
Kybernetika

Miroslav Hudec; Miljan Vučetić
Some issues of fuzzy querying in relational databases

Kybernetika, Vol. 51 (2015), No. 6, 994–1022

Persistent URL: http://dml.cz/dmlcz/144821

Terms of use:
© Institute of Information Theory and Automation AS CR, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://dml.cz

http://dml.cz/dmlcz/144821
http://dml.cz

K Y B E R N E T I K A — V O L U M E 5 1 (2 0 1 5) , N U M B E R 6 , P A G E S 9 9 4 – 1 0 2 2

SOME ISSUES OF FUZZY QUERYING
IN RELATIONAL DATABASES

Miroslav Hudec and Miljan Vučetić

Fuzzy logic has been used for flexible database querying for more than 30 years. This
paper examines some of the issues of flexible querying which seem to have potential for fur-
ther research and development from theoretical and practical points of view. More precisely,
defining appropriate fuzzy sets for queries, calculating matching degrees for commutative and
non-commutative query conditions, preferences, merging constraints and wishes, empty and
overabundant answers, and views on practical realizations are discussed in this paper. Sug-
gestions how to solve them and integrate into one compact solution are also outlined in this
paper.

Keywords: membership functions, aggregation functions, preferences, commutative
queries, non-commutative queries, empty and overabundant answers, appli-
cation

Classification: 03E72, 68U35

1. INTRODUCTION

Each database tuple (database record) is characterized by values of attributes (columns)
in one or several related tables. The goal of queries over databases is to separate rele-
vant tuples from non-relevant ones, in other words to reveal them from a database for
further use. The common way to realize such a query is to formulate a logical condition.
According to the condition a relational database management system returns a list of
tuples. In general, a logical condition consists of several atomic (elementary) conditions
that define some constraints over domains of the attributes. However, from the users’
point of view, knowledge about the entities represented in a database as well as users’
preferences (expressed by conditions) are often vague or imprecise.

Fuzzy set theory [63] offers an environment to work with the uncertainty described by
linguistic terms when sharply defined data selection criteria could not be created. Fuzzy
set and fuzzy logic approaches in flexible querying have been applied in two main ways:
querying databases containing crisp data and querying databases containing imprecise
information. This paper is focused on the former; the latter one is out of the scope of
this paper.

DOI: 10.14736/kyb-2015-6-0994

http://doi.org/10.14736/kyb-2015-6-0994

Fuzzy querying in databases 995

The main reason for using fuzzy set theory to make querying more flexible is discussed
in e. g. [17]. Firstly, fuzzy sets provide a better description of the data requested by user.
For example, the meaning of a query such as find municipalities with high unemploy-
ment and altitude about 500 meters above sea level can be understood at first glance.
Linguistic terms clearly suggest that there is a smooth transition between acceptable
and unacceptable tuples. As a result, some database tuples are a definite match, some
definitely do not match the user’s request, and some match to a certain degree. Several
fuzzy query implementations have been proposed such as [13, 28, 31, 40, 41, 46] and
[55]. A consistent survey of the status and opportunities of fuzzy sets in all areas of
databases and information systems including fuzzy queries can be found in [6]. A de-
tailed description of fuzzy queries can be found in [44] where authors examined queries
on crisp and fuzzy databases. In addition, authors gave a brief description of relational
databases and calculus.

The goal of this paper is to offer an overview and discuss some issues of flexible
querying related to crisp relational databases. Section 2 briefly presents basic concepts
of fuzzy queries and gives a list of items discussed in this paper. Following sections
are devoted to each of these items respectively. Finally, some conclusions are drawn in
Section 8.

2. PRELIMINARIES TO FLEXIBLE DATABASE QUERIES

A relational database is a collection of relations (often called tables). The relation
schema has the following form [44]:

R(A1 : D1, . . . , An : Dn) (1)

where R is the name of relation e. g. customer or municipality, Ai is the i–th attribute
(i = 1, . . . , n), often called column (e. g. number of days with snow coverage) and Di

is the domain of attribute Ai defining a set of possible values (e. g. interval [0, 365] of
integers for the above mentioned attribute). The crucial element in a relation is the
primary key i. e. attribute(s) which unambiguously identify tuple. A relation instance
of given relation schema is a set of tuples [44] stored in a table inside a database. Each
tuple tj(j = 1, . . . ,m) consists of values of the attributes in the following way:

tj = {(d1j , . . . , dnj) | (d1j ∈ D1, . . . , dnj ∈ Dn)} (2)

where dij is the value of the tuple tj for attribute Ai. For the sake of simplicity, usually
the term “relation instance” is abbreviated to relation.

The Structured Query Language (SQL) is a standard query language for relational
databases. SQL has the following basic structure:

select [distinct] 〈attributes〉 from 〈relations〉 where 〈condition〉.

The query returns a relation (set of tuples that satisfy the condition). Although
SQL is a powerful tool, it is unable to satisfy requirements for data selection based on
imprecise conditions (linguistic terms) and provide degrees of matching query conditions.
A brief overview of SQL, its limitations and ways for improving it using fuzzy forms of

996 M. HUDEC AND M. VUČETIĆ

the where and having clause can be found in [12, 15]. Other authors also advocate the
advantages of using linguistic terms in queries e. g. [36].

Similarly to SQL, the basic structure of fuzzy query is the following [12]:

select [distinct] 〈attributes〉 from 〈relations〉 where 〈fuzzy condition〉.

The fuzzy query returns a fuzzy relation consisting of set of tuples that satisfy the
fuzzy condition and matching degree to condition for each tuple t. The set of answers
to fuzzy query Qf could be written in the following way:

AQf
= {(t, µ(t)) | t ∈ R ∧ µ(t) > 0} (3)

where µ(t) indicates how well the selected tuple t satisfies the query. If µ(t) = 1 the
tuple fully satisfies the query and value of µ(t) in the interval (0, 1) meaning that the
tuple t partially satisfies the query.

Because fuzzy query returns tuples as well as their satisfaction degree, it is possible
to apply an additional clause: a threshold to restrict the list to only tuples which
significantly meet the query condition or first k tuples (k ∈ N) according to the matching
degrees.

Presumably, the first attempt to deal with flexible SQL-like queries is [49]. It fuzzifies
the where clause and makes it possible to use vague terms similar to natural language.
One of the first practical realizations of flexible queries is FQUERY, an add-in that
extends the MS Access’s querying capabilities with linguistic terms in the where clause
[31]. The SQLf [12, 13] is a more comprehensive fuzzy extension of SQL queries. SQLf
extends SQL by incorporating fuzzy predicates not only in the where clause but also
wherever it makes sense [44]. For example, SQLf supports, among others, subqueries
inside the fuzzified where clause and fuzzy joins. The Fuzzy Query Language (FQL) [55]
extends SQL queries with fuzzy condition inside the where clause in the usual way and
adds another two clauses which provide additional functionality: weight and threshold.
The fuzzification of group by clause is examined in [9].

To clarify the understanding of queries, let us show one illustrative example. The
relation municipality (#id, name, number of inhabitants, area, altitude) is represented
as

#id name number of inhabitants area altitude
1 Mun 1 550 2500 123
2 Mun 2 790 7930 856
3 Mun 3 810 8030 354

where #id represents the primary key.
The query find municipalities (attributes: name, area and altitude) which have area

greater than 8000 m2 is expressed in the following way:

select name, area, altitude from municipality where area > 8000.

The query delivers relation:

Fuzzy querying in databases 997

name area altitude
Mun 1 8030 354

It is possible to find municipalities which have high area through a fuzzy query ex-
pressed in the following way [12]:

select name, area, altitude from municipality where area is high.

The answer depends on the definition of the linguistic term high. The query could
deliver the following fuzzy relation:

name area altitude membership degree
Mun 2 7930 856 0.91
Mun 3 8030 354 1

In addition, flexible querying has been employed in many areas e. g. evaluation of the
truth value of short sentences expressed by linguistic summaries. Linguistic summaries
are of structure: Q objects in database have S [41, 60] where Q is the fuzzy quantifier in
sense of Zadeh [62] and S is the summarizer expressed by linguistic terms.

In this paper the following aspects of flexible queries are examined:

• the construction of appropriate fuzzy sets for each query;
• the calculation of matching degrees considering commutative aggregation, non-

commutative aggregation, preferences and quantified propositions;
• dealing with empty and overabundant answers;
• some of the effects of fuzzy logic in flexible querying;
• practical realizations, mainly creating a user-friendly interface and fuzzy query

evaluation.

A list of main issues relevant for fuzzy query language realisation is examined in [34]:

• syntax;
• representation of linguistic terms;
• semantics, mainly the question of matching degree calculation;
• efficiency of application.

These issues have also been taken into account in this paper.

3. CONSTRUCTING APPROPRIATE FUZZY SETS FOR QUERIES

The matching degree of each database record to a query condition critically depends on
the constructed membership functions. Therefore, these functions should be carefully
constructed.

Let Dmin and Dmax be the lowest and the highest domain values of numeric attribute
A i. e. Dom(A) = [Dmin, Dmax] and L and H be the lowest and the highest values in the
current content of a database respectively [29]. Usually the attribute’s domain is defined
in a way that all theoretically possible values can be stored. In practice, collected data

998 M. HUDEC AND M. VUČETIĆ

can be far from the values of Dmin and Dmax; that is, [L,H] ⊆ [Dmin, Dmax]. This means
that only part of the domain contains data. This fact should be considered in defining
not only query conditions but also flexible rules and linguistic summaries among others.
Let us consider the attribute describing the daily frequency of a measured phenomenon
during the year (e. g. number of days with snow coverage). The domain is the [0, 365]
interval of integers. However, in practice collected values could be far from the Dmin

and Dmax values. If the value of H is 199, then each query with condition > 200 will
returns an empty result.

Generally, there are two main aspects for constructing fuzzy sets for queries. In
the first aspect, users define parameters of each fuzzy set in order to create flexible
boundaries in query condition [28]. This way gives users freedom to choose attributes
of fuzzy sets (Ld, Lp, Lq and Lg) depicted in Figure 1. Nevertheless, in this approach
users are asked to set crisp values in flexible query condition (e. g. two crisp values to
clarify meaning of the term high distance – Figure 1a, whereas in classical query user
assign only one value e. g. distance > 500). It could be treated in some sense as not fully
flexible querying. This problem could be mitigated by adjusting fuzzy sets parameters
by moving sliders to define ideal and acceptable values [46].

Users usually consider their preferences on whole domains of attributes. If they are
not familiar with the current database content, the query might easily end up as empty
or overabundant. Empty and overabundant answers are examined in Section 5.

0

1

µHigh(x)

0

1

Ld Lp attribute
0

1

Lp Lg Ld L p Lq Lg

µSmall(x) µMedium(x)

attribute attribute

Fig. 1. Fuzzy sets for flexible querying.

The second aspect deals with dynamic modeling of fuzzy sets parameters over the
domain of attribute. In the first step values of L and H are retrieved from a database.
These parameters are used to create fuzzy sets e. g. small, medium and high over the
attribute’s domain directly from the current content of collected data in a database.

If collected data is more or less uniformly distributed in the domain then the uniform
domain covering method [51] could be applied. In this case the parameters of fuzzy sets
(Figure 2) are created in the following way:

α =
1
8

(H − L) (4)

β =
1
4

(H − L). (5)

Consequently, it is easy to calculate required parameters A, B, C and D (Figure 2).
If it is a requirement for more fuzzy sets (e. g. five sets: very small, small, medium,

Fuzzy querying in databases 999

high, very high) these sets can be straightforwardly constructed adjusting parameters
of α and β.

attribute

small medium high

A B C DDmin≤ L H ≤ Dmax

1

µ(t)
β β βα α

Fig. 2. Linguistic values uniformly distributed over an attribute

domain.

In cases like municipal statistics databases [25], the majority values of several at-
tributes are often close to the value of L, whereas only a few are close to the value of H
and therefore, belong to the fuzzy set high. Illustrative examples are attributes such as
population density, length of roads, area, etc. where only a few big entities have high
values of these attributes. This kind of data distribution cannot always be properly
evaluated by the uniform domain covering method. The logarithmic transformation [29]
is a rational option which might provide a solution. The interval [L,H] is transformed
into the interval [log(L), log(H)]. Consequently, in this interval, logarithms of α, β and
A, B, C and D are calculated using equations (4) and (5). Finally, obtained values are
delogarithmised into the real values. Another possible solution is adding the statistical
mean into the construction of fuzzy sets [51]. The middle of the medium fuzzy set core
is the statistical mean of attribute. In this approach, cores of all three fuzzy sets (β)
have equal size; lengths of fuzzy sets slopes (α) are different.

In order to choose an appropriate method users could rely on their knowledge, com-
mon sense, attainments about examined entities (e. g. municipalities or customers), and
knowledge of physical laws. In the case of attributes like the number of inhabitants, in
which a database usually contains a few big municipalities and many smaller ones the
choice is the logarithmic transformation or statistical mean based algorithm. In the case
of attributes like gas consumption per inhabitant, users could assume that the uniform
domain covering method is an appropriate option.

Actually, an improved solution can be obtained by merging both aspects. In the first
step parameters of fuzzy sets are calculated from the current content of a database. In
the second step users can modify these parameters if they are not satisfied with the
suggested ones. Evidently, the user can obtain information about stored data before
running a query. The querying process could become more tedious but on the other
hand, it might reduce the empty answer problem. In this case, user has two options (i)
to quit the query process knowing that there is no data that satisfy the query condition
(it saves computational resources and time) or (ii) to accept the suggested parameters.
In any case, the assistance for constructing fuzzy sets parameters should be optional for
users.

1000 M. HUDEC AND M. VUČETIĆ

In situation where user wants to retrieve the best possible answer(s) of flexible con-
ditions and is not always aware of the current content in a database, Bosc et al. [14]
suggests the definition of predicates in a contextual and relative manner related to data.
Moreover, authors discussed issues of efficiently retrieving the top-k answers.

In the construction of fuzzy sets we should consider complex criteria when elementary
conditions are not independent or non-commutative. The qualification of linguistic term
relative to another elementary gradual condition requires dynamically defining depend-
able linguistic terms [50]. This topic is discussed later in Section 4.4.

In [36] another inspiration for fuzzy set creation is found. Intervals of each database
attribute are transformed into the interval [-10, 10]. Inside this interval users can assign
parameters of fuzzy sets in order to support fuzzy relations or queries such as unemploy-
ment rate is much lower than migration. In the case of queries like altitude above sea
level is small and number of inhabitants is high, attribute values can be also transformed
into the [-10, 10] interval. In this case, fuzzy sets small, medium, high can be created
using α = 3.3.

Flexible querying systems could be broadly divided into two categories: those for
general use and those devoted to a specific purpose. In the latter category predefined
selection attributes and fuzzy sets should be available in advance and the user can specify
only his/her preferences inside them.

The topic of fuzzification is covered by vast literature, because the fuzzufication is
part of applications in many areas, mainly in fuzzy systems. The review of ways for
constructing membership functions as well as various interpretations can be found in
e. g. [2] where authors discussed various aspects such as taking into account objectivity,
subjectivity, group and individual opinions about membership functions. Verkuilen [53]
has identified three general ways for constructing fuzzy sets: direct assignment, indirect
assignment and assignment by transformation. In this section we have shown direct
assignment by users input, mining from data and transformation of the domain into
unified intervals. Construction of fuzzy sets for fuzzy systems is further discussed in
[38, 45]. The shapes of membership functions have adopted several conventions [19].
Generally, the membership functions are normalized, convex, distinct, piecewise linear
functions. These types constitute only a small subset of the all possible shapes of
membership functions. Discussion about other possible shapes can be found in [19].

However, we should be careful when consider constructing fuzzy sets in queries due
to the following reasons:

• In fuzzy systems rules and fuzzy sets should cover whole domains of attributes in
a proper way by the family of fuzzy sets in order to properly classify or control all
possible occurrences of input attributes. On the other hand, queries only select a
subset of data which might be relevant for users.

• If we want to develop an easy to use tool e. g. a website for broad audience and less
demanding for the calculation, then fuzzification should be as simple as possible.
Therefore, sophisticated approaches (even supported by neural networks or genetic
algorithms) are not suitable.

• In non-commutative queries where answer to the first part of query influences
adjusting condition of the second part of query we have to rapidly and efficiently
fuzzify second attribute in the middle of the querying process.

Fuzzy querying in databases 1001

The fuzzification in fuzzy queries can be improved by mining parameters from the
recorded history in two ways. If a user is registered then the history of preferences
can be stored. During the next attempt for similar query, the parameters of fuzzy sets
from recorded history can be offered. The second option is recommending parameters
according to the parameters used by the most similar users. The main drawback of
this is keeping history and building recommendations. On the other hand, this option
is more tailored to users. In any case, fuzzification is an interesting topic for further
investigation and finding suitable approaches.

The attention dedicated should be also given to quantified queries where attributes
influence each other e. g. find regions where most of low polluted municipalities have high
unemployment. This kind of queries is discussed in Section 4.5.

4. CALCULATION OF MATCHING DEGREE

Query conditions usually consist of more than one elementary condition. Generally, we
can divide this topic into several categories. The simplest category is aggregation of the
classical and and or operators. Elementary query conditions have the same importance
and are independent i. e. order of the execution is irrelevant (commutative queries).
The next category is queries bearing different importance for elementary conditions. In
this category commutative and non-commutative queries can be found. Commutative
queries can be solved by fuzzy implications or Ordered Weighted Averaging Operator
(OWA).

A non-commutative query could bear different structure. Bipolar queries i. e. merg-
ing positive and negative judgements in a query is nowadays a popular research topic.
The bipolar query consists of constraints (have to be satisfied) and wishes (could be
satisfied). An example of such a query is A1 is high and possibly A2 is cheap. Another
example are non-commutative queries containing only constraints where answer of the
first elementary condition influences answer to the second one e. g. small values of A1

among high values of A2. In the next several subsections these categories are examined.
In order to keep the naming of variables consistent throughout the paper, letter A is
related to the attribute and letter P to the predicate (e. g. P: A is small).

4.1. Fuzzification of and operator

This is the simplest form of aggregation for solving queries like select municipalities
where pollution is high and unemployment is low. The t-norm functions are used as
and logical operator. More about t-norms can be found in e. g. [37]. The property of
the associativity [38] ensures that all t-norm functions can be extended to n attributes.
Actually, it is not easy to use all t-norm functions when we have higher number of ele-
mentary conditions. An example of computational burden for one aggregation function
in case of just three attributes can be found in [45]. Due to this reason, and the practical
realizations (which is also mentioned in Section 7) the following t-norm functions can
be easily aggregated [45] and therefore could be suggested for fuzzy queries:

• minimum

µ(t) = min(µAi(t)), i = 1, . . . , n ; (6)

1002 M. HUDEC AND M. VUČETIĆ

• product

µ(t) = Πn
i=1(µAi(t)) ; (7)

• Lukasiewicz

µ(t) = max
(

0,
n∑
i=1

µAi(t)− (n− 1)
)

; (8)

where µAi(t) denotes the membership degree of the value of attribute Ai to the i–th
fuzzy set for tuple t.

From the above mentioned t-norms only the minimum t-norm (6) is an idempotent
t-norm [38] which makes it the most acceptable for users accustomed to working with
the crisp queries. This is one of the reasons for the wide use of this operator in many
approaches e. g. [49] or [55]. However, min t-norm has a limitation which is examined
in Table 1. The product t-norm (7) takes into account all membership degrees and
balances the query satisfaction degree across each of the elementary conditions inside
the overall query condition. The product t-norm distinguishes records which have the
same value of the lowest membership degree of elementary conditions and different values
of the satisfaction degree of other elementary conditions. The Lukasiewicz t-norm (8)
is a nilpotent t-norm, that is, µ(t) > 0 only for records which significantly satisfy the
condition in a way:

n∑
i=1

µAi(t)− (n− 1) > 0.

It is not easy to offer an answer to the question which of these t-norms is the most
appropriate. Let us have two records which satisfy the first elementary condition (P1)
and the second elementary condition (P2) as is shown in Table 1.

tuple P1 P2 min(6) prod(7) luk(8) γ = 0.5 (9)
1 0.11 0.2 0.11 0.02 0 0.08
2 0.10 0.9 0.10 0.09 0 0.29

Tab. 1. Example of matching degrees using t-norms.

The min-t-norm (6) prefers the tuple 1. But, this contradicts the human reasoning when
selecting the best tuple: although the tuple 1 is only slightly better in the first elementary
condition and notably worse according to the second elementary condition, it is the
preferred solution. The product t-norm prefers the second tuple with the membership
degree lower than the values for both elementary conditions. The Lukasiewicz t-norm
calculates membership degrees of 0 for both tuples because they do not significantly
satisfy both elementary conditions.

This issue can be solved using compensatory operators to model the fuzzy or linguistic
and operator. The compensation of a bad value of one attribute by a good value of
another attribute can be achieved e. g. by the γ–operator [69] adapted to the fuzzy
queries in the following way:

µ(t) = (Πn
i=1µAi(t))

1−γ(1−Πn
i=1(1− µAi(t)))γ (9)

Fuzzy querying in databases 1003

where γ ∈ [0, 1], other elements have the same meaning as in (6) – (8). Applying the
γ–operator with the value of 0.5 implies that all attributes have the same weight. Fur-
thermore, neither largest nor smallest membership degree is the solution (like in min
and max operators respectively). A short discussion of the applicability of γ–operator
can be found in [56].

The γ-operator requires more computational time in comparison with the examined
t-norm functions (6) – (8). When the most restrictive matching degree of elementary
condition is relevant then the min t-norm is the appropriate solution. When users con-
sider satisfaction degrees of each elementary condition then the product t-norm is the
solution. In addition, if user would like to see in the result only tuples which signifi-
cantly meet all elementary conditions then the Lukasiewicz t-norm is suitable. However,
product t-norm and Lukasiewicz t-norm produces satisfaction degree significantly lower
than the degrees of elementary conditions.

4.2. Fuzzy preferences between elementary query conditions

Membership functions expressing preferences inside elementary query conditions are
discussed in Section 3. The aim of preferences between elementary conditions is to dis-
tinguish elementary conditions according to their importance. Not all conditions always
have the same priority for users. An example of such a query condition is: select munic-
ipality with high altitude above sea level and low pollution where the second condition is
more important than the first one. In order to achieve the mentioned distinction weights
wi ∈ [0, 1] can be associated with elementary conditions. Two types of weights can be
applied [66]: static and dynamic. Static weights are fixed and known in advance. These
weights are independent of the current values of attributes in a database and cannot be
changed during query processing. In the case of dynamic weights neither weights nor
their association to criteria are known in advance.

The idea for how to calculate the matching degree of elementary conditions Pi ac-
cording to an importance weight wi has the following form [66]:

µ(P ∗i , t) = (wi ⇒ µ(Pi, t)) (10)

where ⇒ is a fuzzy implication. A broader discussion of existing fuzzy implications
can be found in [22, 57, 61]. In order to be meaningful, weights should satisfy several
requirements [66]. One of them: if wi = 0 then the result should be such as if Pi does not
exist is briefly examined below. By applying this requirement, it is easy to conclude that
the regular implications e. g. Kleene–Dienes, Gödel and Goguen match this requirement.

Using the Kleene–Dienes implication the following query condition for the conjunction
is achieved:

µ(t) = min
i=1,...,n

(
max

i=1,...,n
(µ(Pi, t), 1− wi)

)
(11)

if the minimum function is used as a t-norm. The equation (11) corresponds to the
definition of the weighted conjunction operator introduced in [18]. Therefore, we could
apply fuzzy implications or weighted minimum and maximum operators. The paper
focuses on the former case. For a small importance of Pi (wi is close or equal to 0),
the satisfaction of elementary condition Pi does not have an influence on the query
satisfaction: wi → 0 ⇒ µ(P ∗i , t) → 1, where arrow means approaching the value of. In

1004 M. HUDEC AND M. VUČETIĆ

another case when wi is closer to 1, the satisfaction of Pi is essential for satisfaction
of the overall query (wi → 1 ⇒ µ(P ∗i , t) → µ(Pi, t)). Moreover, this implication has
continuous values of query satisfaction from 0 to 1.

Besides these implication functions, in some applications it is common to describe
implication by t-norms [22]. This especially holds for the minimum t-norm (6) which is
called the Mamdani implication. Let us see whether this assumption holds for so-called
Mamdani implication in the query preferences. The query condition is achieved in the
following way:

µ(t) = min
i=1,...,n

(
min

i=1,...,n
(µ(Pi, t), wi)

)
. (12)

We can easily prove that this implication is not suitable. For the small importance
of wi the overall query satisfaction will be close to 0. In the case when wi = 0, the
overall query satisfaction is 0 regardless of other elementary conditions. It implies that
the requirement if wi = 0 then the result should be such as if Pi does not exist is not
satisfied for the “implication”(12).

Another way for realisation of preferences can be found in [55] where the authors
suggest not only crisp values but also fuzzy sets to describe the importance value in
the weight clause. Weights are realised as a separated query clause. The importance
weight can be crisp numbers from the [0, 1] interval or fuzzy sets defined beforehand in
a separate table. Users benefit through the possibility to select the importance defined
by linguistic terms.

The second approach capable to take into account the importance of conditions is
based on the OWA operator [66]. The OWA operator [59] is defined by a weight vector
W = [w1, . . . , wn],

∑n
i=1 wi = 1 and for a vector of satisfaction degrees of elementary

conditions P = [µ(ai), . . . , µ(an)] yields the following result

Ow(µ(a1), . . . , µ(an)) =
n∑
i=1

wibi (13)

where bi is the i–th largest element among µ(ai) elements. In this way variety of aggre-
gation operators could be generalized. In particular for W = [0, . . . , 0, 1] the minimum
t-norm is produced. If the value of 1/n is set for each weight then we get the arithmetic
mean in which all attributes are equally important. This operator is very useful because
of its versatility. It provides parameterized family of aggregation operators. However,
we cannot say in advance which elementary condition is the most important because
arguments are sorted according to their membership degrees.

The OWA operator is usually focused on aggregation with crisp weights. If one
attribute is more important than another one then it is expressed by higher value of
weight. On the other hand, people tend to describe weights as imprecise values (A1 is
a bit more important than A2, A3 is the most important, etc). In order to cope with
this issue Zhou et al. [68] have suggested type-1 OWA operator to aggregate uncertain
weights by the OWA mechanism. Weights are expressed as type-1 fuzzy sets. More
about this approach can be found in [67].

Modeling preferences by implications (10) and by OWA (13) are not competitive but
complementary. If we declare in advance which condition is the most important then
implications are more suitable otherwise the OWA is suitable.

Fuzzy querying in databases 1005

4.3. Bipolar queries

When people express their requirements they could have in mind negative (constraints)
and positive (wishes) preferences. A suitable example is find hotel which has low price
and possibly short distance to point M. The budget is the limitation; we just cannot afford
something beyond our budget. The distance is a wish, we would prefer shorter walk if
possible. We can formally write query as [65]: find tuples satisfying N and if possible P
where N denotes negative preference and P denotes positive preference. Answer to a
bipolar query is written in the following way:

AQfbp
= {t | N(t) and possibly P (t)} . (14)

In the classical approach the condition of bipolar query for tuple t is expressed as [39]

N(t) and possibly P (t) = N(t) ∧ ∃s(N(s) ∧ P (s))⇒ P (t). (15)

In the first step tuples satisfying N are selected from a database. This step ensures that
tuples which do not satisfy N are not considered. If no tuple meet N then answer to
bipolar query is empty. In the second step tuple t is preferred if no other tuples satisfies
P or tuple t satisfies P . The approach: first select using N then order using P cannot
be directly applied when satisfaction is a matter of degree [16, 65].

Formula (15) corresponds to the “global” interpretation of the term possible (checking
whether the constraint is satisfied by at least one tuple from the dataset considered).
On the other hand a “local” interpretation can also be considered. Then satisfying the
constraint gives a benefit to the tuple, but there is no need to check the other tuples from
the dataset to assess a particular tuple. Therefore, tuples are analyzed independently.
An example of the “local” interpretation, which however cannot handle bipolarity, is
(17).

The condition of bipolar query (15) is expressed in fuzzy terms in the following way
[58, 65]:

A(N,P,T) = min
(
N(t), max

(
1−max

s∈T
min (N(s) ∧ P (s)) , P (t)

))
(16)

where (N,P, T) means answer of N and P against set of tuples T . Quantifier ∃ is mod-
elled by the maximum operator. The implication is characterized by the Kleene–Dienes
implication. Min t-norm, max t-conorm and standard negation form a triplet such that
min t-norm is dual to max t-conorm when we apply standard negation. Other triplets like
(product, probabilistic sum, standard negation) or (Lukasiewicz t-norm and t-conorm
and standard negation) can also be applied if reinforcement effect is needed. Influences
of different functions for quantifier, implication, t-norm and t-conorm to solution are
discussed in [65].

It is evident that bipolar queries are not commutative. Query short distance and if
possible low price has different semantic meaning (budget is not a problem but distance
is).

Let us have four tuples satisfying N and P with different degrees. Table 2 depicts
answers obtained by and if possible operator (16).

1006 M. HUDEC AND M. VUČETIĆ

N P Eq. (16)
0.8 0.3 0.5
0.8 0.5 0.7
0.1 0.9 0.1
0.2 0.7 0.2

Tab. 2. Answer by and if possible operator.

The most suitable tuple is tuple satisfying N with high degree (0.8) and higher value of
P in comparison with other tuples. Low satisfaction degree of N is directly reflected in
matching degree.

Construction of fuzzy sets for P and N could be modelled as independent i. e. con-
struction of fuzzy sets for N do not have influence on construction of fuzzy sets for P
(in our example low price for N and short distance for P).

Bosc and Pivert [11] have analyzed four non-commutative operators. One of them is
P1 and if possible P2. At first glance, when we consider P1 as N and P2 as P then it
is bipolar query expressed above. Bosc and Pivert found appropriate function for this
non-commutative operator. A function which meets six required axioms [11] is:

α(µP1, µP2) = min(µP1, kµP1 + (1− k)µP2), k ∈ [0, 1]. (17)

When k = 1 only P1 is relevant which is in line with bipolar queries. But when k = 0
it becomes ordinal minimum operator. For k = 0.5 and if possible operator has the
following structure

α(µP1, µP2) = min
(
µP1,

µP1 + µP2

2

)
. (18)

Bosc and Pivert [11] argued that this operator (although has similar name like op-
erator suggested by [65]) cannot handle bipolarity, because α does not keep both P1

and P2 separate. Operator (17) is suitable for more and less relevant constraints in the
query. Fuzzy sets for P1 and P2 do not necessary influence each other. Fuzzy set for
P1 is constructed on the domain of attribute included in P1 and fuzzy set for P2 is con-
structed on the domain of attribute included in P2. In the Section 4.4 non-commutative
query where construction of fuzzy sets for one part of a query is highly dependent on
the answer from another part of the query is demonstrated.

The second approach for managing bipolarity is based on possibility theory [16]. The
answer is measured on bipolar scales either on one scale where the middle point is neutral
and ends bear extreme positive or extreme negative values. In case of two scales, one
scale measure positive and another one negative preferences. This is supported by the
possibility function and its dual necessity function. Asymmetric bipolarity deals with
two unrelated information [16]. For tuple which is not forbidden (satisfies N) does not
means that it is explicitly possible. More about this approach and related discussion
can be found in [16].

The third approach for bipolar queries is based on the lexicographic ordering [10]. In
this approach degrees for N and P are evaluated separately, i. e. no aggregation between
the constraint and the wish is performed. Let us (N(t1), P (t1)) and (N(t2), P (t2)) denote

Fuzzy querying in databases 1007

the satisfaction degrees of t1 and t2 with respect to the negative preference N and the
positive preference P respectively, then t1 is preferred against t2 if:

t1 � t2 ⇔ (N (t1) > N (t2)) or (N (t1) = N (t2) and P (t1) > P (t2)) . (19)

In this way, the satisfactions of the constraint and the wish rank the database tuples
with a priority given to the constraint. A tuple which is beaten on the constraint cannot
win even if it is notably better on the wish [10]. A tuple which is equal on the constraint
wins, if it is even slightly better on the wish.

4.4. Answer to first elementary condition influences answer to the second
one

This is an occurrence of queries where the condition P2 (elementary or consisting of
several elementary ones) is defined a priori and the condition P1 is defined in a relative
manner of satisfying the condition P2. One example for such a query is find entities
having small values of A1 among entities having high values of A2. From the axiom
that all t-norm functions are commutative [38] implies that the order of elementary
conditions in overall query condition is irrelevant. In this class of problems elementary
conditions are not independent, that is, the second elementary condition depends on
answers obtained from the first one. We should realize first elementary condition and
depending on the result continue with second elementary condition and so on. Number
of elementary conditions is not limited. The among operator [51] meets this requirement
having the following structure:

µP1amongP2 = min(µP1/P2(t), µP2(t)) (20)

where µP2 is the membership function defining fulfillment of the independent elementary
condition and µP1/P2 is the fulfillment degree of the dependent elementary condition
relative to the independent one.

The example of such a query is: select municipalities having small migration (P1)
among municipalities having high unemployment rate (P2). The solution applying the
among operator and solving task by one query condition is discussed in [51].

We would like to discuss another option. The query could be realised as a two step
query. In the first step entities satisfying the condition P2 are selected. The membership
function for the linguistic term of the elementary condition P2 could be calculated by
one of the approaches examined in Section 3 by applying the interval [LP2, HP2] from
the current content in a database. Entities selected by P2 create a fuzzy subrelation
of all entities. Applying function for sorting entities according to values of attribute
P1 in our example we obtain a reduced interval [LP1−red, HP1−red] ⊆ [LP1, HP1] of the
dependent attribute P1. In the next step the fuzzy set describing P1 is created on the
subdomain [LP1−red, HP1−red] by the uniform domain covering method [51]. Even if the
user can define parameters for the membership function µP2 without suggestion from
current database content, defining the membership function for µP1/P2 on the interval
[LP1−red, HP1−red] depends on the selected tuples in the first step. Finally, the overall
query matching degree is calculated. If the order of elementary conditions is permuted
to the following query select municipalities having high unemployment rate (P2) among

1008 M. HUDEC AND M. VUČETIĆ

municipalities having small migration (P1) the solution is different. It is not a surprising
result because, in the first step of permuted elementary conditions only tuples having
small migration are selected. This condition deliminates a subrelation. In the second
step the limited subdomain of the unemployment rate has been used as a basis for
constructing fuzzy set high unemployment.

The suggested approach is an associative one, that is, it is not limited to queries
containing two elementary conditions.

4.5. Quantified queries

This is a class of database queries which uses linguistic quantifiers to represent amount
of tuples satisfying a condition. An example of such a condition is most of regions have
medium unemployment. These sentences (called Linguistic Summaries (LSs)) have been
initially introduced in [60] and developed in tool called SummarySQL [41]. LSs were
topic of many papers e. g. [24, 30, 35] and [64] .

LSs could be used for mining abstract from data (linguistic summaries from predefined
linguistic term sets which meet majority of tuples) or as nested subqueries, especially
for hierarchical data structures like municipalities – regions or customers – orders.

An elementary LS is of the structure Q entities in database are (have) S, where Q
is the quantifier (almost all, most of, about half, few, etc.) and S is a summarizer
expressed by fuzzy condition (e. g. unemployment is small) or crisp conditions (e. g.
unemployment < 5 %). The validity (truth value) is computed in the following way [64]:

v(LS) = µQ

(1
n

n∑
i=1

µS(ti)
)

(21)

where n is the cardinality of a relation in a database (number of tuples),
1
n

∑n
i=1 µS(ti)

is the proportion of tuples in a database that satisfy the S and µQ is the membership
function of chosen quantifier. The validity gets value form the unit interval.

Summarizer can concerns more than one atomic condition joined by the and connec-
tives [20]. If summarizer consists of several atomic conditions connected by conjunction
µS(ti) is calculated in the following way [24]:

µS(ti) = f(µSj(ti)), j = 1 . . .m, (22)

where f is a t-norm and m is number of atomic conditions. Selecting appropriate t-norm
function is explained in Section 4.1.

A more complex type of LS has the form Q R entities in database are (have) S where
R is a restriction focusing on a part of database relevant for the summarization task.
An example of such a LS is most high polluted and small sized municipalities have high
number of respiratory diseases. The procedure for calculating validity has the following
form [41]:

v(LS) = µQ

(∑n
i=1 f(µS(ti), µR(ti)

)
∑n
i=1 µR(ti)

) (23)

Fuzzy querying in databases 1009

where
∑n
i=1 f(µS(ti), µR(ti))∑n

i=1 µR(ti)
is the proportion of the tuples in a database that satisfy

S and belong to R, f is a t-norm and µQ is the membership function of quantifier.
The validity of a summary is computed by the chosen quantifier [21, 30]. Relative

quantifiers few, about half, most of and almost all and possible values of their respective
parameters are shown in Figure 3. The universe of discourse X of these quantifiers is the
unit interval. LSs can be also created by absolute quantifiers such as about 100 tuples,
more than 300 tuples.

0

1

X0

1

0.5

X

1

c) most of

a) few

µ(Q)

X0

1

0.5 1

b) about half

µ(Q)

0.5 1

µ(Q)

0

1

X

d) almost all

0.5 1

µ(Q)

0.8

Fig. 3. Relative quantifiers.

The suitable option is offering the possibility for users to adjust parameters of quan-
tifiers e. g. by sliders in the same way as parameters of fuzzy conditions in queries
[46].

An example of quantified query is the following select regions where most of munic-
ipalities have small water consumption per inhabitant. In the first step, the validity of
summaries is calculated for each region. In the second step regions are ranked downwards
starting with region having the highest value of validity. The procedure for calculating
validity is created as the extension of (21) [24]:

vj(LS) = µQ

(1
Nj

Nj∑
i=1

µS(tij)
)
, j = 1 . . . C,

C∑
j=1

Nj = n, (24)

where n is the number of entities in the whole database, Nj is the number of entities in
cluster j (e. g. municipalities in region j), C is the number of clusters in a database (e. g.

regions), vj is validity of LS for j–th cluster, and
1
Nj

∑Nj

i=1 µS(tij) is the proportion of

tuples in j–th cluster that satisfy summarizer S.
When LS contains the restriction part R then the equation is the extension of (23)

1010 M. HUDEC AND M. VUČETIĆ

in the following way:

vj(LS) = µQ

(∑Nj

i=1 f(µS(tij), µR(tij))∑Nj

i=1 µR(tij)

)
, j = 1 . . . C,

C∑
j=1

Nj = n, (25)

where variables have the same meaning as in (23) and (24).
The main benefit is that data on a lower level remains undisclosed. When data on

the lower lever is sensitive or in first step the focus is on searching relevant entities on
higher level for further deeper analysis of relevant lower levels this approach is suitable.

Concerning issues related to construction of fuzzy sets, care should be taken when
working with LSs with the restriction part. Collected data are usually situated only in a
part of the respective attributes’ domains. The value of 0 for validity of LS could convey
two meanings (Figure 4) [23]: (i) parts of domains included in LS have insufficient
tuples for calculation of relations between data (or are empty); (ii) parts of domains
contain tuples but there is no significant relation between them. So, it is unclear which
interpretation of the value of 0 is the correct one. In order to avoid this trap, membership
functions should be constructed from the current content of a database considering only
parts of domains which are not empty by the uniform domain covering method.

attribute of R

attribute of S

Dmin Dmax

Dmin Dmax

L H

L H

v1(LS) = 0

high

v2(LS) = 0

medium

medium

high

Fig. 4. Ill-defined membership functions.

The next possibility is usage of linguistic quantifiers in order to combine matching
degrees of sub-conditions to yield the overall matching degree of a query. The aim is to
find all the tuples such that most of attributes (out of a given subset) are as specified [33]
using a linguistic quantifier instead of the and and or connectives. This method handles
queries such as select most of (about half, etc.) tuples out of {A1 is high, A2 is small,
A3 is about 5} match. Furthermore, quantifiers may be crisp such as all, at least one
and exactly five. For instance, a user may be interested to know whether air pollution
is severe in the selected destination considering several attributes (relevant pollutants).
The pollution can be considered as serious if most of the attributes (measured pollutants)
exceed their specified limits [32]. In order to solve this kind of queries, Kacprzyk et al.
[32] suggested the FQUERY III+ system.

Fuzzy querying in databases 1011

5. EMPTY AND OVERABUNDANT ANSWERS

Crisp and fuzzy queries contain a logical condition which describes entities we are looking
for. A user may be confronted with two extreme situations: no data or very large amount
of data satisfy the logical condition. In some cases, these answers are informative enough
e. g. empty answer of respondents in delay means that all respondents meet the deadline
and no reminder should be generated. In other cases, the main objective is to solve the
problem; that is, to obtain a nonempty result to support usersal needs to know why an
empty answer occurred and how close are the entities to meet the query condition. The
same holds for a plethoric answer. A survey [7] has provided a detailed view into these
two problems.

5.1. Empty answer problem

The empty answer problem simply means that there is no data matching the query
condition. The query Qf (3) results in an empty set if AQf

= ∅. When the empty
answer occurs, it could be useful to provide some alternative data which might indicate
why an empty answer problem appeared. This problem was initially recognized in [1]
where linguistic modifiers were suggested as a solution. The goal of modifiers is to
modify fuzzy sets in order to obtain a less restrictive variant.

Generally, the query Q is transformed into a less restrictive query QT by the trans-
formation T . The querying process is then repeated until the answer is not empty or
the modified query is semantically far from the original one.

In [8] the following ways for dealing with the empty answer problem are recognized:
the linguistic modifier based approach, the fuzzy relative closeness based approach and
the absolute proximity based approach. Another approach [5] is focused on replacing
the query (which ended as empty one) by a semantically similar one which has been
already processed and provided non empty answer.

In these approaches the query weakening should meet the following constraints for
each predicate involved in the weakening process [7]:

C1 : ∀a ∈ Dom(A), µT (P)(a) ≥ µP (a).

Transformation T does not decrease the membership degree for any element a in a
domain of attribute A.

C2 : support (P) = {a | µP (a) > 0} ⊂ support (T (P)) =
{
a | µT (P)(a) > 0

}
.

Transformation extends the support of fuzzy set (in case of fuzzy set medium it is the
[Ld, Lg] interval depicted in Figure 1) constructed for the predicate P . It means that
the condition is relaxed to retrieve more tuples.

C3 : core (P) = {a | µP (a) = 1} = core (T (P)) =
{
a | µT (P)(a) = 1

}
.

Transformation preserves the core of condition. The transformed query cannot re-
trieve more tuples which fully meet the relaxed condition than the initial query condition.

1012 M. HUDEC AND M. VUČETIĆ

An example of the original predicate (P) and the transformed one (T (P)) according
to requirements C1 – C3 is depicted in Figure 5.

0

1

a
B

µA(x)

A

T(A,a)

attribute
b

T(B,b)

P
T(P)

Fig. 5. Weakening of a query condition.

The important issue in weakening is the stopping criterion otherwise the query may
retrieve tuples which are semantically far from the initial one or even in an extreme
situation the query may retrieve all tuples. In case of the first and third approaches
mentioned above no intrinsic semantic limit is provided. The user has to specify a crisp
set Ca (set of non-adequate data) by its characteristic function ϕc(a) on the domain A.
Therefore, the additional condition C4 is as follows (Figure 6):

C4 : min(µT (P)(a), 1− ϕc(a)) = 0.

0

1

a
B

µA(x)

A

T(A,a)

attribute
b
T(B,b)

P
T(P)

Ca

Fig. 6. Constraint of relaxation.

Concerning the requirements C1 – C3, the stopping criterion says that the weakening
process stops when the answer to modified Q is not empty. Constraint C4 ensures that
tuples which are semantically far from the initial query are not selected. When in the
weakening process the transformation T . . . T (P) . . .) enters the core of Ca, it causes that
C4 = 0 (because of 1−ϕc(a) = 0) and therefore, weakening process stops. The purpose
of this condition is controlling the relaxation process.

Instead of the set Ca we can construct fuzzy set Fa, a set of more or less non-adequate
data.

Fuzzy querying in databases 1013

Aforementioned approaches deal with the local weakening, that is, the basic weaken-
ing transformation applies to each elementary condition. The result of repeated weak-
ening processes is a tree of relaxed queries [7]. In the case of two elementary conditions
P1 and P2 a tree is depicted in Figure 7. When the number of elementary conditions
increases, the size of a tree significantly increases as well. The final step consists of
searching the tree in order to find minimal relaxed query condition which provides us
with a non-empty answer.

21 PP ∧

21)(PPT ∧)(21 PTP ∧

21))((PPTT ∧)()(21 PTPT ∧))((21 PTTP ∧

Fig. 7. Tree of relaxed queries (limited to two levels).

Generally, it is valid that the processing of fuzzy queries introduces an additional
computation burden due to the substantial amount of calculations concerning data [34].
Moreover, query weakening approaches contain an additional significant calculation bur-
den consisting of executing a series of semantically similar queries and exploitation of
the obtained tree. Further research in this field should be focused on reducing this
additional burden especially in the execution of a high number of semantically similar
queries. Let us assume a query consisting of two elementary conditions. If the query
relaxes to a second level of transformation only, software will realize 6 similar queries.
A high number of elementary conditions significantly increase the number of nodes in a
tree (Figure 7).

5.2. Overabundant answer problem

The opposite situation arises when a large amount of tuples is retrieved from a database.
The query Qf results in overabundant answers if the cardinality of AQf

(3) is too large.
To recognize the empty answer problem is quite easy. In the case of an overabundant

answer problem, it is not easy to unambiguously recognize it. The answer to a question
about where lies the boundary between non overabundant and overabundant answers
is not easy to give. It depends on how many records user wants to obtain and on the
current content of the database. Two situations might arise: too many tuples fully
satisfy a query condition and/or too many tuples partially satisfy a query condition.
The first situation requires query intensification; that is, reduction of the core of fuzzy
sets in order to less tuples fully meet the query condition. At first glance the second
situation is easy to solve because the α – cut is an appropriate facility. For example, the
threshold clause [13, 55] could solve this problem. However, situation when very large
number of answers has the same maximal score (different from value of 1) might occur.
In this case the intensification of condition is not the solution. These records will have
again the same, although lower membership degree to the answer. The solution could be

1014 M. HUDEC AND M. VUČETIĆ

adding additional elementary condition semantically close to the initial query condition.
From a theoretical point of view problems of empty and overabundant queries are

dual. Ways how to solve overabundant answer problems are examined in [7]. Smits,
Pivert and Hadjali [48] address both problematic situations: empty and overabundant
answers by the precomputation of summary of database in order to retrieve information
about distribution of data in respective domains. In this way the single scan of databases
provides relevant information about fuzzy cardinality. Another approach, adding a se-
mantically similar attribute to the query condition to obtain more restrictive solution is
suggested in [4]. In this direction fuzzy functional dependencies [26, 54] could be useful
in the process of mining related attributes.

From a practical point of view, the empty answer problem is more relevant for users.
The empty sheet of data says nothing about stored data in databases but the sheet
containing a large amount of data could be examined by several other methods.

6. SOME EFFECTS OF USAGE OF FUZZY LOGIC IN FLEXIBLE QUERYING

It is usually stated that fuzzy data selection expresses an informational need better than
crisp data selection. Although this is generally true, several aspects should be considered
during the query realization.

Let us recall the known facts that the operations of two-valued logic meet all axioms
of Boolean algebra, namely excluded middle, contradiction and idempotency whereas
operations of fuzzy logic do not meet all of them. We can find several situations when
queries could lead to, from the users’ point of view, unexpected results.

Let us look at two queries: a is High and a is High and a is High where µ(a) < 1.
Some t-norms provide different answers to the first and the second query, namely the
product (7) and Lukasiewicz (8) t-norms. Moreover, in the case when µ(a) < 0.5 and
using Lukasiewicz t-norm the result is 0. This kind of query is not a realistic one but
if the user has the freedom to create fuzzy queries over a list of database attributes,
these situations might lead (for example in the testing of a software application) to
speculation of general applicability of fuzzy queries in practice. This kind of query could
appear either as a mistake during the construction of the condition or by purpose during
testing application. There is a simple solution: before query realization, check whether
user doubled the same elementary condition (semantics of query condition). If it is true,
then eliminate doubled elementary condition from a query (it especially holds when
other than min t-norm is used). Developers of classical queries do not need to focus
their attention on this problem because classical conjunction is idempotent.

This is the consequence of the generalization of truth functionality principle from
the two-valued logic to the fuzzy logic. Logic is truth functional if the truth value
of a compound sentence depends only on the truth values of the constituent atomic
sentences, not on their meaning or structure [43]. In case of the two-valued logic this
principle satisfies all axioms. But it is not the case for the fuzzy logic.

Interestingly, in [3] it is stated that ” . . . the symbols of the (logic) calculus do not de-
pend for their interpretation upon the idea of quantity. . . ” and only ”in their particular
application. . . , conduct us to the quantitative conditions of inference”. So, according to
the above statement the principle of truth functionality is just not enough for general-
ization.

Fuzzy querying in databases 1015

At any rate, there is a possible answer about how to solve the above-mentioned incon-
sistency in fuzzy queries. The promising area for research in this field is the Interpolative
Realization of Boolean Algebra (IBA) [43]. IBA consists of symbolic level (atomic func-
tions) and value level (intensity [0, 1]). It is in line with the ideas expressed in [3]. We
have not found any deeper research or realisation in this direction. Therefore, there is a
space for evaluating pros and cons of the IBA in this field.

We have seen in previous sections that mathematics based on fuzzy sets and fuzzy
logic has greater expressive power than classical mathematics based on crisp sets and
crisp logic. But the usefulness depends critically on semantics of data retrieval task,
converting task into fuzzy conditions and choosing appropriate aggregation functions.
Finally, user awareness of advantages and limitations of fuzzy logic is a prerequisite for
an efficient use of fuzzy queries in everyday tasks. Therefore, an application should
contain short demonstrating part expressing efficient work with flexible queries.

7. AN EXAMPLE OF PRACTICAL REALISATION

The purpose of an interface is to offer unspecialized users the ability to ask for data
without having to know the complexity of a relational database and to lead them through
the flexible querying process. Several articles dealing with user-friendly interface can be
found e. g. [42] and [52]. In [36] a detailed description of FQUERY user interface is
provided. The PostgreSQL f [46] offers a solution for construction of fuzzy sets by
graphical interface through the ReqFlex. Although this topic is a matter of design
and programming, the appropriate user interface is crucial for acceptance of flexible
queries by end users. It means that items discussed in this paper (dynamic modelling
of membership functions, defining preferences, applying non commutative operators,
quantifiers, dealing with empty or overabundant answers) need to be offered to users
and managed in an appropriate way. In addition, presenting retrieved records and their
satisfaction degrees in useful and understandable ways is also very important.

Through the interface users can communicate with the whole flexible data selection
process. Each application of a flexible query needs to be optimized according to the field
where it is used. Lets assume flexible queries on territorial units as in Figure 8 [25]. In
the phase of query creation navigation through a list of query-able attributes needs to
be easily manageable. The result of a query could be presented to users in a form of
a table or thematic map. The latter one is suitable for dealing with territorial units.
For example, territorial units which fully satisfy the query criterion can be marked with
one colour, territorial units which do not satisfy the query can be marked with a second
colour and territorial units which partially meet the query condition could be marked
with a third colour having a colour gradient from a faint hue to a deep hue. In this way
the ordinary flexible query application has a high power of information representation.
Merging results and suggestions from [28, 36, 42, 46, 52] could create a powered tool.

Although the interface in Figure 8 is adjusted to the specific database, there are
parts which are universal. Selecting relevant attributes from the list of all attributes
appearing in the database is the first prerequisite. Users should have option to decide
which attributes will appear in fuzzy part of a query and which in crisp part of a query.
Furthermore, users could define parameters of fuzzy sets either by sliders [46] or directly
inserting values (Figure 8). Attributes bearing categorical values could be fuzzified by

1016 M. HUDEC AND M. VUČETIĆ

Fig. 8. Interface for flexible queries [25].

assigning membership degree to each relevant category. For example, attribute Aopin
expressing opinion about something gets values from the set {very low, low, medium,
high, very high} for every single tuple. If the query condition is opinion is positive then
categorical values could be fuzzified as follows: term high gets membership degree of
0.75 and term very high gets membership degree of 1.

Combo boxes for selecting aggregation operators should contain commutative and
non-commutative ones. In case of t-norm operators we should offer functions which do
not require more computational burden when larger number of attributes is involved
in query condition [45] and cover main users requirements for aggregation discussed in
section 4.1 In case of non-commutative aggregation users should be careful in creating
the order of attributes (e. g. for the tab control of interface in Figure 8). In bipolar
queries wishes and constraints should be clearly separated. Putting constraint into wish
and vice versa leads to an inappropriate solution.

The “brain” of software tool is the application layer. It communicates with the
database and the interface. The application layer should communicate with the database
in a such way that no database modification is required. An example is the solution
based on the generalized logical condition (GLC) [28]. This solution contains the usual
steps for flexible querying: (i) converting fuzzy conditions to classical ones from sup-
ports of each fuzzy set and applied aggregation operator; (ii) connecting to database,
selecting all candidates (tuples which have membership degree greater than zero) and
releasing database connection; (iii) calculating satisfaction degree for each tuple to each
elementary condition and finally calculating overall satisfaction degree. The detailed

Fuzzy querying in databases 1017

explanation of this approach can be found in [27]. Although this solution currently sup-
ports only the fuzzified where clause, it could be adopted to solve majority of queries
discussed in Section 4. The next step should be comparison with powerful solutions like
SQLf [12] and FQUERY [31].

A powerful scenario for using flexible queries consists of all of the above mentioned
items. In the first step software could suggest parameters of linguistic terms according
to the current content of a database. Later, user is able to modify these parameters
according to his/her opinion about linguistic terms (or just define parameters without
suggestion from the software), include preferences, priorities and bipolarities between
elementary conditions, set threshold values and choose appropriate aggregation func-
tions. In cases when the result is empty or overabundant, the software and user should
cooperate to solve these problems.

8. CONCLUSION

In the last several decades, fuzziness has been studied in the context of the selection of
relevant data from relational databases. Flexible query languages provide more human
oriented data retrieval in comparison to the classical query languages. Although math-
ematics based on fuzzy sets and fuzzy logic has greater expressive power than classical
mathematics based on crisp sets and crisp logic, the usefulness depends critically on abil-
ity to construct appropriate membership functions [38]. Furthermore, in commutative
queries different t-norm operators calculate a different satisfaction degree which might
cause different sorting of retrieved tuples. The same holds for different functions for
quantifiers and implications in bipolar queries and for other non-commutative queries.
Flexible querying gives us more freedom in data retrieval processes but also requires us
to carefully define parameters and aggregations.

This paper discussed some of the relevant issues of flexible queries namely, the
construction of a membership function for each elementary condition, the calculation
of matching degree by aggregation functions for commutative and non-commutative
queries, the creation of preferences between elementary conditions, the merging of con-
straints and wishes, how to deal with the empty and overabundant answers, the effects
of different aggregation operators on results and the realization focused on the user-
friendly interface with touch on evaluation of queries. These issues are not independent.
For example, support of querying by construction of membership functions from the
current database content could reduce issues of empty or overabundant answers and
improve non-commutative aggregation. In addition, this paper outlines ideas for further
development.

Database querying tools based on fuzzy logic need additional calculations in compar-
ison with the traditional SQL counterpart. Although this added amount of calculation
is balanced with an additional information obtained from databases it could be useful to
reduce this burden to a feasible level. Embedding fuzzy querying engine into a relational
database management system is a solution which brings improved performances [47]. In
this way we can adjust the engine to the specific needs of a particular database manage-
ment system. On the other hand, if company migrates its data into another database
management system, the query engine should be adjusted.

We believe that this contribution has given some relevant information for further

1018 M. HUDEC AND M. VUČETIĆ

research and helped designers and practitioners in understanding some issues in flexible
querying relevant for building applications that will meet particular needs.

(Received January 23, 2014)

R E F E R E N C E S

[1] T. Andreasen and O. Pivert: On the weakening of fuzzy relational queries. In: Proc.
8th International Symposium on Methodologies for Intelligent Systems, Charlotte 1994,
pp. 144–151. DOI:10.1007/3-540-58495-1 15

[2] T. Bilgiç and I. B. Türkşen: Measurement and elicitation of membership func-
tions. In: Handbook of Granular Computing (W. Pedrycz, A. Skowron and
V. Kreinovich, eds.), Wiley-Interscience, Chichester, West Sussex 2008, pp. 141–153.
DOI:10.1002/9780470724163.ch6

[3] G. Boole: The calculus of logic. Cambridge and Dublin Math. J. III (1848), 183–198.

[4] P. Bosc, A. Hadjali, O. Pivert, and G. Smits: An approach based on predicate corre-
lation to the reduction of plethoric answer sets. In: Advances in Knowledge Discovery
and Management. Studies in Computational Intelligence, Volume 398 (F. Guillet, B. Pin-
aud, G. Venturini and D.A. Zighed, eds.), Springer-Verlag, Heidelberg 2012, pp. 213–233.
DOI:10.1007/978-3-642-25838-1 12

[5] P. Bosc, C. Brando, A. Hadjali, H. Jaudoin, and O. Pivert: Semantic proximity between
queries and the empty answer problem. In: Proc. Joint IFSA-EUSFLAT Conference,
Lisbon 2009, pp. 259–264.

[6] P. Bosc, D. Kraft, and F. Petry: Fuzzy sets in database and information sys-
tems: Status and opportunities. Fuzzy Sets and Systems 156 (2005), 418–426.
DOI:10.1016/j.fss.2005.05.039

[7] P. Bosc, A. Hadjali, and O. Pivert: Empty versus overabundant answers
to flexible relational queries. Fuzzy Sets and Systems 159 (2008), 1450–1467.
DOI:10.1016/j.fss.2008.01.007

[8] P. Bosc, A. Hadjali, and O. Pivert: Weakening of fuzzy relational queries: and absolute
proximity relation-based approach. Mathware and Soft Comput. 14 (2007), 35–55.

[9] P. Bosc, O. Pivert and G. Smits: On a fuzzy group-by and its use for fuzzy association
rule mining. In: Proc. 14th East-European Conference on Advances in Databases and
Information Systems (ADBIS’10), Novi Sad 2010, pp. 88–102. DOI:10.1007/978-3-642-
15576-5 9

[10] P. Bosc and O. Pivert: On a fuzzy bipolar relational algebra. Inform. Sci. 219 (2013),
1–16. DOI:10.1016/j.ins.2012.07.018

[11] P. Bosc and O. Pivert: On four noncommutative fuzzy connectives and their axiomati-
zation. Fuzzy Sets and Systems 202 (2012), 42–60. DOI:10.1016/j.fss.2011.11.005

[12] P. Bosc and O. Pivert: SQLf query functionality on top of a regular relational database
management system. In: Knowledge Management in Fuzzy Databases (M. Pons, M. Vila
and J. Kacprzyk, eds.), Physica-Verlag, Heidelberg 2000, pp. 171–190. DOI:10.1007/978-
3-7908-1865-9 11

[13] P. Bosc and O. Pivert: SQLf: a relational database language for fuzzy querying. IEEE
Trans. Fuzzy Systems 3 (1995), 1–17. DOI:10.1109/91.366566

http://dx.doi.org/10.1007/3-540-58495-1_15
http://dx.doi.org/10.1002/9780470724163.ch6
http://dx.doi.org/10.1007/978-3-642-25838-1_12
http://dx.doi.org/10.1016/j.fss.2005.05.039
http://dx.doi.org/10.1016/j.fss.2008.01.007
http://dx.doi.org/10.1007/978-3-642-15576-5_9
http://dx.doi.org/10.1007/978-3-642-15576-5_9
http://dx.doi.org/10.1016/j.ins.2012.07.018
http://dx.doi.org/10.1016/j.fss.2011.11.005
http://dx.doi.org/10.1007/978-3-7908-1865-9_11
http://dx.doi.org/10.1007/978-3-7908-1865-9_11
http://dx.doi.org/10.1109/91.366566

Fuzzy querying in databases 1019

[14] P. Bosc, O. Pivert, and A. Mokhtari: On fuzzy queries with contextual predicates. In:
Proc. International Conference on Fuzzy Systems (FUZZ-IEEE 2009), Jeju Island 2009,
pp. 484–489. DOI:10.1109/fuzzy.2009.5277136

[15] E. Cox: Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration.
Morgan Kaufman, San Francisco 2005. DOI:10.1016/b978-012194275-5/50002-5

[16] D. Dubois and H. Prade: Handling bipolar queries in fuzzy information processing In:
Handbook of Research on Fuzzy Information Processing in Databases (J. Galindo, ed.),
Information Science Reference, Hershey 2008, pp. 97–114. DOI:10.4018/978-1-59904-853-
6.ch004

[17] D. Dubois and H. Prade: Using fuzzy sets in flexible querying: Why and how? In:
Flexible Query Answering Systems (T. Andreasen, H. Christiansen and H. L. Larsen,
eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 45–60. DOI:10.1007/978-1-4615-
6075-3 3

[18] D. Dubois and H. Prade: Weighted minimum and maximum operations. Inform. Sci. 39
(1986), 205–210. DOI:10.1016/0020-0255(86)90035-6

[19] J. M. Garibaldi and R. I. John: Choosing membership functions of linguistic terms. In:
Proc. 12th IEEE International Conference on Fuzzy Systems (FUZZ’03), St. Louis 2003,
pp. 578–583. DOI:10.1109/fuzz.2003.1209428

[20] R. George and R. Srikanth: Data summarization using genetic algorithms and fuzzy
logic. In: Genetic Algorithms and Soft Computing (F. Herrera and J. L. Verdegay, eds.),
Physica Verlag, Heidelberg 1996, pp. 599–611.

[21] I. Glöckner: Quantifier selection for linguistic data summarization. In: Proc.
IEEE International Conference on Fuzzy Systems, Vancouver 2006, pp. 720–727.
DOI:10.1109/fuzzy.2006.1681790

[22] M. Gupta and J. Qi: Theory of t-norms and fuzzy inference methods. Fuzzy Sets and
Systems 40 (1991), 431–450. DOI:10.1016/0165-0114(91)90171-l

[23] M. Hudec, M. Vuc̆etić, and M. Vujošević: Synergy of linguistic summaries and fuzzy
functional dependencies for mining knowledge in the data. In: Proc. 18th IEEE Inter-
national Conference on System Theory, Control and Computing (ICSTCC 2014), Sinaia
2013, pp. 335–340.

[24] M. Hudec: Issues in construction of linguistic summaries. In: Proc. Uncertainty Modelling
2013 (R. Mesiar and T. Bacigál, eds.), STU, Bratislava 2013, pp. 35–44.

[25] M. Hudec: Improvement of data collection and dissemination by fuzzy logic. In: Joint
UNECE/Eurostat/OECD Meeting on the Management of Statistical Information Systems
(MSIS 2013), Paris – Bangkok 2013.

[26] M. Hudec, M. Vuc̆etić, and M. Vujošević: Comparison of linguistic summaries and fuzzy
functional dependencies related to data mining. In: Biologically-Inspired Techniques for
Knowledge Discovery and Data Mining (S. Alam, G. Dobbie, Y. Sing Koh and S. ur
Rehman, eds.), Information Science Reference, Hershey 2014, pp. 174–203.

[27] M. Hudec: Fuzzy improvement of the SQL. Yugoslav J. Oper. Res. 21 (2011), 2, 239–251.
DOI:10.2298/yjor1102239h

[28] M. Hudec: An approach to fuzzy database querying, analysis and realisation. Computer
Sci. Inform. Systems 6 (2009), 2, 127–140. DOI:10.2298/csis0902127h

http://dx.doi.org/10.1109/fuzzy.2009.5277136
http://dx.doi.org/10.1016/b978-012194275-5/50002-5
http://dx.doi.org/10.4018/978-1-59904-853-6.ch004
http://dx.doi.org/10.4018/978-1-59904-853-6.ch004
http://dx.doi.org/10.1007/978-1-4615-6075-3_3
http://dx.doi.org/10.1007/978-1-4615-6075-3_3
http://dx.doi.org/10.1016/0020-0255(86)90035-6
http://dx.doi.org/10.1109/fuzz.2003.1209428
http://dx.doi.org/10.1109/fuzzy.2006.1681790
http://dx.doi.org/10.1016/0165-0114(91)90171-l
http://dx.doi.org/10.2298/yjor1102239h
http://dx.doi.org/10.2298/csis0902127h

1020 M. HUDEC AND M. VUČETIĆ

[29] M. Hudec and F. Sudzina: Construction of fuzzy sets and applying aggregation op-
erators for fuzzy queries. In: Proc. 14th International Conference on Enterprise In-
formation Systems (ICEIS 2012), Wroclaw 2012, Proceedings volume 1, pp. 253–257.
DOI:10.5220/0003968802530258

[30] J. Kacprzyk and S. Zadrożny: Protoforms of linguistic database summaries as a human
consistent tool for using natural language in data mining. Int. J. Software Sci. and
Comput. Intel. 1 (2009), 100–111. DOI:10.4018/jssci.2009010107

[31] J. Kacprzyk and S. Zadrożny: FQUERY for Access: Fuzzy querying for windows-based
DBMS. In: Fuzziness in Database Management Systems (P. Bosc and J. Kacprzyk, eds.),
Physica-Verlag, Heidelberg 1995, pp. 415–433. DOI:10.1007/978-3-7908-1897-0 18

[32] J. Kacprzyk, S. Zadrożny, and A. Zió lkowski: FQUERY III +: A “human-consistent”
database querying system based on fuzzy logic with linguistic quantifiers. Information
Systems 14 (1989), 6, 443–453. DOI:10.1016/0306-4379(89)90012-4

[33] J. Kacprzyk and A. Zió lkowski: Database queries with fuzzy linguistic quanti-
fiers. IEEE Trans. Systems, Man and Cybernetics SMC-16 (1986), 3, 474–479.
DOI:10.1109/tsmc.1986.4308982

[34] J. Kacprzyk, G. Pasi, P .Vojtáš, and S. Zadrożny: Fuzzy querying: issues and perspec-
tives. Kybernetika 36 (2000), 6, 605–616.

[35] J. Kacprzyk and R. R. Yager: Linguistic summaries of data using fuzzy logic. Interna-
tional Journal of General Systems 30 (2001), 133–154. DOI:10.1080/03081070108960702

[36] J. Kacprzyk and S. Zadrożny: Computing with words in intelligent database query-
ing: standalone and internet-based applications. Inform. Sci. 134 (2001), 71–109.
DOI:10.1016/s0020-0255(01)00093-7

[37] E. Klement, R. Mesiar, and E. Pap: Triangular Norms. Kluwer Academic Publishers,
Dordrecht 2000. DOI:10.1007/978-94-015-9540-7

[38] G. Klir and B. Yuan: Fuzzy Sets and Fuzzy Logic, Theory and Applications. Prentice
Hall, New Jersey 2005.

[39] M. Lacroix and P. Lavency: Preferences: putting more knowledge into queries. In: Proc.
13th International Conference on Very Large Databases, Brighton, 1987 pp. 217–225.

[40] O. Pivert and P. Bosc: Fuzzy Preference Queries to Relational Databases. Imperial
College Press, London 2012. DOI:10.1142/9781848168701

[41] D. Rasmussen and R. Yager: Summary SQL - A fuzzy tool for data mining. Intelligent
Data Analysis 1 (1997), 49–58. DOI:10.1016/s1088-467x(98)00009-2

[42] R. Ribeiro and A. Moreira: Fuzzy query interface for a business database. Int. J. of
Human-Computer Studies 58 (2003), 363–391. DOI:10.1016/s1071-5819(03)00010-7

[43] D. Radojević: Interpolative realization of Boolean algebra as a consistent frame for
gradation and/or fuzziness. In: Forging New Frontiers: Fuzzy Pioneers II Studies in
Fuzziness and Soft Computing (M. Nikravesh, J. Kacprzyk and L. Zadeh, eds.), Springer-
Verlag, Berlin Heidelberg 2008, pp. 295–318. DOI:10.1007/978-3-540-73185-6 13

[44] A. Rosado, R. Ribeiro, S. Zadrożny, and J. Kacprzyk: Flexible query languages for re-
lational databases: An overview In: Flexible Databases Supporting Imprecision and Un-
certainty. Studies in fuzziness and soft computing, Vol. 203 (G. Bordogna and G. Psaila,
eds.), Springer-Verlag, Berlin Heidelberg 2006, pp. 3–53. DOI:10.1007/3-540-33289-8 1

[45] W. Siler and J. Buckley: Fuzzy Expert Systems and Fuzzy Reasoning. John Wiley and
Sons, New Jersey 2005. DOI:10.1002/0471698504

http://dx.doi.org/10.5220/0003968802530258
http://dx.doi.org/10.4018/jssci.2009010107
http://dx.doi.org/10.1007/978-3-7908-1897-0_18
http://dx.doi.org/10.1016/0306-4379(89)90012-4
http://dx.doi.org/10.1109/tsmc.1986.4308982
http://dx.doi.org/10.1080/03081070108960702
http://dx.doi.org/10.1016/s0020-0255(01)00093-7
http://dx.doi.org/10.1007/978-94-015-9540-7
http://dx.doi.org/10.1142/9781848168701
http://dx.doi.org/10.1016/s1088-467x(98)00009-2
http://dx.doi.org/10.1016/s1071-5819(03)00010-7
http://dx.doi.org/10.1007/978-3-540-73185-6_13
http://dx.doi.org/10.1007/3-540-33289-8_1
http://dx.doi.org/10.1002/0471698504

Fuzzy querying in databases 1021

[46] G. Smits, O. Pivert, and T. Girault: ReqFlex: Fuzzy queries for everyone. In: Proc.
39th International Conference on Very Large Data Bases, Trento 2013, pp. 1206–1209.
DOI:10.14778/2536274.2536277

[47] G. Smits, O. Pivert, and T. Girault: Towards reconciling expressivity, efficiency and
user-friendliness in database flexible querying. In: Proc. 22th IEEE International Confer-
ence on Fuzzy Systems (FUZZ-IEEE 2013), Hyderabad 2013, pp. 1–8. DOI:10.1109/fuzz-
ieee.2013.6622356

[48] G. Smits, O. Pivert, and A. Hadjali: Fuzzy cardinalities as a basis to cooperative an-
swering. In: Flexible Approaches in Data, Information and Knowledge Management
(O. Pivert and S. Zadrożny, eds.), Studies in Computational Intelligence, volume 497,
Springer, Berlin Heidelberg 2013, pp. 261–289. DOI:10.1007/978-3-319-00954-4 12

[49] V. Tahani: A conceptual framework for fuzzy query processing: a step toward very
intelligent database systems. Inform. Processing and Management 13 (1977), 5, 289–303.
DOI:10.1016/0306-4573(77)90018-8

[50] C. Tudorie, S. Bumbaru, and L. Dumitriu: Relative qualification in database flexible
queries. In: Proc. 3rd International IEEE Conference on Intelligent Systems, London
2006, pp. 83–88. DOI:10.1109/is.2006.348398

[51] C. Tudorie: Qualifying objects in classical relational database querying In: Handbook
of Research on Fuzzy Information Processing in Databases (J. Galindo, ed.), Information
Science Reference, Hershey 2008, pp. 218–245. DOI:10.4018/978-1-59904-853-6.ch009

[52] C. Tudorie: Intelligent interfaces for database fuzzy querying. The annals of Dunarea de
Jos University of Galati, Fascicle III 32 (2009), 2.

[53] J. Verkulien: Assigning membership in a fuzzy set analysis. Sociological Methods Res.
33 (2005), 462–496. DOI:10.1177/0049124105274498

[54] M. Vuc̆etić and M. Vujošević: A literature overview of functional dependencies in fuzzy
relational database models. Technics Technologies Education Management 7 (2012), 4,
1593–1604.

[55] T. C. Wang, H. D. Lee, and C. M. Chen: Intelligent queries based on fuzzy set theory and
SQL. In: Proc. Joint Conference on Information Science, Salt Lake City 2007, pp. 1426–
1432. DOI:10.1142/9789812709677 0203

[56] N. Werro, A. Meier, C. Mezger, and G. Schindler: Concept and implementation of a
fuzzy classification query language. In: Proc. International Conference on Data Mining,
Las Vegas 2005, pp. 208–214.

[57] H. C. Wu: Fuzzy Systems and Neural Networks. National Chi Nan University, Puli,
Nantou 2002.

[58] R. Yager: Higher structures in multi-criteria decision making. International Journal of
Man-Machine Studies 36 (1992), 553–570. DOI:10.1016/0020-7373(92)90096-4

[59] R. R. Yager: On ordered weighted averaging operators in multicriteria decision
making. IEEE Trans. Systems, Man and Cybernetics SMC-18 (1988), 183–190.
DOI:10.1109/21.87068

[60] R. R. Yager: A new approach to the summarization of data. Information Sciences 28
(1982), 69–86. DOI:10.1016/0020-0255(82)90033-0

[61] M. Ying: Implication operators in fuzzy logic. IEEE Trans. Fuzzy Systems 10 (2002), 1,
88–91. DOI:10.1109/91.983282

http://dx.doi.org/10.14778/2536274.2536277
http://dx.doi.org/10.1109/fuzz-ieee.2013.6622356
http://dx.doi.org/10.1109/fuzz-ieee.2013.6622356
http://dx.doi.org/10.1007/978-3-319-00954-4_12
http://dx.doi.org/10.1016/0306-4573(77)90018-8
http://dx.doi.org/10.1109/is.2006.348398
http://dx.doi.org/10.4018/978-1-59904-853-6.ch009
http://dx.doi.org/10.1177/0049124105274498
http://dx.doi.org/10.1142/9789812709677_0203
http://dx.doi.org/10.1016/0020-7373(92)90096-4
http://dx.doi.org/10.1109/21.87068
http://dx.doi.org/10.1016/0020-0255(82)90033-0
http://dx.doi.org/10.1109/91.983282

1022 M. HUDEC AND M. VUČETIĆ

[62] L. Zadeh: A computational approach to fuzzy quantifiers in natural languages. Computers
and Math. Appl. 9 (1983), 149–184. DOI:10.1016/0898-1221(83)90013-5

[63] L. Zadeh: Fuzzy sets. Information and Control 8 (1965), 338–353. DOI:10.1016/s0019-
9958(65)90241-x

[64] S. Zadrożny and J. Kacprzyk: Issues in the practical use of the OWA operators in fuzzy
querying. J. Intell. Inform. Systems 33 (2009), 307–325. DOI:10.1007/s10844-008-0068-1

[65] S. Zadrożny and J. Kacprzyk: Bipolar queries: a way to enhance the flexibility of database
queries In: Advances in Data Management, Studies in Computational Intelligence, Vol.
223 (Z. W. Ras and A. Dardzinska, eds.), Springer-Verlag, Berlin Heidelberg 2009, pp. 49–
66. DOI:10.1007/978-3-642-02190-9 3

[66] S. Zadrożny, G. de Tré, R. de Caluwe, and J. Kacprzyk: An overview of fuzzy approaches
to flexible database querying In: Handbook of Research on Fuzzy Information Processing
in Databases (J. Galindo, ed.), Information Science Reference, Hershey 2008, pp. 34–55.
DOI:10.4018/978-1-59904-853-6.ch002

[67] S.-M. Zhou, F. Chiclana, R. I. John, and J. M. .Garibaldi: Fuzzification of the OWA oper-
ators for aggregating uncertain information with uncertain weights. In: Recent Develop-
ments in the Ordered Weighted Averaging Operators: Theory and Practice (R. R. Yager,
J. Kacprzyk and G. Beliakov, eds.), Studies in Fuzziness and Soft Computing Volume 265,
Springer-Verlag, Berlin Heidelberg 2011, pp. 91–109. DOI:10.1007/978-3-642-17910-5 5

[68] S.-M. Zhou, F. Chiclana, R. I. John, and J. M. .Garibaldi: Type-1 OWA operators for
aggregating uncertain information with uncertain weights induced by type-2 linguistic
quantifiers. Fuzzy Sets and Systems 159 (2008), 3281–3296. DOI:10.1016/j.fss.2008.06.018

[69] H. J. Zimmerman and P. Zysno: Latent connectives in human decision making. Fuzzy
Sets and Systems 4 (1980), 37–51. DOI:10.1016/0165-0114(80)90062-7

Miroslav Hudec, Faculty of Economic Informatics, University of Economics in Bratislava,
Dolnozemska cesta 1, 852 35 Bratislava. Slovak Republic.

e-mail: miroslav.hudec@euba.sk

Miljan Vučetić, Research and Development Institute ”Vlatacom”, Milutina Milankovica
5, 11070 Belgrade. Serbia.

e-mail: miljanvucetic@gmail.com

http://dx.doi.org/10.1016/0898-1221(83)90013-5
http://dx.doi.org/10.1016/s0019-9958(65)90241-x
http://dx.doi.org/10.1016/s0019-9958(65)90241-x
http://dx.doi.org/10.1007/s10844-008-0068-1
http://dx.doi.org/10.1007/978-3-642-02190-9_3
http://dx.doi.org/10.4018/978-1-59904-853-6.ch002
http://dx.doi.org/10.1007/978-3-642-17910-5_5
http://dx.doi.org/10.1016/j.fss.2008.06.018
http://dx.doi.org/10.1016/0165-0114(80)90062-7

		webmaster@dml.cz
	2018-01-10T11:12:49+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document

