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KYBER NET IKA — VOLUM E 5 1 ( 2 0 1 5 ) , NUMBE R 6 , P AGES 9 2 3 – 9 3 2

BOOTSTRAP METHOD FOR CENTRAL
AND INTERMEDIATE ORDER STATISTICS
UNDER POWER NORMALIZATION

H.M. Barakat, E.M. Nigm and O.M. Khaled

It has been known for a long time that for bootstrapping the distribution of the extremes
under the traditional linear normalization of a sample consistently, the bootstrap sample size
needs to be of smaller order than the original sample size. In this paper, we show that the
same is true if we use the bootstrap for estimating a central, or an intermediate quantile under
power normalization. A simulation study illustrates and corroborates theoretical results.

Keywords: bootstrap technique, power normalization, weak consistency, central order
statistics, intermediate order statistics

Classification: 62G32, 62F40

1. INTRODUCTION

The bootstrap technique, which is a data driven method, was initiated by Efron [10].
The basic idea of the bootstrap technique lies in using the data of a sample study as
a surrogate population to approximate the sampling distribution of the statistic under
study. This will be done by re-sampling (with replacement) from the sample data at hand
to create a large number of dummy samples known as bootstrap samples. After that, for
each of these bootstrap samples we compute the sample summary, e. g., the average or
the maximum likelihood estimate of any unknown parameter. In addition, a histogram
of the set of these computed values is referred to as the bootstrap distribution of the
statistic. By this way, the bootstrap technique provides estimates of standard errors
for complex estimators of complex parameters of the distribution function (df) under
study. The theoretical idea behind this technique is that the obtained dummy samples
are actually real samples drawn from the empirical df, which in turn is theoretically too
close to the df under study.

One of the desired properties of the bootstrapping method is the consistency, which
guarantees that the limit of the bootstrap distribution is the same as that of the dis-
tribution of the given statistic. It has been known for a long time that for the boot-
strap distribution of the maximum of a sample to be consistent, the bootstrap sample
size needs to be of smaller order than the original sample size. Actually, Athreya and
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Fukuchi [2] showed that by employing a sub-sample bootstrap, where the re-samples
have a size of an order of magnitude smaller than the size of the original sample, the
bootstrap distribution of maximum order statistics converges to one of Gnedenko’s ex-
treme value distributions. The inconsistency, weak consistency and strong consistency of
bootstrapping maximum order statistics under linear normalization are investigated by
Athreya and Fukuchi [1], while for maximum order statistics under power normalization
this study is extended by Nigm [12].

During the last two decades E. Pancheva and her collaborators developed the limit
theory for extremes under nonlinear but monotone increasing normalizing mappings,
such as the power normalization Gn(x) = dn|x|cnsign(x), cn, dn > 0, with G−1

n (x) =
| xdn |

1
cn sign(x). Pancheva [13] derived all the possible limit df’s of the maximum order

statistics subjected to the power normalization. These limit df’s are usually called the
power max stable df’s. Mohan and Ravi [11] showed that the power max stable df’s (six
power types of df’s) attract more than linear stable df’s. Therefore, using the power
normalization, we get a wider class of limit df’s which can be used in solving approxima-
tion problems. Another reason for using nonlinear normalization concerns the problem
of refining the accuracy of approximation in the limit theorems using relatively non
difficult monotone mappings in certain cases that can achieve a better rate of conver-
gence (see Barakat et al. [6]). Recently, Barakat et al. [7], have tackled the problem
of the mathematical modeling of extremes under power normalization. Barakat and
Omar [4], [5] proved that the possible nondegenerate weak limits of any central order
statistics with regular rank under the traditionally linear normalization and under the
power normalization are the same. Moreover, they derived the class of all possible weak
limits for lower and upper intermediate order statistics under power normalization from
the corresponding weak limits of extremes under power normalization. Barakat et al.
[8] studied the inconsistency, weak consistency and strong consistency of bootstrapping
central and intermediate order statistics under linear normalization for an appropriate
choice of re-sample size. In this paper, the consistency property of the bootstrapping
central and intermediate order statistics under power normalization are investigated.

2. BOOTSTRAPPING CENTRAL ORDER STATISTICS
UNDER POWER NORMALIZATION

Let X1, X2, · · · , Xn be iid random variables with common df F (x) = P (X ≤ x), and
let X1:n < X2:n < · · · < Xn:n be the corresponding order statistics. When the rank
sequence rn of the central order statistic Xrn:n is assumed to satisfy the regular condition√
n( rnn − λ)→ 0, 0 < λ < 1, as n→∞, and

Φλ:n(cnx+ dn) = P (Xrn:n ≤ cnx+ dn) = IF (cnx+dn)(rn, n− rn + 1) w−→n G(x), (2.1)

where Ix(a, b) denotes the usual incomplete ratio beta function, “ w−→n ”denotes the
weak convergence, as n → ∞, G(x) is a nondegenerate df and cn > 0 and dn are
suitable normalizing constants, Smirnov [14]) has shown that the df G(x) must have one
and only one of the types

(i) Φ1(x; c, α) = Φ(cxα)I[0,∞)(x), c, α > 0;



Bootstrap method for central and intermediate order statistics . . . 925

(ii) Φ2(x; c, α) = Φ(−c(−x)α)I(−∞,0)(x) + I[0,∞)(x), c, α > 0;

(iii) Φ3(x; c1, c2, α) = Φ(−c1(−x)α)I(−∞,0)(x) + Φ(c2xα)I[0,∞)(x), c1, c2, α > 0;

(iv) Φ4(x; 1, 1),

where Φ4(x;A,B) = 1
2I[−A,B)(x)+I[B,∞)(x) and Φ(.) is the standard normal df. Barakat

and Omar [4] considered the weak convergence of the power normalized central order

statistic
∣∣∣Xrn:n

an

∣∣∣ 1
bn sign(Xrn:n), an, bn > 0,

P

(∣∣∣∣Xrn:n

an

∣∣∣∣ 1
bn

sign(Xrn:n) ≤ x

)
= IF (an|x|bnsign(x))(rn, n− rn + 1) w−→n Ψ(x). (2.2)

Barakat and Omar [4] showed that the class of possible limit distributions of Ψ is
{Ψ1(x) = Φ1(x; 1, 1); Ψ2(x) = Φ2(x; 1, 1); Ψ3(x) = Φ3(x; c1, c2, 1); Ψ4(x) = Φ4(x,A,B)}
where Ψ4(x) has the six power types Φ4(x;A,A), A > 0; Φ4(x;A,B), B > A > 0;
Φ4(x;A, 0), A > 0; Φ4(x; 0, A), A > 0; Φ4(x;−A,B), B > A > 0 and Φ4(x;A,−B), A >
B > 0. In this case we say that F belongs to the λ−normal domain of attraction of the
limit df Ψ. Moreover, (2.2) is satisfied with Ψi(x), i ∈ {1, 2, 3, 4}, if and only if

√
n
F (an|x|bnsign(x)))− λ√

λ(1− λ)
→ Φ−1(Ψi(x)) = Wi(x), as n→∞, (2.3)

Remark 2.1. Note that under the power normalization the function c|x|α has the
same type as |x|, while Φ3(x; c1, c2, 1) represents a family of two power types c1 6= c2
and c1 = c2.

Although, the convergence in (2.2), as well as in (2.1), does not yield in general
continuity types, but the following lemma (c.f., Lemma 2.1 in [3]), which will be be
needed in our study, shows that this convergence is uniform.

Lemma 2.1. Under the condition
√
n( rn − λ)→ 0, as n→∞, and for any arbitrary df

F, we have

Φλ:n(x) = Φ

(
√
n
F (x)− λ√
λ(1− λ)

)
+Rn(x), for large n,

where Rn(x)→ 0, as n→∞, uniformly with respect to x ∈ <.

Remark 2.2. Actually, in the proof of Lemma 2.1 in [3], the remainder Rn(x) depends
on x, only within F (x). Therefore, we can write Rn(x) = R?(F (x)). Moreover, the proof
of the relation Rn(x) → 0 depends only on the fact that 0 ≤ F (x) ≤ 1. Therefore,
a quick check of this proof shows that R?n(`) → 0, uniformly with respect to `, where
0 ≤ ` ≤ 1. This shows that the remainder term Rn converges to zero uniformly over
the set of the df’s. Consequently, this fact enables us to replace F (x) in the relation
given in Lemma 2.1 by the normalized df F (cnx + dn) to get the relation (2.1) (if
the condition

√
nF (cnx+dn)−λ√

λ(1−λ)
converges to any function of the types (i) – (iv), and in
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this case F (cnx + dn) → λ) or to replace F (x) in the relation given in Lemma 2.1 by
the normalized df F (an|x|bnsign(x)) to get the relation (2.2) (if the condition (2.3) is
satisfied and in this case F (an|x|bnsign(x))→ λ) or to replace F (x) in the relation given
in Lemma 2.1 by any sequence 0 ≤ `n ≤ 1, whenever `n → `, 0 ≤ ` ≤ 1.

Now, assume Yj , j = 1, 2, . . . ,m, where m = m(n)→∞, as n→∞, are conditionally
iid random variables with

P (Y1 = Xj |X¯n) =
1
n
, j = 1, 2, . . . , n,

where X
¯n

= (X1, X2, . . . , Xn) is a random sample of size n from an unknown df F. Hence
Y1, . . . , Ym is a re-sample of size m from the empirical df

Fn(x) =
1
n

n∑
i=1

I(−∞,x)(Xi) =
1
n
Sn(x), (2.4)

where IA(x) is the usual indicator function and Sn(x) is a random variable distributed
as a binomial distribution B(n, F ). Furthermore, let

Hλ,n,m(am |x|bm sign(x)) = P

(∣∣∣∣Xrm:m

am

∣∣∣∣ 1
bm

sign(Xrm:m) ≤ x|X
¯n

)

= IF (am|x|bmsign(x))(rm,m− rm + 1)

be the bootstrap df of
∣∣∣Xrm:m

am

∣∣∣ 1
bm sign(Xrm:m).

A full-sample bootstrap is the case when m = n. In contrast, a sub-sample bootstrap
is the case when m < n. The following theorem determines the asymptotic behavior of
the bootstrap distribution Hλ,n,m(am |x|bm sign(x)) = P (Xrm:m ≤ am |x|bm sign(x)|X

¯n
)

of the central order statistic Xrn:n of X
¯n
.

Theorem 2.2. Let (2.2) be satisfied with Ψ(x) = Φ(Wi(x)), i ∈ {1, 2, 3, 4}. Then

Hλ,n,n(an |x|bn sign(x)) d−→n Φ(Z(x)), (2.5)

where Z(x) has a normal distribution with mean Wi(x) and unit variance, i. e., P (Z(x) ≤
z) = Φ(z −Wi(x)), where “ d−→n ” stands for convergence in distribution, as n → ∞
(i. e., weak convergence). Moreover, if m = ◦(n)→∞, as n→∞, then

sup
x∈<
| Hλ,n,m(am |x|bm sign(x))− Φ(Wi(x)) | p−→n 0, (2.6)

where “ p−→n ”stands for convergence in probability, as n→∞.

Theorem 2.2 shows that if m = n, Hλ,n,m(am |x|bm sign(x)) has a random limit and
thus the naive bootstrap fails to approximate Φλ:n(am |x|bm sign(x)). In other words the
naive bootstrap of the rnth central order statistic, when m = n, fails to be consistent
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estimator for the limit df Φ(Wi(x)), while the relation (2.6) shows that this bootstrap
will be consistent if m = ◦(n).

P r o o f . By applying Lemma 2.1, we get

Hλ,n,m(am |x|bm sign(x)) = Φ (Tλ,n,m(x)) +Rm, (2.7)

where Tλ,n,m(x) =
√
m
Fn(am|x|bmsign(x))−λ√

λ(1−λ)
and Rm → 0, as n → ∞ (by using the fact

given in Remark 2.2). Now assume that the condition m = n is satisfied, then in view
of (2.4) and by applying the central limit theorem we get

Sn(an |x|bn sign(x))− nF (an |x|bn sign(x))√
nF (an |x|bn sign(x))(1− F (an |x|bn sign(x)))

d−→n Z, (2.8)

where Z is the standard normal random variable. On the other hand, under the condition
of Theorem 2.2, the relation (2.3) is satisfied. Thus, we get F (an |x|bn sign(x))→ λ, as
n→∞, for all x such that Wi(x) <∞. Therefore, as n→∞, we get√

nF (an |x|bn sign(x))(1− F (an |x|bn sign(x)))
√
n
√
λ(1− λ)

→ 1

and
nF (an |x|bn sign(x))− nλ

√
n
√
λ(1− λ)

→Wi(x).

The above two limit relations enable us to apply the modified Khinchin’s type theorem
(cf., [4]) on the relation (2.8) to get

Tλ,n,n(x) =
Sn(an |x|bn sign(x))− nλ

√
n
√
λ(1− λ)

d−→n Z +Wi(x) = Z(x). (2.9)

Combining the relations (2.7) and (2.9) we get (2.5). To prove the relation (2.6), we
first notice that (2.3) and (2.4) imply that

E(Tλ,n,m(x)) =
√
m
F (am |x|bm sign(x))− λ√

λ(1− λ)
→Wi(x), as n→∞. (2.10)

Moreover, in view of (2.3), (2.4) and the condition m = ◦(n), we get

Var(Tλ,n,m(x)) =
m

λ(1− λ)
Var(Fn(am |x|bm sign(x)))

=
m

n2λ(1− λ)
nF (am |x|bm sign(x))(1− F (am |x|bm sign(x)))

=
mF (am |x|bm sign(x))(1− F (am |x|bm sign(x)))

nλ(1− λ)
→ 0, as n→∞. (2.11)

The relation (2.6) follows immediately by combining (2.10) and (2.11). This completes
the proof of Theorem 2.2. �
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3. BOOTSTRAPPING INTERMEDIATE ORDER STATISTICS UNDER POWER
NORMALIZATION

The intermediate order statistics have many applications. For example intermediate
order statistics can be used to estimate probabilities of future extreme observations and
to estimate tail quantiles of the underlying distribution that are extremes relative to
available sample size (see [5]). The sequence {Xrn:n} is referred to the rnth intermediate
order statistic, if rn →∞ as n→∞ and rn

n → 0 (the lower intermediate case) or rn
n → 1

(the upper intermediate case). Chibisov [9] studied a wide class of intermediate order
statistics, where rn = `2nα(1+◦(1)), 0 < α < 1, `2 > 0. Namely, when the intermediate
rank sequence {rn} satisfies the limit relation limn→∞(√rn+zn(ν)−

√
rn) = αν`

2 , which
is known as Chibisov’s condition, where {zn(ν)} is any sequence of integer values, for
which zn(ν)

n1−α2
→ ν, as n→∞, 0 < α < 1, ` > 0 and ν is any real number, Chibisov [9]

showed that if there are normalizing constants αn > 0 and βn such that

Φrn:n(αnx+ βn) = P (Xrn:n ≤ αnx+ βn) w−→n N(x),

where N(x) is a nondegenerate df, then N(x) must have one and only one of the types
Φ(Vi(x)), i = 1, 2, 3, where V1(x) = x, ∀x,

V2(x) =
{
−β log | x |, x ≤ 0,
∞, x > 0, V3(x) =

{
−∞, x ≤ 0,

β log | x |, x > 0,

and β is some positive constant.
Barakat and Omar [5] extended the work of Chibisov to the power normalization case

by considering the limit relation

Φrn(αn |x|βn sign(x)) = P

(∣∣∣∣Xrn:n

αn

∣∣∣∣ 1
βn

sign(Xrn:n) ≤ x

)
w−→n L(x), (3.1)

where αn, βn > 0 and L(x) is a nondegenerate df. Barakat and Omar [5] proved that
the class of possible limit distributions of L(x) is {Li,β(x), i = 1, 2, . . . , 6}, where

(i) L1;β(x) = I[−1,∞)(x) + Φ(−β log(log | x |))I(−∞,−1)(x);

(ii) L2;β(x) = I[0,∞)(x) + Φ(β log(− log | x |))I[−1,0)(x);

(iii) L3;β(x) = I[1,∞)(x) + Φ(β log(− log x))I[0,1)(x);

(iv) L4;β(x) = Φ(β log(log x))I[1,∞)(x);

(v) L5;β(x) = L5(x) = I[0,∞)(x) + Φ(− log | x |)I(−∞,0)(x);

(vi) L6;β(x) = L6(x) = Φ(log x)I[0,∞)(x).

Moreover, (3.1) is satisfied with L(x) = Li;β(x), i ∈ {1, 2, . . . , 6}, if and only if

nF (αn |x|βn sign(x))− rn√
rn

=
√
n
F (αn |x|βn sign(x))− r̄n√

r̄n
→ Φ−1(Li;β(x)) = Ui(x),

(3.2)
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as n → ∞, where r̄n = rn
n . Since, all the limit types in (3.1) are continuous, then the

convergence in (3.1) is uniform with respect to x ∈ <. Therefore,

Φrn(αn |x|βn sign(x)) = Φ

(
√
n
F (αn |x|βn sign(x))− r̄n√

r̄n

)
+ ρn(x), for large n, (3.3)

where ρn(x)→ 0, as n→∞, uniformly with respect to x ∈ <.
The following theorem determines the asymptotic behavior of the bootstrap distribu-

tion Hrm,n,m(αm|x|βmsign(x)) = P (Xrm:m ≤ αm|x|βmsign(x)|X
¯n

) of the intermediate
order statistic Xrn:n of X

¯n
.

Theorem 3.1. Let (3.1) be satisfied with L(x) = Φ(Ui(x)), i ∈ {1, 2, . . . , 6}. Then

Hrn,n,n(αn |x|βn sign(x))→ Φ(ξ(x)), (3.4)

where ξ(x) has a normal distribution with mean Ui(x) and unit variance, i. e., P (ξ(x) ≤
z) = Φ(z − Ui(x)). Moreover, if m = ◦(n), then

sup
x∈<
| Hrm,n,m(αm |x|βm sign(x))− Φ(Ui(x)) | p−→n 0. (3.5)

Theorem 3.1 shows that if m = n, the naive bootstrap of the rnth intermediate order
statistic fails to be consistent estimator for the limit df Φ(Ui(x)), while the relation (3.5)
shows that this bootstrap will be consistent if m = ◦(n).

P r o o f . In view of (3.3), we get

Hrm,n,m(αm |x|βm sign(x)) = Φ (Trm,n,m(x)) + ρm, (3.6)

where Trm,n,m(x) =
√
m
Fn(αm|x|βmsign(x))−r̄m√

r̄m
and ρm → 0, as n→∞, uniformly in x.

Now assume that the condition m = n is satisfied, then in view of (2.4) and by applying
the central limit theorem we get

Sn(αn |x|βn sign(x))− nF (αn |x|βn sign(x))√
nF (αn |x|βn sign(x))(1− F (αn |x|βn sign(x)))

d−→n Z. (3.7)

On the other hand, under the condition of Theorem 3.1, the relation (3.2) is satisfied.
Thus, we get F (αn |x|βn sign(x)) ∼ r̄n → 0, as n → ∞, for all x such that Ui(x) < ∞.
Therefore, as n→∞, we get√

nF (αn |x|βn sign(x))(1− F (αn |x|βn sign(x)))

rn
∼
√
nr̄n
rn

= 1

and
nF (αn |x|βn sign(x))− nr̄n√

rn
=
nF (αn |x|βn sign(x))− rn√

rn
→ Ui(x).
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The above two limit relations enable us to apply the modified Khinchin’s type theorem
(cf., [4]) on the relation (3.7) to get

Trn,n,n(x) =
Sn(αn |x|βn sign(x))− rn√

rn

d−→n Z + Ui(x). (3.8)

Thus, by combining the relations (3.6) and (3.8), we get (3.4). Turning now to prove
the relation (3.5). In view of (2.4) and (3.2) we get

E(Trm,n,m(x)) =
√
m
F (αm |x|βm sign(x))− r̄m√

r̄m
→ Ui(x), as n→∞. (3.9)

Moreover, in view of (2.4), (3.2) and the condition m = ◦(n), we get

Var(Trm,n,m(x)) =
m

r̄m
Var(Fn(αm |x|βm sign(x)))

=
m

n2r̄m
nF (αm |x|βm sign(x))(1− F (αm |x|βm sign(x)))

=
mF (αm |x|βm sign(x))(1− F (αm |x|βm sign(x))

nr̄m
∼ m

n
∼ ◦(1)→ 0, as n→∞. (3.10)

The relation (3.5) follows immediately by combining (3.9) and (3.10). This completes
the proof of Theorem 3.1. �

4. SIMULATION STUDY

In this section, by a simulation study, we show that the sub-sample bootstrap technique
suggests an efficient technique for modeling the quantile values such as the median.
We consider the uniform df F ?(x) = 1

2 (x + 1), − 1 ≤ x ≤ 1. Let an = 1√
n

and

bn = K > 0. Therefore, for any λ ∈ (0, 1), we get
√
n
F?(an|x|bnsign(x))−λ√

λ(1−λ)
= |x|Ksign(x),

−
√
n ≤ x ≤

√
n, which implies that Φλ:n(an|x|bnsign(x)) w−→n Φ(|x|Ksign(x)) (c.f, [4]).

For this limit df, we have µ = mean = median = 0. Our aim is to apply the suggested
technique given in Theorem 2.2 to estimate the limit df of the sample median Xrn:n, rn =
[λn + 1] = [ 1

2n + 1], where [θ] denotes the integer part of θ, for two values K = 1, 1
2 .

For K = 1, we first generate a random sample of size n = 20000 from the df F ?(x).
We apply the sub-sample technique to get the estimated model and then check the
compatibility of this estimate with the theoretical model. We firstly, choose a suitable
value of the size of the bootstrap replicates m. Theorem 2.2 shows that this value should
be small enough to satisfy the condition m = ◦(n) and at the same time should be large
enough to satisfy the condition m → ∞, as n → ∞. The simple way to determine a
suitable value of m is to put n in the form a(10)b + c, where a, b and c are integers
such that 1 ≤ a < 10, 0 ≤ c ≤ (10)b−1. Thus, in our case a = 2, b = 4 and c = 0.
Moreover, in view of the two conditions m = ◦(n) and m → ∞, as n → ∞, we can
preliminary take two possible values of m such that m = 2 × (10)3 = 2000 and m =
2×(10)2 = 200. After that, we can differentiate between the two these values based on the
accuracy of the estimate value of the median. This estimate, denoted by µ̂, is obtained by
withdrawing from the original sample a large number of bootstrap replicates or blocks,



Bootstrap method for central and intermediate order statistics . . . 931

m, normal(µ̂,σ̂) = Φ(µ̂,σ̂) H P KSSTAT CV Decision
m = 300, Φ(0.0011, 0.0578) 0 0.1676 0.0297 0.0385 accept H0

m = 250, Φ(−0.0010, 0.0624) 0 0.1058 0.0333 0.0385 accept H0

m = 200, Φ(0.0003, 0.0702) 0 0.2936 0.0246 0.0385 accept H0

m = 150, Φ(0.0013, 0.0799) 0 0.1940 0.0285 0.0385 accept H0

m = 100, Φ(0.0006, 0.0987) 0 0.6890 0.0135 0.0385 accept H0

Tab. 1. Simulation study for K = 1.

m, σ̂ H P KSSTAT CV Decision
m = 300, σ̂ = 295.2 0 0.4645 0.0284 0.0385 accept H0

m = 250, σ̂ = 256.3 0 0.4128 0.0277 0.0385 accept H0

m = 200, σ̂ = 203.3 0 0.5324 0.0242 0.0385 accept H0

m = 150, σ̂ = 152 0 0.4419 0.0250 0.0385 accept H0

m = 100, σ̂ = 101.3 0 0.6004 0.0296 0.0385 accept H0

Tab. 2. Simulation study for K = 2.

namely 1000 blocks, each of which has size m and determine the sample median of each
block. Then, these medians are used as a sample drawn from a normal distribution to
get the estimates for its mean and standard deviation, denoted by σ̂, by using the ML
method. We found that the value m = 200 gives the best estimate. To get more accurate
value of m, we consider an appropriate discrete neighborhood of m = 200, namely
m = 100, 150, 200, 250, 300 (Table 1). Moreover, we repeat the preceding procedures
for all values of this neighborhood to select a value, which gives the best estimate for
µ = 0. Table 1 presents the results for these values and the corresponding estimates
for µ, as well as the estimated standard deviations. All the obtained estimates for
these values are close to the true value of the median µ = 0 and the best of them is
m = 200. Finally, the sub-samples corresponding to these values were fitted by using
the K-S test. For the values K = 1

2 (see Table 2) similar procedure is applied except we
generate the original sample from the df F ?(

√
| x |sign(x)) and we choose the values m =

100, 150, 200, 250, 300 (we can differentiate between these values by the corresponding
values of KSSTAT, i. e., the best value of m, which is m = 200, has a minimum value
of KSSTAT ). Moreover, the sub-samples corresponding to these values were fitted by
using the K-S test to the df Φ(

√
σ̂ | x |sign(x)), where here σ̂ is the ML estimate of the

scale parameter. In this study, all computations are achieved by the Matlab package,
where we have four functions [H, P, KSSTAT, CV ], H = 0, or H = 1, P is the p−value,
KSSTAT is the maximum difference between the data (i. e., the empirical df) and fitting
curve and CV is a critical value. We accept H0, if H = 0, KSSTAT ≤ CV and P >
level of significance, otherwise, we reject H0. Tables 1 and 2 show that the estimated
models, for all values of m are compatible with the theoretical models.
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