{3}\right\rangle$,

$\left\langle 3_{3} 0_{0} 4_{3}\right\rangle$,	$\left\langle 4_{3} 0_{0} 4_{4}\right\rangle$,	$\left\langle 4_{4} 0_{0} 1_{4}\right\rangle$,	$\left\langle 1_{4} 0_{0} 0_{4}\right\rangle$,	$\left\langle 0_{4} 0_{0} 3_{4}\right\rangle$,	$\left\langle 3_{4} 0_{0} 2_{5}\right\rangle$,	$\left\langle 2_{5} 0_{0} 2_{4}\right\rangle$,
$\left\langle 2_{4} 0_{0} 1_{3}\right\rangle$,	$\left\langle 1_{3} 0_{0} 0_{3}\right\rangle$,	$\left\langle 0_{3} 0_{0} 2_{3}\right\rangle$,	$\left\langle 2_{3} 0_{0} 2_{2}\right\rangle$,	$\left\langle 3_{1} 0_{1} 1_{5}\right\rangle$,	$\left\langle 1_{5} 0_{1} 3_{3}\right\rangle$,	$\left\langle 3_{3} 0_{1} 2_{4}\right\rangle$,
$\left\langle 2_{4} 0_{1} 3_{1}\right\rangle$,	$\left\langle 4_{1} 0_{1} 4_{2}\right\rangle$,	$\left\langle 4_{2} 0_{1} 4_{3}\right\rangle$,	$\left\langle 4_{3} 0_{1} 0_{4}\right\rangle$,	$\left\langle 0_{4} 0_{1} 0_{3}\right\rangle$,	$\left\langle 0_{3} 0_{1} 4_{1}\right\rangle$,	$\left\langle 2_{3} 0_{2} 3_{5}\right\rangle$,
$\left\langle 3_{5} 0_{2} 3_{3}\right\rangle$,	$\left\langle 3_{3} 0_{2} 1_{5}\right\rangle$,	$\left\langle 1_{5} 0_{2} 2_{4}\right\rangle$,	$\left\langle 2_{4} 0_{2} 3_{4}\right\rangle$,	$\left\langle 3_{4} 0_{2} 4_{3}\right\rangle$,	$\left\langle 4_{3} 0_{2} 2_{3}\right\rangle$,	$\left\langle 3_{1} 0_{3} 2_{4}\right\rangle$,
$\left\langle 2_{4} 0_{3} 2_{5}\right\rangle$,	$\left\langle 2_{5} 0_{3} 3_{1}\right\rangle$.					

Example A.10. Antiflexible LDTS(34).
$V=\mathbb{Z}_{17} \times \mathbb{Z}_{2}$.
The system is defined by the triples obtained from the following starter blocks under the action of the mapping $i_{j} \mapsto(i+1)_{j}$.
$\left\langle 1_{0} 0_{0} 5_{0}\right\rangle, \quad\left\langle 5_{0} 0_{0} 7_{0}\right\rangle, \quad\left\langle 7_{0} 0_{0} 3_{0}\right\rangle, \quad\left\langle 3_{0} 0_{0} 1_{0}\right\rangle, \quad\left\langle 6_{0} 0_{0} 1_{1}\right\rangle, \quad\left\langle 1_{1} 0_{0} 8_{0}\right\rangle, \quad\left\langle 8_{0} 0_{0} 2_{1}\right\rangle$, $\left\langle 2_{1} 0_{0} 9_{1}\right\rangle,\left\langle 9_{1} 0_{0} 5_{1}\right\rangle,\left\langle 5_{1} 0_{0} 0_{1}\right\rangle,\left\langle 0_{1} 0_{0} 6_{0}\right\rangle,\left\langle 1_{1} 2_{0} 5_{1}\right\rangle,\left\langle 5_{1} 2_{0} 10_{1}\right\rangle,\left\langle 10_{1} 2_{0} 16_{1}\right\rangle$, $\left\langle 16_{1} 2_{0} 9_{1}\right\rangle,\left\langle 9_{1} 2_{0} 1_{1}\right\rangle,\left\langle 3_{1} 5_{0} 11_{1}\right\rangle,\left\langle 11_{1} 5_{0} 9_{1}\right\rangle,\left\langle 9_{1} 5_{0} 3_{1}\right\rangle,\left\langle 4_{0} 0_{1} 14_{1}\right\rangle,\left\langle 14_{1} 0_{1} 16_{1}\right\rangle$, $\left\langle 16_{1} 0_{1} 4_{0}\right\rangle$.

Example A.11. Antiflexible LDTS(36).
$V=\left(\mathbb{Z}_{7} \times \mathbb{Z}_{5}\right) \cup\{\infty\}$.
The system is defined by the triples obtained from the following starter blocks under the action of the mapping $i_{j} \mapsto(i+1)_{j}$, with ∞ as a fixed point.

$\left\langle 2_{0} 0_{0} 2_{1}\right\rangle$,	$\left\langle 2_{1} 0_{0} 6_{1}\right\rangle$,	$\left\langle 6_{1} 0_{0} 6_{0}\right\rangle$,	$\left\langle 6_{0} 0_{0} 2_{0}\right\rangle$,	$\left\langle 2_{0} 0_{1} 6_{0}\right\rangle$,	$\left\langle 6_{0} 0_{1} 1_{2}\right\rangle$,	$\left\langle 1_{2} 0_{1} 5_{2}\right\rangle$,
$\left\langle 5_{2} 0_{1} 5_{1}\right\rangle$,	$\left\langle 5_{1} 0_{1} 2_{0}\right\rangle$,	$\left\langle 4_{1} 0_{0} 4_{2}\right\rangle$,	$\left\langle 4_{2} 0_{0} 0_{3}\right\rangle$,	$\left\langle 0_{3} 0_{0} 0_{4}\right\rangle$,	$\left\langle 0_{4} 0_{0} 6_{3}\right\rangle$,	$\left\langle 6_{3} 0_{0} 5_{4}\right\rangle$,
$\left\langle 5_{4} 0_{0} 3_{2}\right\rangle$,	$\left\langle 3_{2} 0_{0} 6_{4}\right\rangle$,	$\left\langle 6_{4} 0_{0} 3_{4}\right\rangle$,	$\left\langle 3_{4} 0_{0} 0_{2}\right\rangle$,	$\left\langle 0_{2} 0_{0} 4_{1}\right\rangle$,	$\left\langle 0_{2} 1_{0} 4_{3}\right\rangle$,	$\left\langle 4_{3} 1_{0} 6_{3}\right\rangle$,
$\left\langle 6_{3} 1_{0} 0_{2}\right\rangle$,	$\left\langle 1_{3} 0_{1} 2_{4}\right\rangle$,	$\left\langle 2_{4} 0_{1} 0_{4}\right\rangle$,	$\left\langle 0_{4} 0_{1} 3_{4}\right\rangle$,	$\left\langle 3_{4} 0_{1} 4_{4}\right\rangle$,	$\left\langle 4_{4} 0_{1} 6_{4}\right\rangle$,	$\left\langle 6_{4} 0_{1} 5_{4}\right\rangle$,
$\left\langle 5_{4} 0_{1} \infty\right\rangle$,	$\left\langle\infty 0_{1} 1_{4}\right\rangle$,	$\left\langle 1_{4} 0_{1} 1_{3}\right\rangle$,	$\left\langle 2_{3} 0_{1} 5_{3}\right\rangle$,	$\left\langle 5_{3} 0_{1} 4_{3}\right\rangle$,	$\left\langle 4_{3} 0_{1} 2_{3}\right\rangle$,	$\left\langle 2_{1} 1_{1} 5_{2}\right\rangle$,
$\left\langle 5_{2} 1_{1} 4_{3}\right\rangle$,	$\left\langle 4_{3} 1_{1} 1_{3}\right\rangle$,	$\left\langle 1_{3} 1_{1} 2_{1}\right\rangle$,	$\left\langle 2_{0} 0_{2} 5_{1}\right\rangle$,	$\left\langle 5_{1} 0_{2} 1_{1}\right\rangle$,	$\left\langle 1_{1} 0_{2} 0_{3}\right\rangle$,	$\left\langle 0_{3} 0_{2} 6_{0}\right\rangle$,
$\left\langle 6_{0} 0_{2} 0_{4}\right\rangle$,	$\left\langle 0_{4} 0_{2} 2_{2}\right\rangle$,	$\left\langle 2_{2} 0_{2} 1_{4}\right\rangle$,	$\left\langle 1_{4} 0_{2} 2_{3}\right\rangle$,	$\left\langle 2_{3} 0_{2} 6_{2}\right\rangle$,	$\left\langle 6_{2} 0_{2} 4_{4}\right\rangle$,	$\left\langle 4_{4} 0_{2} 2_{0}\right\rangle$,
$\left\langle 3_{0} 0_{3} 5_{4}\right\rangle$,	$\left\langle 5_{4} 0_{3} 6_{2}\right\rangle$,	$\left\langle 6_{2} 0_{3} 2_{2}\right\rangle$,	$\left\langle 2_{2} 0_{3} 4_{4}\right\rangle$,	$\left\langle 4_{4} 0_{3} 3_{0}\right\rangle$,	$\left\langle 3_{0} 0_{4} 4_{3}\right\rangle$,	$\left\langle 4_{3} 0_{4} 5_{3}\right\rangle$,
$\left\langle 5_{3} 0_{4} 3_{0}\right\rangle$,	$\left\langle 0_{0} \infty 2_{3}\right\rangle$,	$\left\langle 2_{3} \infty 5_{2}\right\rangle$,	$\left\langle 5_{2} \infty 3_{0}\right\rangle$.			

Example A.12. Antiflexible LDTS(40).
$V=\mathbb{Z}_{20} \times \mathbb{Z}_{2}$.
The system is defined by the triples obtained from the following starter blocks under the action of the mappings $i_{j} \mapsto(i+1)_{j}$ and $i_{j} \mapsto i_{j+1}$.
$\left\langle 1_{0} 0_{0} 5_{0}\right\rangle,\left\langle 5_{0} 0_{0} 1_{1}\right\rangle,\left\langle 1_{1} 0_{0} 11_{0}\right\rangle,\left\langle 11_{0} 0_{0} 18_{1}\right\rangle,\left\langle 18_{1} 0_{0} 8_{1}\right\rangle,\left\langle 8_{1} 0_{0} 12_{0}\right\rangle,\left\langle 12_{0} 0_{0} 3_{1}\right\rangle$, $\left\langle 3_{1} 0_{0} 5_{1}\right\rangle,\left\langle 5_{1} 0_{0} 14_{0}\right\rangle,\left\langle 14_{0} 0_{0} 14_{1}\right\rangle,\left\langle 14_{1} 0_{0} 7_{0}\right\rangle,\left\langle 7_{0} 0_{0} 3_{0}\right\rangle,\left\langle 3_{0} 0_{0} 1_{0}\right\rangle$.

Example A.13. Antiflexible LDTS(42).
$V=\mathbb{Z}_{7} \times \mathbb{Z}_{6}$.
The system is defined by the triples obtained from the following starter blocks under the action of the mappings $i_{j} \mapsto(i+1)_{j}$.

$\left\langle 0_{1} 0_{5} 1_{5}\right\rangle$,	$\left\langle 1_{5} 0_{5} 5_{1}\right\rangle$,	$\left\langle 5_{1} 0_{5} 2_{5}\right\rangle$,	$\left\langle 2_{5} 0_{5} 1_{1}\right\rangle$,	$\left\langle 1_{1} 0_{5} 4_{5}\right\rangle$,	$\left\langle 4_{5} 0_{5} 0_{1}\right\rangle$,	$\left\langle 2_{0} 0_{0} 2_{1}\right\rangle$,
$\left\langle 2_{1} 0_{0} 6_{1}\right\rangle$,	$\left\langle 6_{1} 0_{0} 6_{0}\right\rangle$,	$\left\langle 6_{0} 0_{0} 2_{0}\right\rangle$,	$\left\langle 2_{0} 0_{1} 6_{0}\right\rangle$,	$\left\langle 6_{0} 0_{1} 1_{2}\right\rangle$,	$\left\langle 1_{2} 0_{1} 5_{2}\right\rangle$,	$\left\langle 5_{2} 0_{1} 5_{1}\right\rangle$,
$\left\langle 5_{1} 0_{1} 2_{0}\right\rangle$,	$\left\langle 5_{0} 0_{4} 1_{5}\right\rangle$,	$\left\langle 1_{5} 0_{4} 4_{3}\right\rangle$,	$\left\langle 4_{3} 0_{4} 5_{3}\right\rangle$,	$\left\langle 5_{3} 0_{4} 4_{2}\right\rangle$,	$\left\langle 4_{2} 0_{4} 5_{0}\right\rangle$,	$\left\langle 3_{0} 0_{5} 2_{4}\right\rangle$,
$\left\langle 2_{4} 0_{5} 4_{3}\right\rangle$,	$\left\langle 4_{3} 0_{5} 5_{2}\right\rangle$,	$\left\langle 5_{2} 0_{5} 3_{0}\right\rangle$,	$\left\langle 4_{1} 0_{0} 4_{2}\right\rangle$,	$\left\langle 4_{2} 0_{0} 5_{3}\right\rangle$,	$\left\langle 5_{3} 0_{0} 3_{4}\right\rangle$,	$\left\langle 3_{4} 0_{0} 0_{4}\right\rangle$,
$\left\langle 0_{4} 0_{0} 6_{3}\right\rangle$,	$\left\langle 6_{3} 0_{0} 0_{5}\right\rangle$,	$\left\langle 0_{5} 0_{0} 0_{3}\right\rangle$,	$\left\langle 0_{3} 0_{0} 2_{3}\right\rangle$,	$\left\langle 2_{3} 0_{0} 6_{5}\right\rangle$,	$\left\langle 6_{5} 0_{0} 4_{4}\right\rangle$,	$\left\langle 4_{4} 0_{0} 0_{2}\right\rangle$,
$\left\langle 0_{2} 0_{0} 4_{1}\right\rangle$,	$\left\langle 1_{2} 5_{0} 6_{3}\right\rangle$,	$\left\langle 6_{3} 5_{0} 6_{5}\right\rangle$,	$\left\langle 6_{5} 5_{0} 3_{4}\right\rangle$,	$\left\langle 3_{4} 5_{0} 0_{5}\right\rangle$,	$\left\langle 0_{5} 5_{0} 1_{2}\right\rangle$,	$\left\langle 1_{1} 0_{1} 4_{2}\right\rangle$,

$\left\langle 4_{2} 0_{1} 3_{3}\right\rangle$,	$\left\langle 3_{3} 0_{1} 0_{3}\right\rangle$,	$\left\langle 0_{3} 0_{1} 1_{1}\right\rangle$,	$\left\langle 1_{3} 0_{1} 2_{4}\right\rangle$,	$\left\langle 2_{4} 0_{1} 0_{4}\right\rangle$,	$\left\langle 0_{4} 0_{1} 3_{4}\right\rangle$,	$\left\langle 3_{4} 0_{1} 4_{4}\right\rangle$,
$\left\langle 4_{4} 0_{1} 6_{4}\right\rangle$,	$\left\langle 6_{4} 0_{1} 5_{4}\right\rangle$,	$\left\langle 5_{4} 0_{1} 5_{5}\right\rangle$,	$\left\langle 5_{5} 0_{1} 1_{4}\right\rangle$,	$\left\langle 1_{4} 0_{1} 1_{3}\right\rangle$,	$\left\langle 0_{3} 2_{1} 6_{3}\right\rangle$,	$\left\langle 6_{3} 2_{1} 4_{3}\right\rangle$,
$\left\langle 4_{3} 2_{1} 0_{3}\right\rangle$,	$\left\langle 2_{0} 0_{2} 5_{1}\right\rangle$,	$\left\langle 5_{1} 0_{2} 1_{1}\right\rangle$,	$\left\langle 1_{1} 0_{2} 0_{3}\right\rangle$,	$\left\langle 0_{3} 0_{2} 0_{4}\right\rangle$,	$\left\langle 0_{4} 0_{2} 6_{0}\right\rangle$,	$\left\langle 6_{0} 0_{2} 4_{5}\right\rangle$,
$\left\langle 4_{5} 0_{2} 3_{3}\right\rangle$,	$\left\langle 3_{3} 0_{2} 2_{4}\right\rangle$,	$\left\langle 2_{4} 0_{2} 5_{5}\right\rangle$,	$\left\langle 5_{5} 0_{2} 5_{4}\right\rangle$,	$\left\langle 5_{4} 0_{2} 0_{5}\right\rangle$,	$\left\langle 0_{5} 0_{2} 6_{2}\right\rangle$,	$\left\langle 6_{2} 0_{2} 2_{2}\right\rangle$,
$\left\langle 2_{2} 0_{2} 1_{4}\right\rangle$,	$\left\langle 1_{4} 0_{2} 2_{0}\right\rangle$,	$\left\langle 3_{0} 0_{3} 4_{4}\right\rangle$,	$\left\langle 4_{4} 0_{3} 5_{2}\right\rangle$,	$\left\langle 5_{2} 0_{3} 6_{5}\right\rangle$,	$\left\langle 6_{5} 0_{3} 3_{0}\right\rangle$,	$\left\langle 4_{0} 0_{3} 3_{2}\right\rangle$,
$\left\langle 3_{2} 0_{3} 2_{5}\right\rangle$,	$\left\langle 2_{5} 0_{3} 4_{0}\right\rangle,\left\langle 4_{2} 0_{5} 1_{4}\right\rangle,\left\langle 1_{4} 0_{5} 2_{3}\right\rangle$,	$\left\langle 2_{3} 0_{5} 4_{2}\right\rangle$.				

Example A.14. ULSOQ(17).
$Q=\mathbb{Z}_{4} \times \mathbb{Z}_{4} \cup\{\infty\}$.
The quasigroup is obtained by defining $\infty * x=x$ and developing the following partial Cayley table under the action of the automorphism $i_{j} \mapsto(i+1)_{j}$ with ∞ as a fixed point:

$*$	∞	0_{0}	1_{0}	2_{0}	3_{0}	0_{1}	1_{1}	2_{1}	3_{1}	0_{2}	1_{2}	2_{2}	3_{2}	0_{3}	1_{3}	2_{3}	3_{3}
0_{0}	1_{0}	∞	3_{0}	0_{1}	0_{0}	3_{3}	3_{1}	2_{0}	0_{3}	2_{1}	2_{2}	1_{1}	1_{2}	0_{2}	2_{3}	3_{2}	1_{3}
0_{1}	1_{1}	3_{0}	0_{1}	0_{2}	3_{1}	∞	3_{3}	2_{3}	1_{2}	1_{3}	1_{0}	0_{3}	2_{2}	2_{1}	3_{2}	2_{0}	0_{0}
0_{2}	1_{2}	1_{1}	0_{2}	0_{3}	3_{2}	1_{0}	0_{1}	0_{0}	2_{0}	∞	1_{3}	3_{1}	2_{3}	3_{3}	3_{0}	2_{1}	2_{2}
0_{3}	1_{3}	0_{3}	2_{2}	3_{3}	2_{3}	1_{2}	0_{2}	3_{1}	3_{2}	0_{1}	3_{0}	1_{0}	0_{0}	∞	2_{1}	1_{1}	2_{0}

Example A.15. ULSOQ(26).
$Q=\mathbb{Z}_{5} \times \mathbb{Z}_{5} \cup\{\infty\}$.
The quasigroup is obtained by defining $\infty * x=x$ and developing the following partial Cayley table under the action of the automorphism $i_{j} \mapsto(i+1)_{j}$ with ∞ as a fixed point:

$*$	∞	0_{0}	1_{0}	2_{0}	3_{0}	4_{0}	0_{1}	1_{1}	2_{1}	3_{1}	4_{1}	0_{2}	1_{2}	2_{2}	3_{2}	4_{2}	0_{3}	1_{3}	2_{3}	3_{3}	4_{3}	0_{4}	1_{4}	2_{4}	3_{4}	4_{4}
0_{0}	1_{0}	∞	0_{1}	4_{0}	3_{1}	0_{0}	1_{1}	4_{4}	3_{4}	3_{0}	2_{0}	2_{2}	2_{1}	3_{2}	1_{2}	4_{1}	1_{3}	0_{3}	4_{3}	0_{2}	4_{2}	2_{3}	2_{4}	1_{4}	0_{4}	3_{3}
0_{1}	1_{1}	3_{0}	0_{2}	4_{1}	2_{0}	0_{1}	∞	4_{3}	1_{4}	0_{4}	4_{4}	2_{4}	1_{0}	4_{0}	3_{4}	0_{3}	3_{1}	2_{1}	0_{0}	4_{2}	2_{2}	1_{3}	1_{2}	3_{2}	3_{3}	2_{3}
0_{2}	1_{2}	3_{1}	2_{2}	0_{2}	0_{3}	4_{2}	1_{0}	0_{1}	4_{0}	1_{1}	3_{0}	∞	1_{3}	4_{3}	4_{4}	2_{3}	3_{3}	3_{4}	2_{4}	1_{4}	0_{4}	0_{0}	3_{2}	2_{1}	4_{1}	2_{0}
0_{3}	1_{3}	2_{2}	0_{3}	2_{3}	4_{3}	0_{4}	2_{1}	0_{2}	3_{2}	1_{2}	4_{2}	3_{4}	0_{1}	1_{0}	2_{4}	3_{3}	∞	2_{0}	1_{4}	3_{0}	1_{1}	4_{0}	4_{4}	4_{1}	0_{0}	3_{1}
1_{4}	3_{3}	0_{4}	4_{4}	3_{4}	2_{4}	2_{2}	0_{3}	2_{3}	4_{3}	1_{3}	2_{1}	4_{1}	3_{0}	1_{0}	3_{2}	4_{2}	1_{1}	4_{0}	2_{0}	3_{1}	∞	0_{2}	0_{1}	1_{2}	0_{0}	

References

[1] Brouwer A.E., Schrijver A., Hanani H., Group divisible designs with block-size four, Discrete Math. 20 (1977), 1-10.
[2] Colbourn C.J., Hoffman D.G., Rees R., A new class of group divisible designs with block size three, J. Combin. Theory Ser. A 59 (1992), 73-89.
[3] Drápal A., Kozlik A., Griggs T.S., Latin directed triple systems, Discrete Math. 312 (2012), 597-607.
[4] Drápal A., Griggs T.S., Kozlik A.R., Basics of DTS quasigroups: Algebra, geometry and enumeration, J. Algebra Appl. 14 (2015), 1550089.
[5] Drápal A., Kozlik A.R., Griggs T.S., Flexible Latin directed triple systems, Utilitas Math., to appear.
[6] Ge G., Group divisible designs, Handbook of Combinatorial Designs, second edition, ed. C.J. Colbourn and J.H. Dinitz, Chapman and Hall/CRC Press, Boca Raton, FL, 2007, pp. 255-260.
[7] Ge G., Ling A.C.H., Group divisible designs with block size four and group type $g^{u} m^{1}$ for small g, Discrete Math. 285 (2004), 97-120.
[8] Ge G., Rees R.S., On group-divisible designs with block size four and group-type $6^{u} m^{1}$, Discrete Math. 279 (2004), 247-265.
[9] Ge G., Rees R., Zhu L., Group-divisible designs with block size four and group-type $g^{u} m^{1}$ with m as large or as small as possible, J. Combin. Theory Ser. A 98 (2002), 357-376.
[10] Hanani H., Balanced incomplete block designs and related designs, Discrete Math. 11 (1975), 255-369.
[11] Kozlik A.R., Cyclic and rotational Latin hybrid triple systems, submitted.
[12] McCune W., Mace4 Reference Manual and Guide, Tech. Memo ANL/MCS-TM-264, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, August 2003.

Charles University, Faculty of Mathematics and Physics, Department of Algebra, Sokolovská 83, 18675 Praha 8, Czech Republic

E-mail: andrew.kozlik@gmail.com
(Received November 14, 2014, revised March 5, 2015)

