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Abstract. This paper is about some geometric properties of the gluing of order k in
the category of Sikorski differential spaces, where k is assumed to be an arbitrary natural
number. Differential spaces are one of possible generalizations of the concept of an infinitely
differentiable manifold. It is known that in many (very important) mathematical models,
the manifold structure breaks down. Therefore it is important to introduce a more general
concept. In this paper, in particular, the behaviour of kth order tangent spaces, their
dimensions, and other geometric properties, are described in the context of the process of
gluing differential spaces. At the end some examples are given. The paper is self-consistent,
i.e., a short review of the differential spaces theory is presented at the beginning.
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1. Introduction

The concept of a differential space emerged in 1960s and the whole idea can be

summarized in the following way. First of all, the notion a smooth manifold is

presented not in terms of maps and atlases, but rather as an algebra of functions

on a given set [10], [26], [29]. Then the topology and the differential structure is

recovered from this algebra. So, if some properties of this algebra are weakened, one

would obtain a generalized space.

It should be noticed that there are many ways of generalizing the notion of

a smooth manifold and of course, Sikorski’s one, is not the only one. Beside the

concept initially proposed in [36], [35] (which will be studied in this paper), there
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are also some others. Those, which are especially close to the Sikorski differential

spaces are, for example, Spallek’s spaces [41] and Mostow’s spaces [24]. Yet, much

in this direction was done also by Chen [4], Kriegl and Michor [15], Mallios and his

collaborators (Rosinger, Zafiris, Vassiliou, and others) [19], [18], [20], [42], Nestruev

[26], Souriau [40] and others. In [1] the reader should find a brief overview of various

generalizations.

This paper is aimed at differential spaces in the sense of Sikorski [36], [35]. Yet,

this concept was studied extensively by the Polish group mainly in the context of

its applications to the problem of spacetime singularity (see, for example, [11], [13]

and references therein). The usefulness of differential spaces is clearly seen when one

tries to build the differential geometry over “singular” spaces, where the classical

formalism breaks down. Indeed, the efforts of the Polish group gathered around

Heller and Sasin in 1990s were focused on the endeavour to find a suitable category,

which would allow to describe a spacetime together with its singularities as a single

object. On the other hand, Śniatycki and his collaborators used differential spaces

in the geometric quantization, in the problem of reduction of symmetries [38], [37]

and in describing the mechanics on fractals [8].

In the similar period Mallios and his collaborators developed the “abstract differ-

ential geometry” starting from the theory of Banach spaces and topological algebras.

Indeed, Mallios’ differential triads over topological spaces are just another attempt

to build a generalized differential calculus [19], [18].

As this paper is concerned with the gluing procedure, let us mention that the

gluing of smooth manifolds is well known. For example, it is briefly explained in [2].

The general process of gluing in the case of Sikorski differential spaces is described

in [31], [30]. A similar technique, but in the category of Spallek’s differential spaces

is presented in [33]. The last paper is also heavily focused on cosmological models.

Finally, let us mention that the basic concepts of the higher-order differential ge-

ometry in a classical sense can be found, for example, in [43]. Much can also be

found in [3], [5], [21], [23]. For historical reasons, of course, the original paper [27]

should be consulted, and also [28] presents an interesting discussion. More informa-

tion about the basic concepts of the differential spaces theory with some examples

can be found, for example, in the expository paper [6]. The last paper describes also

a certain gluing technique, called therein the generator gluing technique. However,

this method is strictly a global one. Yet, there exists no consistent description of an

arbitrary-order gluing technique of differential spaces.

To keep clarity of the exposition in this paper, we will try to show crucial steps

in such a way that the reader non-familiar with differential spaces should be able to

keep the track. However, for results already known, only references will be given.

This paper is organized in the following way. In Section 2 we define the differential
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spaces and all necessary notions and facts from the higher-order geometry over such

spaces. Next, in Section 3 we describe the main part of this paper, i.e., the gluing

technique of arbitrary order. Finally, in Section 4 we give some examples of the

technique described in Section 3. In particular, theorems proved in Section 3 and

Section 4 are new results. They provide explanations including the behaviour of

a topology, the dimension of a tangent space, and vector fields. We discuss also the

generators of the glued differential space.

2. Higher-order geometry on differential spaces

Now, let us briefly review the fundamental concepts and definitions of differential

spaces theory. Let M be a nonempty set. Let C be a family of some real functions

on M , i.e., C := {f1, . . . , fk, . . . ; fk : M → R for all k}. The weakest topology, for

which all functions from C are continuous, is called the topology induced by C on M ,

and it will be denoted by τC .

Now, let f be a function defined on a subset A ⊂ M , and suppose that we have

already some family C of functions on M (as above, defining the topology on M).

Then we have also the topology on A induced from τC , i.e., τA := {U ∩A ; U ∈ τC}.

If for all p ∈ A exist B ∋ p and g ∈ C that f |B = g|B where B ∈ τA, then f is called

a local C-function. In other words, f is a local C-function if at every point p ∈ A

there exists a function g ∈ C and an open neighbourhood B (with respect to τC)

of p, such that f |B = g|B.

Definition 2.1. The set of all local C-functions on a given set A ⊂ M is denoted

by CA.

The superposition closure of a family of functions C, denoted by scC, is defined in

the following way: scC := {ω ◦ (f1, . . . , fn) ; n ∈ N, ω ∈ C∞(Rn), f1, . . . , fn ∈ C}.

It is not hard to check (see, for example, [34]) that the following relations hold:

C|A ⊂ CA, (CA)A = CA and C ⊂ sc(CM ) ⊂ (scC)M . As an example for the first

relation, consider C = C∞(R) and A = (0, 1) ⊂ R = M . The function x−1 restricted

to A is not a restriction of any function from C, but it belongs to CA.

Finally, suppose that some family of functions C is given on a nonempty set M .

Let C be such that: C = CM and C = scC. Then C is called a differential structure

on M .

Definition 2.2. Let M be a nonempty set and let C be a differential structure

on M . A pair (M,C) is called the Sikorski differential space.

Now, suppose that we have a family of functions C0 defined on M . Then, of course,

C = (scC0)M is a differential structure on M . Such a differential structure is called
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generated by C0 and functions from C0 are called generators. Notice that generators

are not unique. For example, we can always take the whole C as generators, but

in many concrete cases, it is reasonable to consider the smallest possible collection

of generators. If there exists a finite C0 which generates C, then (M,C) is called

finitely generated.

Of course, C is a sub-algebra of RM . Moreover, for two differential spaces (M,C)

and (N,D), a mapping F : M → N is called smooth, if f ◦F ∈ C for all f ∈ D, and

it is called a diffeomorphism, if it is bijective and both F and F−1 are smooth (in

the above sense).

Notice that a differential space (M,C∞(M)) is a smooth (in a classical sense)

manifold. However, we can consider some other differential structures on M . For

example, a pair (M,D), where D consists of all continuous functions on M , is a differ-

ential space. Also we can insert as a generator not only a non-smooth (in a classical

sense) function, but even a non-continuous (with respect to the standard topology)

one. The first modification affects just the differential structure. Therefore, in the

differential spaces category the notion of a smoothness is understood in a more gen-

eral sense (as explained above). The second case changes also the topology of the

space. Therefore, differential spaces provide some general techniques, for which both

manifolds and “singular” spaces are subcases.

Theorem 2.1 below is well-known (see, for example, [6]).

Theorem 2.1. If (M,C) is a Hausdorff differential space, with C = (sc C0)M

and C0 = {f1, . . . , fk}, then F = (f1, . . . , fk) is a diffeomorphism from (M,C) to

(F (M), C∞(F (M)), where F (M) ⊂ R
n and C∞(F (M) := (C∞(Rk)|F (M))F (M) =

(sc {π1|F (M), . . . , πk|F (M)})F (M), where πi : R
k ∋ (x1, . . . , xi, . . . , xk) 7→ xi ∈ R are

the projections for i = 1, . . . , k.

Further, we will also need to consider functions vanishing at a given point and

functions which, together with their derivatives up to order k, vanish at that point.

This is an algebraic counterpart of the notion of tangency of order k. Therefore,

let (M,C) be a differential space, and p ∈ M . Then mp := {f ∈ C ; f(p) = 0} is

an ideal. Similarly, let m
k
p be the kth power of the ideal mp. In other words, mk

p is

generated by f1f2 . . . fk, where f1, f2, . . . , fk ∈ mp.

Definition 2.3. Let k ∈ N. A linear mapping v : C → R is called the kth order

tangent vector to the differential space (M,C) at the point p ∈ M , if the following

conditions hold:

(1) v(r) = 0 for all r ∈ R ⊂ C.

(2) v(mk+1
p ) = 0. The set of all kth order tangent vectors to (M,C) at p ∈ M is

denoted by T k
p M .
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Let us observe that T k
p M possesses a natural structure of a linear space. Moreover,

it is obvious that, for k = 1, the above definition is equivalent with the classical one,

i.e., 1st order tangent vectors are exactly R-linear operators, satisfying the Leibniz

rule. Of course, for an arbitrary k ∈ N it is true that m
k+1
p ⊂ m

k
p and, therefore,

T k
p M ⊂ T k+1

p M .

Further, we will need to consider a certain linear functional. Namely, let v ∈ T k
p M

be an arbitrary kth order tangent vector, and define lv([f ]) := v(f) for an arbitrary

f ∈ mp and [f ] ∈ mp/m
k+1
p . It is clear that lv is a linear functional.

Lemma 2.1. The mapping I : T k
p M ∋ v 7→ lv ∈ (mp/m

k+1
p )∗, defined by

I(v) := lv, is an isomorphism of linear spaces.

P r o o f. First, notice that I is linear. If lv = 0, then v = 0. Therefore I is

a monomorphism. Now, let l ∈ (mp/m
k+1
p )∗ and consider the mapping vl : C → R

defined by vl(f) := l([f − f(p)]) for an arbitrary f ∈ C. It is easy to notice that

vl ∈ T k
p M and I(vl) = l. Therefore I is also an epimorphism. �

Corollary 2.1. Let (M,C) be a differential space, k ∈ N and f ∈ C. If v(f) = 0

for any v ∈ T k
pM , then f − f(p) ∈ m

k+1
p .

P r o o f. If v(f) = 0 for an arbitrary v ∈ T k
pM , then for an arbitrary l ∈

(mp/m
k+1
p )∗, it is true that l([f − f(p)]) = vl(f) = 0. As a result, [f − f(p)] = 0, so

f − f(p) ∈ m
k+1
p . �

Similarly, as in the classical case, we can introduce the differentials of arbitrary

order of a function f ∈ C. Namely, let v ∈ T k
p M , where p ∈ M and k ∈ N. Then

the mapping dkpf : T k
p M → R, defined by dkpf(v) := v(f), is called the kth order

differential of f at the point p ∈ M .

Notice that for any k ∈ N, a natural differential structure, denoted by T kC, can

be generated on T kM :=
⊔

p∈M

T k
p M (see, for example, [25]). In particular, T kC is

generated by {dkf ; f ∈ C}∪ {f ◦ πk ; f ∈ C}, where πk : T kM → M is the natural

projection and dkf : T kM → R is defined by (dkf)(V ) := V (f), V ∈ T kM .

Moreover, for 1st order tangent vectors we have a well known (see, for exam-

ple, [32]) formula for computations. In particular, if v : C → R is a tangent vector

at p (i.e., a linear mapping, satisfying the Leibniz rule), then for an arbitrary n ∈ N

and ω ∈ C∞(Rn) and a collection of functions f1, . . . , fn from the generators of the

structure C, the formula

(2.1) v(ω ◦ (f1, . . . , fn)) =
n∑

i=1

∂ω

∂xi
(f1(p), . . . , fn(p))v(fi)

holds.
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Notice that equation (2.1) allows to recover the behaviour of tangent vectors on

the superposition closure from the behaviour on the generators. Nevertheless, equa-

tion (2.1) cannot be used, in full generality, to prolong derivations of an algebra to

its superposition closure (see [22] and [9] on this concern), and we do not discuss it

further here. However, we can generalize the above formula for kth order vectors.

Lemma 2.2. Let (M,C) be a differential space generated by C0, and p ∈ M . If

g ∈ mp is such that d
k
pg = 0, then there exists an open neighbourhood U ∋ p, and

f1, . . . , fn ∈ C0, ωi1...ik+1
∈ C∞(Rn), where n ∈ N and i1, . . . , ik+1 = 1, . . . , n, such

that

(2.2) g|U =

( n∑

i1,...,ik+1=1

(fi1 − fi1(p)) . . . (fik+1
− fik+1

(p))ωi1...ik+1
◦ (f1, . . . , fn)

)∣∣∣∣
U

.

P r o o f. Since g ∈ mp ⊆ C = (scC0)M , there exists an open neighbourhood

U ∋ p and f1, . . . , fn ∈ C0 and θ ∈ C∞(Rn), where n ∈ N, such that

(2.3) g|U = θ ◦ (f1, . . . , fn)|U

and θ(f1(p), . . . , fn(p)) = 0. Of course, θ ∈ mF (p) ⊆ C∞(R), where F = (f1, . . . , fn).

(Because of Theorem 2.1, F is a diffeomorphism from (M,C) to (F (M), C∞(F (M)),

with F (M) ⊂ R
n.) Moreover, locally, 0 = dkp(g) = dkp(θ ◦ (f1, . . . , fn)) = dkp(θ ◦F ) =

dkF (p)θ = 0. Therefore, there exist ωi1...ik+1
∈ C∞(Rn), i1, . . . , ik+1 = 1, . . . , n, such

that

(2.4) θ(x1, . . . , xn) =

n∑

i1,...,ik+1=1

(xi1 −fi1(p)) . . . (xik+1
−fik+1

(p))ωi1...ik+1
(x1, . . . , xn)

for (x1, . . . , xn) ∈ R
n. Then, equation (2.2) follows from equations (2.3) and (2.4).

�

Lemma 2.3. Let (M,C) be a differential space generated by C0, (N,D) a differ-

ential space generated by D0 and p0 ∈ M . Consider an arbitrary function f ∈ C⊗D

(with f = α⊗β, where α ∈ C and β ∈ D) such that f ∈
⋂

q∈N

m(p0,q) and d
k
(p0,q)

f = 0

for all q ∈ N . Then for an arbitrary q0 ∈ N there exist open neighbourhoods

U ∈ τC of p0 and V ∈ τD of q0, and functions f1, . . . , fn ∈ C0, g1, . . . , gm ∈ D0

and ωi1...ik+1
∈ C∞(Rn+m), where n,m ∈ N and i1, . . . , ik+1 = 1, . . . , n + m, such
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that

(2.5) f(p, q) =

n∑

i1,...,ik+1=1

(fi1(p)− fi1(p0)) . . . (fik+1
(p)− fik+1

(p0))

× ωi1...ik+1
(f1(p), . . . , fn(p), g1(q), . . . , gm(q)),

where (p, q) ∈ U × V .

P r o o f. From the assumptions it is clear that f(p0, q) = 0 for all q ∈ N . There

exist open neighbourhoods U ∋ p0 and V ∋ q0 and ω ∈ C∞(Rn+m), f1, . . . , fn ∈ C0,

g1, . . . , gm ∈ D0 such that f(p, q) = ω(f1(p), . . . , fn(p), g1(q), . . . , gm(q)) for (p, q) ∈

U×V . Let us fix p ∈ U and q ∈ V . Define θ : R → R as θ(t) := ω(t(f1(p)−f1(p0))+

f1(p0), . . . , t(fn(p) − fn(p0)) + fn(p0), g1(q), . . . , gm(q)). It is clear that θ(0) =

f(p0, q) = 0 and θ(1) = f(p, q). Consequently, f(p, q) = θ(1)−θ(0) =
∫ 1

0
(dθ/dt) dt =

n∑
i=1

(fi(p)− fi(p0))hi(f1(p), . . . , fn(p), g1(q), . . . , gm(q)), where

hi(f1(p), . . . , fn(p), g1(q), . . . , gm(q)) :=

∫ 1

0

∂ω

∂xi
(t(f1(p)− f1(p0))

+ f1(p0), . . . , t(fn(p)− fn(p0)) + fn(p0), g1(q), . . . , gm(q)) dt.

It follows from Corollary 2.1 that f ∈
⋂

q∈N

m
k+1
(p0,q)

. It is also obvious that
⋂

q∈N

m
k+1
(p0,q)

=

( ⋂
q∈N

m(p0,q)

)k+1

. Now, equation (2.5) can be proved by induction. �

We introduce now the notion of smoothness for tangent vector fields of an arbitrary

order.

A map X : M →
⋃

p∈M

T k
p M , where k ∈ N, is called a kth order tangent vector

field to (M,C), if X(p) ∈ T k
p M for every p ∈ M . Additionally, X is called smooth,

if Xf , defined by (Xf)(p) := X(p)(f), belongs to C for any f ∈ C. The C-module

of all kth order smooth tangent vector fields to (M,C) will be denoted by X
k(M).

Let (M,C) be a differential space and let A ⊂ M . (Obviously, we assume A 6= ∅.)

Then (A,CA) is called a differential subspace of (M,C). (See Definition 2.1.) The

embedding of (A,CA) into (M,C) is denoted by ιA. We say that X ∈ X
k(M) is

tangent to A, if for every p ∈ A there exists v ∈ T k
p A such that X(p) = (ιA)∗v.

The set of all elements of Xk(M) which are smooth kth order vector fields tangent

to A will be denoted by X
k
A(M). Obviously, Xk

A(M) is a C-submodule of the C-mo-

dule X
k(M).

Notice that we defined vectors (let us stay with 1st order ones for a moment) in an

algebraic way. Indeed, for smooth manifolds it is well known that there are various
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ways of introducing tangent vectors, for example, as derivations, velocities of curves,

via the cotangent bundle (see, for example, [26]). In the case of a smooth manifold

these notions are equivalent. However, it can be not so for a differential space. Our

aim is to introduce a tangent vector and a smooth vector field in such a way that for

smooth manifolds the classical differential geometry is recovered, and simultaneously

as much as possible the correspondence known for the classical differential geometry

would pass to the differential spaces category. For example, we defined a smooth

vector field in such a way that for 1st order tangent vector fields there is a 1-1 cor-

respondence with derivations of the algebra C (see, for example, [6]). Such a way

guarantees us also that the definition via the cotangent bundle is equivalent [26].

However, denote by ϕt(x) the point on the maximal integral curve through x of

a given derivation, corresponding to the value of t. For smooth manifolds ϕt(x) is

a diffeomorphism of some open neighbourhood of x onto some open neighbourhood

of ϕt(x). In the case of a differential space ϕt(x) can fail to be a local diffeomor-

phism [39].

Theorem 2.2. Let (M,C) be a differential space, ∅ 6= A ⊂ M , k ∈ N, and

X ∈ X
k(M). Then the following conditions are equivalent:

(1) X ∈ X
k
A(M);

(2) for all p ∈ A exists just one Y ∈ X
k(A) that X(p) = (ιA)∗pY (p);

(3) f |A = 0 ⇒ (Xf)|A = 0.

P r o o f. (1) ⇒ (2): Let X ∈ X
k
A(M) and define the tangent vector field Y : A →⋃

p∈A

T k
p A by Y (p) := (ιA)

−1
∗p (X(p)), p ∈ A. Of course, Y ∈ X

k(A) and it is the unique

tangent vector field satisfying condition (2).

(2) ⇒ (3): Let f ∈ C be such that f |A = 0. Because of (2), there exists Y ∈ X
k(A)

such that (Xf)|A = Y (f |A), and, hence, (Xf)|A = 0.

(3) ⇒ (1): Suppose that X ∈ X
k(M) fulfils (3). For every p ∈ A, let vp : CA → R

be the map vp(f) := X(p)(g), with f ∈ CA and g ∈ C, where f |U∩A = g|U∩A for some

open neighbourhood U ∈ τC of p. It is obvious that vp ∈ T k
p A and X(p) = (ιA)∗pvp.

�

Theorem 2.3. Let (M,C) be a differential space, A ⊂ M and X ∈ X(M). If

Xk := X ◦ . . . ◦ X ∈ X
k
A(M) for some k ∈ N, then X ∈ X

k
A(M) and, moreover,

X l ∈ X
l
A(M) for every l ∈ N.

P r o o f. Let f ∈ C be such that f |A = 0. Then it is easy to notice that

Xk(fk)|A = k!(X(f))k|A. Because of Theorem 2.2, Xk(fk)|A = 0. Therefore,

Xf |A = 0 for an arbitrary f ∈ C such that f |A = 0. Consequently, X ∈ X
k
A(M).
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It is not hard to check that X l(f) = 0 for an arbitrary l ∈ N. As a result,

X l ∈ X
l
A(M). �

The next two lemmas (see [25] for their proofs) will also be useful in the sequel.

Lemma 2.4. Let (M,C) be a differential space and k ∈ N. If A,B ⊂ M satisfy

the condition (ιA∩B)∗pT
k
p (A ∩ B) = (ιA)∗pT

k
p A ∩ (ιB)∗pT

k
p B for every p ∈ A ∩ B,

then X
k
A(M) ∩X

k
B(M) ⊂ X

k
A∩B(M).

Lemma 2.5. Let A ⊂ M . Then X
k
A(M) = X

k
Ā
(M), where Ā denotes the (topo-

logical) closure of A in τC .

Finally, let X ∈ X(M) be a smooth vector field tangent to (M,C). For any

k ∈ N we define ∂kX : T kM → T k+1M by (∂kX)(V ) := V ◦ X . Then ∂kX

turns out to be a smooth mapping between the differential spaces (T kM,T kC)

and (T k+1M,T k+1C). Indeed, dk+1f ◦ ∂kX = dk(X(f)) for every f ∈ C and

πk+1 ◦ ∂kX = πk.

3. The main results

Let (M,C) and (N,D) be two differential spaces. Let H : (M,C) → (N,D)

be a diffeomorphism, in the category-theoretic sense (morphisms are just smooth

mappings as defined in Section 2). Consider a nonempty subset ∆M ⊂ M and its

image ∆N : = H(∆M ) under the diffeomorphism H . Let h := H |∆M
and let ̺h be

the equivalence relation on the disjoint sum (M ⊔N,C⊔D) identifying p ∈ ∆M with

h(p) ∈ ∆N , with C ⊔D := {α : M ⊔ N → R ; α|M ∈ C,α|N ∈ D}. For f ∈ C and

g ∈ D we define f ⊔ g : M ⊔N → R by (f ⊔ g)|M = f and (f ⊔ g)|N = g. (See [32]

for more details.)

For our purposes, it suffices to mention that there are at least two known methods

of gluing differential spaces. One is the “global” technique, which works solely with

generators [6]. Another is “local”, i.e., we first introduce a diffeomorphism between

some subspaces, then we identify points with their images, and, finally, we make the

glued space a Hausdorff one with help of the equivalence relation [31], [30]. Here,

we will exploit the latter, but with the extra assumption that the gluing is of an

arbitrary order.

Definition 3.1. The quotient space ((M ⊔ N)/̺h, (C ⊔ D)/̺h), with (C ⊔

D)/̺h) := {α ∈ C ⊔ D ; α|∆(M) = α ◦ h}, is called the gluing of the differential

spaces (M,C) and (N,D). It is denoted by (M ∪h N,C ∪h D).
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In other words, for arbitrary f ∈ C and g ∈ D such that f |∆M
= g◦h, the function

from C ∪hD corresponding to the function f ⊔g ∈ C ⊔D is denoted by f ∪h g. Then

C ∪h D := {f ∪h g ; f ∈ C, g ∈ D, f |∆M
= g ◦ h}.

Definition 3.2. Let k ∈ N. Then C ∪k
h D := {f ∪h g ∈ C ∪h D ; dkpf =

dkp(g ◦H), p ∈ ∆M}.

It is clear that C ∪k
h D is just one of the various possible differential structures on

M ∪h N (in the sense of Definition 2.2). The reason why we consider this particular

structure is that it is the most workable one for our purposes.

Of course,

C ∪h D ⊃ C ∪1
h D ⊃ C ∪2

h D ⊃ . . . ⊃ C ∪k
h D ⊃ . . .

Definition 3.3. The differential space (M ∪h N,C ∪k
h D) is called the kth order

gluing of the differential spaces (M,C) and (N,D). Shortly, we will denote it by

M ∪k
h N .

Let π̺h
: M ⊔ N → M ∪h N be the natural projection and define ι̂M := π̺h

|M ,

ι̂N := π̺h
|N , M̂ := ι̂M (M), N̂ := ι̂N (N), Ĉk := (C ∪k

h D)
M̂

, D̂k := (C ∪k
h D)N̂ and

∆ := π̺h
∆M .

Now, we would like to check the relation between the topologies induced by the

differential structures from Definition 3.1 and Definition 3.2. Also, we want to study

the relation between the differential structures before and after the gluing. It is also

interesting to check the behaviour of the tangent vectors of higher-order.

Theorem 3.1. Let (M,C) and (N,D) be two differential spaces, H : (M,C) →

(N,D) a diffeomorphism, and let ∆M ⊂ M , ∆N := H(∆M ) be closed. Then, for

any k ∈ N, the following conditions hold:

(1) τC∪k

h
D = τC∪hD;

(2) ι̂M : (M,C) → (M̂, Ĉk) and ι̂N : (N,D) → (N̂ , D̂k) are diffeomorphisms;

(3) (ι̂M )∗pT
i
pM = (ι̂N )∗qT

i
qN for i = 1, . . . , k, p ∈ ∆M and q = h(p);

(4) (ι̂M )∗pT
k+1
p M ∩ (ι̂N )∗qT

k+1
q N = (ι̂M |∆M

)∗pT
k+1
p ∆M = (ι̂N |∆N

)∗qT
k+1
q ∆N .

P r o o f. (1): Of course, τC∪k

h
D ⊂ τC∪hD. So it is enough to prove that τC∪k

h
D ⊃

τC∪hD. For any open set W ∈ τC∪hD there exists V = π̺h
(π−1

̺h
(U)) ⊂ W , where

U ∈ τC . Let f ∈ C be such that suppf ⊂ U . It is clear that f ∪h (f ◦H−1) ∈ C ∪k
hD

and suppf ∪h (f ◦H−1) ⊂ V ⊂ W . So W is also open in the topology of C ∪k
h D.

(2): It is clear that π̺h
: (M ⊔N,C ⊔D) → (M ∪h N,C ∪k

h D) is smooth for any

k ∈ N. As a result, ι̂M and ι̂N are smooth as restrictions of π̺h
. It is also true that
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f ◦ ι̂−1
M = f ∪h (f ◦H−1)|

M̂
and g ◦ ι̂−1

N = (g ◦H)∪h (g|N̂ ) for any f ∈ C and g ∈ D.

Consequently, ι̂−1
M and ι̂−1

N are smooth.

(3): Let w ∈ (ι̂N )∗qT
i
qN for some i = 1, . . . , k. Then there exists v ∈ T i

qN such

that w = (ι̂N )∗qv. Since H is a diffeomorphism, there exists u ∈ T i
pM such that

H∗pu = v. It is easy to notice that (ι̂M )∗pu = (ι̂N )∗qv.

(4): It is enough to prove that

(ι̂M )∗pT
k+1
p M ∩ (ι̂N )∗qT

k+1
q N ⊂ (ι̂M |∆M

)∗pT
k+1
p ∆M .

Let v ∈ (ι̂M )∗pT
k+1
p M ∩ (ι̂N )∗qT

k+1
q N . Then there exists a unique (uM , uN ) ∈

T k+1
p M ⊕ T k+1

q N such that v = (ι̂M )∗puM = (ι̂N )∗quN . Moreover, the following

condition is satisfied: f ∪h g ∈ C ∪k
h D ⇒ uM (f) = uN (g). Let w : C∆M

→ R be

defined by w(g) := uM (g̃|M ) for g ∈ C∆M
, where g̃ ∈ C is such that g̃|∆M∩U =

g|∆M∩U for some open neighbourhood U ∈ τC of p. Since (ι̂M |∆M
)∗pw = (ι̂M )∗puM ,

it turns out that v = (ι̂M )∗puM = (ι̂M |∆M
)∗pw ∈ (ι̂M |∆M

)∗pT
k+1
p ∆M . �

From condition (2) of Theorem 3.1 above it follows that Ĉk = Ĉ and D̂k = D̂ for

any k ∈ N.

Theorem 3.2. If ∆M is a closed boundary set (see, e.g., [17]) in M , then

X
k+1(M ∪k

h N) = X
k+1
∆ (M ∪k

h N).

P r o o f. Assume that ∆M is a closed boundary set in M . Then M̂ \ ∆ and

N̂ \∆ are open in M ∪k
hN and dense in M̂ and N̂ , respectively. Let X ∈ X

k+1(M ∪k
h

N). Since M̂ \ ∆ is open and N̂ \ ∆ is open, then X ∈ X
k+1

M̂
(M ∪k

h N) and X ∈

X
k+1

N̂
(M ∪k

h N) and, by Lemma 2.5, X ∈ X
k+1

M̂\∆
(M ∪k

h N) and X ∈ X
k+1

N̂\∆
(M ∪k

h N).

Theorem 3.1 and Theorem 2.3 imply X ∈ X
k+1

M̂∩N̂
(M ∪k

h N) = X
k+1
∆ (M ∪k

h N). �

Corollary 3.1. If ∆M is a closed boundary set inM , then we have X(M∪k
hN) =

X∆(M ∪k
h N) and X(M ∪k

h N) is contained both in X
M̂
(M ∪k

h N) and XN̂ (M ∪k
h N).

P r o o f. It is enough to prove that X(M ∪k
h N) ⊂ X∆(M ∪k

h N). To this end,

let X ∈ X(M ∪k
h N) and consider the kth order vector field given by Y := Xk+1 =

X ◦ . . . ◦ X (see Theorem 2.3). Theorem 3.2 guarantees that Y ∈ X
k+1
∆ (M ∪k

h N),

where X ∈ X
k+1
∆ (M ∪k

h N) in view of Theorem 2.3.

Since Y is tangent to M (or N), hence X is tangent to M (or N , respectively). �

Dual to the sequence of inclusions

C ∪h D ⊃ C ∪1
h D ⊃ C ∪2

h D ⊃ . . . ⊃ C ∪k
h D ⊃ . . .
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is the sequence of smooth mappings

(M ∪h N,C ∪h D)
id
−→ (M ∪1

h N,C ∪1
h D)

id
−→ (M ∪2

h N,C ∪2
h D)

id
−→ . . .

id
−→ (M ∪k

h N,C ∪k
h D)

id
−→ . . .

Lemma 3.1. If ∆M is a closed boundary set in M and X ∈ X(M ∪k
h N), then

there exists a unique X̃ ∈ X(M ∪h N) such that X̃|C∪k

h
D = X .

P r o o f. Observe that X ∈ X
M̂
(M ∪k

h N) and X ∈ XN̂ (M ∪k
h N), and X ∈

X∆(M ∪k
h N) as well. Put X̃M := X |M and X̃N := X |N and notice that X̃M |∆ =

X̃N |∆. Choose XM ∈ X(M) such that (ι̂M )∗XM = X̃M and XN ∈ X(N) such

that (ι̂N )∗XN = X̃N , and set X̃ := XM ∪h XN . It can be easily proved that

XM (f) = X(f ∪h f ◦H−1) for any f ∈ C and XN (g) = X(g ◦H ∪h g) for any g ∈ D.

It follows that X̃ |C∪k

h
D = X . �

Let X
k
h(M,N) := {(XM , XN ) ∈ X∆M

(M) × X∆N
(N) ; h∗(XM |∆M

) = XN |∆N
,

∂kXM |∆k

M

= ∂kXN ◦ h∗|∆k

M

}, where ∆k
M :=

⊔
p∈∆M

T k
p M .

Theorem 3.3. If ∆M is a closed boundary set inM , then the following conditions

are satisfied:

(1) τC∪k

h
D = τC∪hD = τC⊔D/̺h

;

(2) X(M ∪k
h N) is contained both in X

M̂
(M ∪k

h N) and XN̂ (M ∪k
h N);

(3) X(M ∪k
h N) = X∆(M ∪k

h N);

(4) the C∪k
hD-module X∆(M∪k

hN) is isomorphic to the C∪hD-module X
k
h(M,N).

P r o o f. In view of the previously stated results (Theorem 3.1 and Corollary 3.1),

it is enough to prove (4). Let X ∈ X(M ∪k
h N) and set XM := (ι̂−1

M )∗(X |
M̂
),

XN := (ι̂−1
N )∗(X |N̂). It is easy to notice that (XM , XN ) ∈ X

k
h(M,N). Now, for any

(YM , YN ) ∈ X
k
h(M,N), define YM ∪k

h YN := YM ∪h YN |C∪k

h
D. Since it is clear that

YM ∪k
h YN ∈ X(M ∪k

h N), the sought-for I : X
k
h(M,N) → X(M ∪k

h N) can be defined

as I(YM , YN ) := YM ∪k
h YN . �
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4. Application and perspectives

In this section we specialize the techniques described earlier to the case when

∆M := {p} with p ∈ M , ∆N := {q}, where q := H(p). In other words, we study the

particular case of the gluing at a point. As before, h := H |∆M
and (M ∪hN,C ∪hD)

is the glued differential space. For any f ∈ C and g ∈ D, set f̃ := f ∪h f ◦ H−1

and g̃ := g ◦ H ∪h g. Of course, f̃ , g̃ ∈ C ∪k
h D for an arbitrary k ∈ N. Consider

〈f1, . . . , fk+1〉 := (f1 − f1(p)) . . . (fk+1 − fk+1(p)) ∪h 0 with f1, . . . , fk+1 ∈ C. It can

be easily noticed that 〈f1, . . . , fk+1〉 ∈ C ∪k
h D. These functions play an important

role in generating the differential structure on the glued space, as Theorem 4.1 below

shows.

Theorem 4.1. If C is generated by C0, then C ∪k
h D is generated by {f̃ ; f ∈

C} ∪ {〈fi1 , . . . , fik+1
〉 ; fi1 , . . . , fik+1

∈ C0}.

P r o o f. If f ∪h g ∈ C ∪k
h D, then by Definition 3.2, dkpf = dkp(g ◦ H). As

a consequence of Lemma 2.2 there exists an open neighbourhood U ∈ τC of p and

functions f1, . . . , fn ∈ C0, with n ∈ N, and ωi1...ik+1
∈ C∞(Rn), with i1, . . . , ik+1 =

1, . . . , n, such that f |U = θ ◦ (f1, . . . , fn)|U , where θ ∈ C∞(Rn), and

(g◦H−f)|U =

( n∑

i1,...,ik+1=1

(fi1−fi1(p)) . . . (fik+1
−fik+1

(p))ωi1...ik+1
(f1, . . . , fn)

)∣∣∣∣
U

.

Now, if V := π−1
̺h

(π̺h
(U)), then

f ∪h g|V =

(
θ ◦ (f̃1, . . . , f̃n) +

n∑

i1,...,ik+1=1

〈fi1 , . . . , fik+1
〉ωi1...ik+1

(f̃1, . . . , f̃n)

)∣∣∣∣
V

.

�

Now we introduce the notion of the differential basis (see [12]). A function f ∈ C

is called differentiably dependent on g1, . . . , gn ∈ C at p ∈ M , if there exists an

open neighbourhood U ∈ τC of p and a function ω ∈ C∞(Rn) such that f |U =

ω ◦ (g1, . . . , gn)|U . A collection of functions {f1, . . . , fn} ⊂ C is called differentiably

independent at p, if there is no fi, i = 1, . . . , n, which is differentiably dependent on

the remaining functions at p. A subset B ⊂ C is said to reproduce C at p, if for any

f ∈ C there exist an open neighbourhood U ∈ τC of p, functions g1, . . . , gn ∈ B and

a function ω ∈ C∞(Rn) such that f |U = ω ◦ (g1, . . . , gn)|U . So, we say that a subset

B ⊂ C is a differential basis of C at p, if B is differentiably independent at p and B

reproduces C at p.
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Lemma 4.1 ([12]). The collection {f1, . . . , fn} ⊂ C is differentiably independent

at p if and only if for any ω ∈ C∞(Rn) and for any open neighbourhood U ∈ τC of p

the following condition is satisfied:

ω ◦ (f1, . . . , fn)|U = 0 ⇒
∂ω

∂xi
(f1(p), . . . , fn(p)) = 0, 1 6 i 6 n.

Theorem 4.2 shows how to construct differential bases for glued differential spaces.

Theorem 4.2. If {f1, . . . , fn} is a differential basis of C at p, then {f̃1, . . . , f̃n}∪

{〈fi1 , . . . , fik+1
〉 ; 1 6 i1 6 . . . 6 ik+1 6 n} is a differential basis of C ∪k

h D.

P r o o f. Let v1, . . . , vn ∈ TpM be linearly independent and such that vi(fj) = δij

for i, j = 1, . . . , n, and set wi := (ι̂M )∗pvi for i = 1, . . . , n. Let ω ∈ C∞(Rn+m) and

suppose that

(4.1) ω ◦ (f̃1, . . . , f̃n, g1, . . . , gm) = 0

for an open neighbourhood V ∈ τC∪k

h
D of ph := π̺h

(p), where g1, . . . , gm ∈

{fi1 , . . . , fik+1
; 1 6 i1 6 . . . 6 ik+1 6 n}. Applying wi to equation (4.1), we obtain

that (∂ω/∂xi)(f̃1(ph), . . . , f̃n(ph), g1(ph), . . . , gm(ph)) = 0 for i = 1, . . . , n. Now,

define the map ωi1...ik+1
: C ∪k

h D → R by ωi1...ik+1
(α ∪h β) := θ ◦ (f1, . . . , fn)(p),

where 1 6 i1 6 . . . 6 ik+1 6 n, and θ ∈ C∞(Rn) is such that (α − β ◦ H)|U =

θ◦(f1, . . . , fn)|U and dkp(θ◦(f1, . . . , fn)) = 0. It can be easily noticed that ωi1...ik+1
∈

Tph
(M ∪k

h N). Moreover, ωi1...ik+1
(〈fj1 − fj1(p), . . . , fjk+1

− fjk+1
(p)〉) = 0, if

{i1, . . . , ik+1} 6= {j1, . . . , jk+1}, and ωi1...ik+1
(〈fj1 −fj1(p), . . . , fjk+1

−fjk+1
(p)〉) = 1,

if {i1, . . . , ik+1} = {j1, . . . , jk+1}. Now, assume that gj = 〈fj1 − fj1(p), . . . , fjk+1
−

fjk+1
(p)〉. Applying ωi1...ik+1

to equation (4.1), we obtain

∂ω

∂xn+j
(f̃1(ph), . . . , f̃n(ph), g1(ph), . . . , gm(ph)) = 0

and the result follows from Lemma 4.1. �

We conclude this paper with some considerations about the “distributivity” of the

Cartesian product with respect to the gluing in the category of differential spaces,

collected in Theorem 4.3 below.

Theorem 4.3. Let (M,C), (N,D) and (L,B) be differential spaces, p ∈ M ,

and let H : (M,C) → (N,D) be a diffeomorphism. Let prL : M × L → L, prM :

M ×L → M and prN : N×L → Nbe the canonical projections and use the notation
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(pM , l) ∈ M × L and (pN , l) ∈ N × L with H(pM ) = pN to indicate that pM ∈ M

and pN ∈ N . If HL := H × idL and ∆M := {p} × L, then:

(1) if C is generated by C0, then (C × B) ∪k
h (D × B) is generated by {f̂ ; f ∈

C0}∪{ĝ ; g ∈ B}∪{〈f̂1, . . . , f̂k+1〉 ; f1, . . . , fk+1 ∈ C0}, where f̂ := (f ◦prM )∪h

(f ◦H−1 ◦ prN ) and ĝ := (g ◦ prL) ∪h (g ◦ prL);

(2) Φ∗((C ∪k
h D) × B) = (C × B) ∪k

h (D × B), where Φ: (M × L) ∪h (N × L) →

(M ∪h N) × L is the diffeomorphism defined by Φ([(p, l)]) := ([p], l), where

[(p, l)] ∈ (M × L) ∪h (N × L).

P r o o f. (1): Let f ∪h g ∈ (C × B) ∪h (D × B). It is obvious that f(pM , l) =

g(pN , l) and dk(pM ,l)f = dk(pM ,l)(g ◦ H) for any l ∈ L. Moreover, it is true that

g ◦ H − f ∈ m(pM ,l) for an arbitrary l ∈ L and dk(pM ,l)(g ◦H − f) = 0. Because of

Lemma 2.3, g ◦H − f can be written locally as

(g ◦H − f)(p, l) =

n∑

i1,...,ik+1=1

(fi1(p)− fi1(pM )) . . . (fik+1
(p)− fik+1

(pM ))

× ωi1...ik+1
(f1(p), . . . , fn(p), g1(l), . . . , gm(l)),

where (p, l) ∈ W and W ∈ τC×B. If U := π−1
̺h

(π̺h
(W )), then

(f ∪h g)|U =

(
ω ◦ (f̂1, . . . , f̂n, ĝ1, . . . , ĝn)

+

n∑

i1,...,ik+1=1

〈f̂i1 , . . . , f̂ik+1
〉ωi1...ik+1

(f̂1, . . . , f̂n, ĝ1, . . . , ĝn)

)∣∣∣∣
W

.

(2): It can be easily noticed that f̃ ◦ prM∪hN ◦ Φ = f̂ for any f ∈ C. Moreover,

〈f̃i1 , . . . , f̃ik+1
〉 ◦ prM∪hN ◦ Φ = 〈f̂i1 , . . . , f̂ik+1

〉 for arbitrary fi1 , . . . , fik+1
∈ C and

g ◦prL ◦Φ = ĝ for any g ∈ B. Therefore Φ∗((C ∪k
hD)×B) = (C×B)∪k

h (D×B). �

5. Final remarks

The proposed methods can be useful in the context of jets. For example, consider

the differential space (Rn, C∞(Rn)), which is simultaneously a smooth manifold. Let

∂k
i1...im

|p be the vectors representing the partial derivatives of kth order, with respect

to the variables xi1 , . . . , xim . It is well known that these vectors are the basis of T k
p R

n,

which (in view of the just stated remark) can be naturally identified with the kth

order jet space at p [7], [14], [16]. One would surely like to apply this method to

differential equations, as it is well known that jet spaces form a suitable background
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to study differential equations. Indeed, a “generalized” partial differential equation

is a submanifold in the jet space. Therefore, it could be interesting to prolong

the theory known for manifolds to differential spaces. Unfortunately, differential

equations on differential spaces are not an easy topic and there are serious obstacles

against developing a well-working theory. However, further research will be made

elsewhere to clarify this situation.
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