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A NOTE ON THE MULTIPLIER IDEALS OF MONOMIAL IDEALS
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Abstract. Let a ⊆ C[x1, . . . , xn] be a monomial ideal and J (ac) the multiplier ideal of a
with coefficient c. Then J (ac) is also a monomial ideal of C[x1, . . . , xn], and the equality
J (ac) = a implies that 0 < c < n + 1. We mainly discuss the problem when J (a) = a or
J (an+1−ε) = a for all 0 < ε < 1. It is proved that if J (a) = a then a is principal, and
if J (an+1−ε) = a holds for all 0 < ε < 1 then a = (x1, . . . , xn). One global result is also
obtained. Let ã be the ideal sheaf on P

n−1 associated with a. Then it is proved that the
equality J (ã) = ã implies that ã is principal.
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1. Introduction

Multiplier ideal sheaves are fundamental topics in higher dimensional algebraic

geometry. In commutative algebra, there are objects similar to adjoint ideals and

test ideals (cf. [2], [7], [11], [12], [13], [14]).

Let X be a smooth quasiprojective complex algebraic variety and a ⊆ OX an ideal

sheaf on X . Let f : Y → X be a log resolution of a with f−1(a) = OY (−E). For

any rational number c > 0, the multiplier ideal of a with coefficient c is defined to be

J (ac) = f∗OY (KY/X − xcEy),

whereKY/X = KY −f∗KX is the relative canonical divisor and x−y is the rounddown

for Q-divisors. Then J (ac) is an ideal sheaf on X , and a ⊆ J (a) ⊆ OX .

If a is invertible, then J (a) = a. In general, J (a) 6= a because of the singularity

of a. We are interested in the problem of when J (ac) = a.

Both authors are supported by the National Natural Science Foundation of China
(No. 11401413 and No. 11471234).
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When X is an affine variety of dimension n and a is monomial, J (ac) can be

described explicitly by a remarkable theorem of Howald [9]. In this case, J (ac) is

also a monomial ideal. Note that, by Skoda’s Theorem, one has

J (an+1+ε) = a
2J (an−1+ε) ⊆ a

2 6= a

for any ε > 0. It follows that the equality J (ac) = a implies that 0 < c < n + 1.

For any 0 < c < 1, as J (a) ⊆ J (ac), we see that J (ac) = a implies that J (a) = a.

In the rest of the paper we analyse the case when J (ac) = a for c ∈ [1, n+ 1). We

will mainly discuss the problem when c is at or near to the endpoints of the interval

[1, n+ 1), i.e., J (a) = a or J (an+1−ε) = a for all 0 < ε < 1.

Let a ⊆ C[x1, . . . , xn] be a monomial ideal. It is well-known that J (a) = a

when a is principal. The main result in Section 2 claims that the converse is also

true. Similar results hold also for multiplier ideals of monomial ideals on affine toric

varieties, adjoint ideals and test ideals. Then we prove that if a is not principal then

J (am) 6= J (a)m for m ≫ 0.

Section 3 is devoted to the discussion of the problem of when J (an+1−ε) = a for

all 0 < ε < 1. It is also well-known that J ((x1, . . . , xn)
n+1−ε) = (x1, . . . , xn) for all

0 < ε < 1. The main theorem in this section states that the converse is also true.

Let a ⊆ C[x0, x1, . . . , xn] be a monomial ideal and ã the ideal sheaf on Pn asso-

ciated with a. Gluing local results, we get a global result in the last section, which

says that if J (ã) = ã then ã is principal.

2. When J (a) = a

Let a be a monomial ideal. Howald [9] gave a description of multiplier ideals of a

by convex sets. There are similar descriptions for multiplier ideals of monomial ideals

on affine toric varieties, adjoint ideals and test ideals. In order to discuss uniformly

these ideals together, we prove first a theorem on convex sets.

Before stating the theorem, it is not difficult to see that the following result holds

because of the discreteness of integral numbers.

Lemma 2.1. Suppose that a domain D ⊆ Rn is contained in the zero set of

the equation p1x1 + . . . + pnxn = p where at least two of p1, . . . , pn are nonzero.

Then there exists a point (a1, . . . , an) ∈ D such that a1, . . . , an are all non-integral

numbers.

Let α = (a1, . . . , an), β = (b1, . . . , bn) ∈ Rn. Denote that α 6 β if ai 6 bi,

i = 1, . . . , n. Let α1, . . . , αs ∈ Nn where N contains 0. We say that {α1, . . . , αs} is
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a reduced set if αi 66 αj for any i 6= j. Set P (α1, . . . , αs) to be the convex hull in R
n

of the set {β ∈ Nn : β > αi for some i}. Let w ∈ Rn. Set

J (α1, . . . , αs;w) = {β ∈ N
n : β + w ∈ Int(P (α1, . . . , αs))},

where Int(A) denotes the interior of a set A. Then it is clear that P (α1, . . . , αs) ∩

Nn ⊆ J (α1, . . . , αs;w) provided that w > (0, . . . , 0).

Theorem 2.2. Let {α1, . . . , αs} be a reduced set in Nn and w > (1, . . . , 1) ∈ Rn.

If s > 2, then

P (α1, . . . , αs) ∩ N
n 6= J (α1, . . . , αs;w).

P r o o f. Let S be the set of all non-coordinate hyperplanes which bound the

convex hull P (α1, . . . , αs). Let H ∈ S. Then the equation of H has the following

form:

p1x1 + . . .+ pnxn = p, pi > 0, p > 0.

If all the equations have the form xi = qi, then S = {Hij : j = 1, . . . , r}, where

Hij : xij = qij . It follows that

P (α1, . . . , αs) =

r
⋂

j=1

{β ∈ R
n
>0 : β > (0, . . . , 0, qij , 0, . . . , 0)} = P (α),

where α = (0, . . . , 0, qi1 , 0, . . . , 0, qir , 0, . . . , 0). This contradicts the assumption that

{α1, . . . , αs} is a reduced set and s > 2. Therefore there exists H ∈ S whose equation

has the form p1x1+ . . .+pnxn = p, pi > 0, p > 0, where at least two of p1, . . . , pn are

nonzero. Then, by Lemma 2.1, there exists a point Q = (q1, . . . , qn) on the boundary

of P (α1, . . . , αs) with all the qi non-integral.

Denote the least integer not less than qi by pqiq and the maximal integer not

bigger than qi by xqiy. Set pQq = (pq1q, . . . , pqnq) and xQy = (xq1y, . . . , xqny).

Then q′i = pqiq − qi > 0, q′′i = qi − xqiy > 0, i = 1, . . . , n. Thus, assuming that Q is

on the boundary, pQq = Q + (q′1, . . . , q
′

n) and xQy = Q − (q′′1 , . . . , q
′′

n), we see that

pQq ∈ Int(P (α1, . . . , αs)) and xQy 6∈ P (α1, . . . , αs). Note that xQy + (1, . . . , 1) =

pQq and w > (1, . . . , 1). Necessarily xQy + w ∈ Int(P (α1, . . . , αs)), so that xQy ∈

J (α1, . . . , αs;w). Hence P (α1, . . . , αs) ∩ Nn 6= J (α1, . . . , αs;w). �

Let K be a field and K[x1, . . . , xn] a polynomial ring over K. Let I be an ideal

of K[x1, . . . , xn]. When I is generated by monomials, we say that I is a monomial

ideal and its minimal generating set is denoted by G(I).

Every monomial xa1

1 . . . xan
n = xα ∈ K[x1, . . . , xn] corresponds to its exponent

vector α = (a1, . . . , an) ∈ Nn. Let I ⊆ K[x1, . . . , xn] be a monomial ideal. The
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convex hull in Rn of the set of all exponent vectors of monomials of I is called

the Newton polygon of I, denoted by P (I). Then the set of monomials in the

integral closure I of I is just the set of all monomials xα with α ∈ P (I) (cf. [15],

Proposition 1.4.6). For any rational number c > 0, set cP (I) = {cα : α ∈ P (I)}.

In the case X = An, Howald [9] gave an explicit description of J (ac).

Howald’s theorem. Let a ⊆ C[x1, . . . , xn] be a monomial ideal and c > 0

a rational number. Then J (ac) is a monomial ideal and

J (ac) = (xα : α+ (1, . . . , 1) ∈ Int(cP (a)) ∩N
n).

Notice that, as P (a) = P (a), one has that a ⊆ a ⊆ J (a) = J (a).

Let xα, xβ be two monomials in K[x1, . . . , xn]. Then xα | xβ if and only if

α 6 β. Thus {xα1 , . . . , xαs} forms a minimal generating set for some monomial

ideal in K[x1, . . . , xn] if and only if {α1, . . . , αs} forms a reduced set in Nn. Let

I ⊆ K[x1, . . . , xn] be a monomial ideal and G(I) = {xα1 , . . . , xαs}. Then one has

that P (I) = P (α1, . . . , αs).

For any monomial ideal a ⊆ C[x1, . . . , xn] with G(a) = {xα1 , . . . , xαs}, it follows

from Howald’s theorem that

J (a) = (xα : α ∈ J (α1, . . . , αs; (1, . . . , 1))).

By Theorem 2.2, we get the necessary part of the following theorem, while the

sufficient part is well-known, which can also be seen directly by Howald’s theorem.

Theorem 2.3. Let a ⊆ C[x1, . . . , xn] be a monomial ideal. Then J (a) = a if and

only if a is principal.

Remark 2.4. We can get results similar to Theorem 2.3 from Theorem 2.2 for

multiplier ideals of monomial ideals on affine toric varieties, adjoint ideals and test

ideals since there are similar descriptions for these ideals in [1], [10], [7]. For toric

varieties and the other unexplained notions, we refer to [4] and [6].

Let a, b ⊆ C[x1, . . . , xn] be two monomial ideals. It is proved in [3] that the

following subadditivity property holds:

J (ab) ⊆ J (a)J (b),

which will be used in the sequel.
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Corollary 2.5. Let a1, . . . , am be monomial ideals in C[x1, . . . , xn]. Suppose that

a1 . . . am = J (a1) . . .J (am).

Then a1, . . . , am are all principal.

P r o o f. By the subadditivity property, we have

a1 . . . am ⊆ J (a1 . . . am) ⊆ J (a1) . . .J (am).

It follows from the hypotheses that a1 . . . am = J (a1 . . . am). Then, by Theorem 2.3,

a1 . . . am is principal. Hence a1, . . . , am are all principal. �

Thus, for any monomial ideal a in C[x1, . . . , xn] and any integer m > 0, am =

J (a)m holds when and only when a is principal.

By the subadditivity property, we have that J (am) ⊆ J (a)m holds for any integer

m > 0. It is clear that the equality holds when a is principal. Notice that a is

principal if and only if a is principal.

There is an example when a is not principal and J (am) = J (a)m holds for some

m > 0. Taking a = (x1, . . . , xn) as the threshold lct(a) = n (see the following

section), one has that J (am) = J (a)m = OAn for m = 1, . . . , n− 1. However, there

is an upper bound for such m.

Theorem 2.6. Let a ⊆ C[x1, . . . , xn] be a monomial ideal. Suppose that a is not

principal. Then there exists m0 such that for all m > m0,

J (am) 6= J (a)m.

P r o o f. Since a is not principal, so neither is a, it follows from Theorem 2.3

that there exists a monomial xa1

1 . . . xan
n ∈ J (a) \ a. Let P = (a1, . . . , an) and

P ′ = (a1 + 1, . . . , an + 1) be two points. Then P 6∈ P (a) and P ′ ∈ Int(P (a)). Thus

the line segment PP ′ must pass the boundary of P (a). Let Q ∈ PP ′ be on the

boundary. Then Q = (a1 + λ, . . . , an + λ) for some 0 < λ < 1. Take an integer m0

such that m0λ > 1. Suppose that m > m0. Since Int(P (am)) ⊆ m Int(P (a)), it

follows that the point (m(a1+λ), . . . ,m(an+λ)) is on the boundary of P (am). Note

that

(m(a1 + λ), . . . ,m(an + λ)) = (ma1 + 1, . . . ,man + 1) + (δ, . . . , δ)

with δ > 0. Then it holds that (ma1 + 1, . . . ,man + 1) 6∈ Int(P (am)). There-

fore xma1

1 . . . xman
n 6∈ J (am). However xma1

1 . . . xman
n ∈ J (a)m, which proves that

J (am) 6= J (a)m. �
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Corollary 2.7. Let a ⊆ C[x1, . . . , xn] be a monomial ideal. Then J (am) = J (a)m

for all m > 0 if and only if a is principal.

Remark 2.8. In some cases, the bound m0 in Theorem 2.6 depends on the

threshold of a. Let us return to the proof of Theorem 2.6 where the bound m0

comes from the line segment between two points with integral components. Now

suppose that the reciprocal m = 1/lct(a) of the threshold of a is not an integer.

Then the point (m, . . . ,m) is on the boundary of P (a) (see the next section), and

the points (pmq, . . . , pmq) ∈ Int(P (a)), while (xmy, . . . , xmy) 6∈ P (a). Then any

m0 > 1/(m− xmy) = 1/(1/lct(a)− [1/lct(a)]) is a required bound.

3. When J (an+1−ε) = a for all 0 < ε < 1

Let a ⊆ C[x1, . . . , xn] be a monomial ideal of zero-dimension. The log canonical

threshold lct(a) of a is defined as

lct(a) = inf{c > 0: J (ac) 6= OAn}.

Then
lct(a) = sup{c > 0: J (ac) = OAn}

= sup{c > 0: (1, . . . , 1) ∈ Int(cP (a))}

= sup
{

c > 0:
(1

c
, . . . ,

1

c

)

∈ Int(P (a))
}

.

Hence lct(a) is just the number t such that the point (1/t, . . . , 1/t) is on the boundary

of P (a). Furthermore, note that lct(a) 6 n because J (an) ⊆ a by Skoda’s theorem

(cf. [11], Theorem 11.1.1).

When a = (xa1

1 , . . . , xan
n ) with ai > 0, i = 1, . . . , n, then lct(a) = 1/a1+ . . .+1/an

(cf. [2], Example 4.5, or [11], Example 9.3.15). This implies the sufficient part of the

following theorem.

Theorem 3.1. lct(a) = n if and only if a = (x1, . . . , xn).

P r o o f. Suppose that lct(a) = n. Let H be a non-coordinate hyperplane bound-

ing P (a). Then, by the lemma below, the equation of H has the form:

a1x1 + . . .+ anxn = 1, 0 6 ai 6 1, i = 1, . . . , n.

Consider the intersection point of H with the diagonal line x1 = x2 = . . . = xn. It

is clear that the point is
(

1/
n
∑

i=1

ai, . . . , 1/
n
∑

i=1

ai

)

, which is on the boundary of P (a).
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Then it is necessary to have lct(a) =
n
∑

i=1

ai. This implies that a1 = a2 = . . . = an = 1.

Then the equation of H is x1 + . . .+ xn = 1. Thus H is the unique non-coordinate

hyperplane of P (a). This proves that a = (x1, . . . , xn). �

Lemma 3.2. Let I ⊆ K[x1, . . . , xn] be a monomial ideal. Suppose that

a1x1 + . . .+ anxn = 1, ai > 0

is the equation of some hyperplane H bounding P (I). Then ai 6 1, i = 1, . . . , n.

P r o o f. Suppose that, for example, a1 6= 0, let us show that a1 6 1.

We claim that there exists one point (m1, . . . ,mn) ∈ Nn on H with m1 6= 0.

Otherwise, all the exponent vectors of I which determine H are on the coordinate

hyperplane P1 : x1 = 0. Then H = H∩P1. Note that the equation of the hyperplane

H ∩ P1 in Rn−1 is a2x2 + . . . + anxn = 1. It follows that the equation of H in Rn

should also be a2x2 + . . .+ anxn = 1, a contradiction.

Let (m1,m2, . . . ,mn) ∈ Nn be a point on H with m1 6= 0. Then

a1m1 + a2m2 + . . .+ anmn = 1.

This implies that a1 6 1, as required. �

By the definition of the threshold, Theorem 3.1 is equivalent to asserting that

J (an−ε) = OAn for all 0 < ε < 1 if and only if a = (x1, . . . , xn). On the other

hand, for any 0 < ε < 1, by Skoda’s Theorem (cf. [11], Theorem 11.1.1), one has

that J (an+1−ε) = aJ (an−ε). Then, by the Nakayama Lemma, J (an+1−ε) = a if

and only if J (an−ε) = OAn . It follows from Theorem 3.1 that the following theorem

holds.

Theorem 3.3. J (an+1−ε) = a holds for all 0 < ε < 1 when and only when

a = (x1, . . . , xn).

4. A global result

Let a be a monomial ideal of C[x0, x1, . . . , xn] and ã the sheaf on Pn = Pn
C
asso-

ciated with a. The ideal sheaf ã is said to be principal if its stalks are all principal.

In this last section, we consider the conclusions of the sheaf equality J (ã) = ã. We

will adopt the notation in [8].
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Theorem 4.1. Let a ⊆ C[x0, x1, . . . , xn] be a monomial ideal. If J (ã) = ã as

sheaves on Pn, then ã is principal.

P r o o f. Consider the restrictions on D+(xi), i = 0, 1, . . . , n. By the Restriction

theorem on multiplier ideals (cf. [5], Proposition 7.5), we have that

J (ã|D+(xi)) ⊆ J (ã)|D+(xi).

Then J (ã|D+(xi)) ⊆ ã|D+(xi), i.e., J ((a(xi))
∼) ⊆ (a(xi))

∼ on D+(xi). It follows

that J ((a(xi))
∼) = (a(xi))

∼ on D+(xi). Then, by Theorem 2.3, as an ideal in

C[x0/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi], a(xi) = ã(D+(xi)) is principal. Therefore,

the ideal sheaf ã is principal. �

Remark 4.2. Notice that a may not be principal, while ã is principal. Set

a = (x2
0x1x2, x0x

2
1x2, x0x1x

2
2) ⊆ C[x0, x1, x2].

Then a is not principal, while ã is principal.
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