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Abstract. A characterization of functions in the first Baire class in terms of their sets of
discontinuity is given. More precisely, a function f : R → R is of the first Baire class if and

only if for each ε > 0 there is a sequence of closed sets {Cn}
∞
n=1 such that Df =

∞⋃

n=1

Cn

and ωf (Cn) < ε for each n where

ωf (Cn) = sup{|f(x) − f(y)| : x, y ∈ Cn}

and Df denotes the set of points of discontinuity of f . The proof of the main theorem
is based on a recent ε-δ characterization of Baire class one functions as well as on a well-
known theorem due to Lebesgue. Some direct applications of the theorem are discussed in
the paper.
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1. Introduction

A function f : R → R is Baire class one or of first Baire class or simply Baire one

if it is a pointwise limit of a sequence of continuous function on R. Henri Lebesgue

showed in 1904 that a function is of the first Baire class if and only if for each

k ∈ N, the domain can be represented as a countable union of closed sets so that

the oscillation of f on each set is strictly less than 1/k, see [2], page 116. For easy

reference, we shall call this theorem Lebesgue’s theorem. In the process it was proved

that the set of points of discontinuity of f is a set of the first category. From this,

a question emerges: Does a function whose set of points of discontinuity is of the

first category have to be a Baire class one function? It turns out the answer is no.
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There is a function f : R → R whose set of points of discontinuity is of the first

category and at the same time of Lebesgue measure 0 but which is not Baire class

one. Hence, from this perspective it is hard to obtain a characterization of Baire

class one functions both in terms of the category and measure of its set of points of

discontinuity.

However, a natural problem arises: can one still obtain a characterization of Baire

class one functions in terms of their set of points of discontinuity? We answer this

question in the affirmative.

2. A new characterization

Throughout the paper, we let Cf and Df denote the set of points of continuity

and the set of points of discontinuity of f , respectively. Before presenting the main

result, we need the following useful propositions.

Proposition 2.1 ([8]). If R =
∞
⋃

n=1

En with each En an Fσ in R then there are

disjoint Fσ sets Fn, n = 1, 2, . . . in R such that Fn ⊆ En and R =
∞
⋃

n=1

Fn.

Proposition 2.2 ([8]). Let R =
∞
⋃

n=1

Fn where Fn’s are disjoint Fσ sets. Then

there is a positive function δ(·) on R such that x ∈ Fn, y ∈ Fm and n 6= m imply

|x− y| > min{δ(x), δ(y)}.

We shall now prove our main result.

Theorem 2.1. Let f : R → R. The following statements are equivalent:

(1) f is Baire class one.

(2) For each ε > 0 there is a sequence of closed sets {Cn} such that Df =
∞
⋃

n=1

Cn

and ωf (Cn) < ε for each n where

ωf (Cn) = sup{|f(x)− f(y)| : x, y ∈ Cn}.

P r o o f. (1) ⇒ (2). Let ε > 0 be given. By Lebesgue’s theorem, there exists

a sequence of closed sets {En}
∞
n=1 such that R =

∞
⋃

n=1

En and ωf (En) < ε for each n.
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Since Df is known to be an Fσ then there is a sequence of closed sets {Fn}
∞
n=1 such

that Df =
∞
⋃

n=1

Fn. It follows that we can express Df as

Df =
⋃

i,j∈N

(Ei ∩ Fj).

Clearly, ωf(Ei ∩ Fj) < ε for any pair (i, j).

(2)⇒ (1). We will use the characterization of Baire class one function due to Lee,

Tang and Zhao [6] to establish (1). Let ε > 0. By assumption, there is a sequence

of closed sets {Cn} such that Df =
∞
⋃

n=1

Cn and ωf (Cn) < ε for each n. For each

x ∈ Cf there is a corresponding positive number δx > 0 such that

y ∈ (x− δx, x+ δx) ⇒ |f(x) − f(y)| <
ε

2
.

Let C = {G : G = (x − δx, x + δx) and x ∈ Cf}. Then Cf ⊆
⋃

G∈C

G. We can find

a countable subcollection {Gn} of C such that Cf ⊆
∞
⋃

n=1

Gn. It follows that

R =

( ∞
⋃

i=1

Gi

)

∪

( ∞
⋃

j=1

Cj

)

.

By reindexing, we can write R =
∞
⋃

n=1

En where En = Gi for some i or En = Cj for

some j. By Proposition 2.1 we can find a disjoint sequence of Fσ sets {Fn} such that

R =
∞
⋃

n=1

Fn and Fn ⊆ En for each n. By Proposition 2.2 there is a positive function

δ : R → R
+ such that x ∈ Fm, y ∈ Fn with m 6= n implies

|x− y| > min{δ(x), δ(y)}.

Let x, y ∈ R and |x− y| < min{δ(x), δ(y)}. By the property of the positive function

δ(·) there is a unique n such that x, y ∈ Fn. Since Fn ⊆ En implies |f(x)−f(y)| < ε,

all these show that f is Baire class one. �

R em a r k. The theorem is saying that to decide whether a function belongs

to the first Baire class, one no longer needs to examine the whole domain of the

function, as Lebesgue’s theorem is suggesting, but one examines instead the set of

points of discontinuity of the function. In this sense, Theorem 2.1 may be viewed as

an improvement of Lebesgue’s theorem.

It may be observed that Theorem 2.1 can be expressed in a slightly different

manner that may prove useful in some cases. We will state it as a corollary.
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Corollary 2.1. Let f : R → R. The following statements are equivalent:

(1) f is Baire class one.

(2) For each ε > 0 there is a sequence of closed sets {Cn} such that Df ⊆
∞
⋃

n=1

Cn

and ωf (Cn) < ε for each n where

ωf (Cn) = sup{|f(x)− f(y)| : x, y ∈ Cn}.

3. Some applications

In this section, we shall try to give some applications of Theorem 2.1. A short and

quick proof that a function with countable set of discontinuity is Baire class one is

perhaps through a theorem due to René Baire: A function f : R → R is Baire class

one if and only if for every closed set K, the restriction f |K has a point of continuity

in K. However, the statement above also admits a straighforward justification using

Theorem 2.1. For other proofs one may see [3], [4], [5], [7].

Theorem 3.1. Let f : R → R. If Df is countable then f is Baire class one.

P r o o f. Note that a countable set is a countable union of singletons. Clearly the

oscillation of the function on each singleton is zero. �

Theorem 3.2. Let f : R → R. If f(Df ) is countable and for each y ∈ f(Df ) the

set {x ∈ Df : f(x) = y} is Fσ then f is Baire class one.

P r o o f. Let f(Df ) = {r1, r2, . . . , rn, . . .} and let Fi = {x ∈ Df : f(x) = ri} for

each i. By assumption, each Fi is Fσ. Note that Df ⊆
∞
⋃

i=1

Fi and ωf (Fi) = 0 for

each i. By Corollary 2.1, f is Baire class one. �

Theorem 3.3. Let f, g : R → R such that Df ⊆ Dg. If g is Baire class one and

ωf (A) 6 ωg(A) for every A ⊆ Df then f is Baire class one.

P r o o f. Let ε > 0 be given. Since g is Baire class one then there exists a sequence

of closed sets {Dn} such that Dg =
∞
⋃

n=1

Dn and ωg(Dn) < ε for all n. Since Df ⊆ Dg

and Df is Fσ then we can find a countable collection {En} of closed sets such that

Df =
∞
⋃

n=1

En and ωg(En) < ε for each n. From the hypothesis, it immediately

follows that ωf (En) 6 ωg(En) < ε for each n. Thus, f is Baire class one. �
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Lastly, we will show that if f |Df
is continuous onDf then f is Baire class one. This

class of functions is called B∗∗
1 , see [1]. Moreover, we use the new characterization

to show that if there is a sequence of closed sets {En}
∞
n=1 such that R =

∞
⋃

n=1

En and

the restriction f |En
is continuous on En for each n then f is Baire class one. Such

functions are known as piecewise continuous functions. We need first the following

lemma.

Lemma 3.1. Let K be a closed subset of R. If f |K is continuous on K then

for each ε > 0 there exists a sequence {Kn} of closed sets covering K satisfying

ωf (Kn) < ε for each n.

P r o o f. Let ε > 0. For each x ∈ K there is an open interval Ix containing x such

that

y ∈ Ix ∩K ⇒ |f(x)− f(y)| <
ε

2
.

Note that the collection C = {Ix ∩K : x ∈ K} forms an open cover of K where K

is viewed as a subspace of R. Since K is a Lindelöf subspace of R, we can find

a countable subcollection of C such that

K =

∞
⋃

i=1

(Iξi ∩K).

Note that ωf(Iξi ∩K) < ε and each Iξi ∩K is Fσ. The lemma follows. �

Theorem 3.4. Let f : R → R. If f |Df
is continuous on Df then f is Baire class

one.

P r o o f. Since Df is Fσ then there exists a sequence of closed sets {Kn} in R

such that Df =
∞
⋃

n=1

Kn. Since f |Df
is continuous, f |Kn

is continuous for each n. We

apply Lemma 3.1 and Theorem 2.1 to conclude that f is Baire class one. �

Theorem 3.5. Let f : R → R. If there is a sequence of closed sets {En}
∞
n=1 such

that R =
∞
⋃

n=1

En and the restriction f |En
is continuous on En for each n then f is

Baire class one.

P r o o f. Let ε > 0 be given. Since {En} covers R it certainly covers Df . Since

f |En
is continuous for each n by Lemma 3.1 there exists a sequence of closed sets

{Fn} such that Df ⊂
∞
⋃

n=1

Fn and ωf(Fn) < ε for each n. Thus by Corollary 2.1, f is

Baire class one. �
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It is also interesting to note that if there is a sequence {Dn} of closed sets such

that Df =
∞
⋃

n=1

Dn and f |Dn
is continuous for each n then f is Baire one on the whole

of R. Clearly, this class of functions lies between the class of all piecewise continuous

functions and the class of Baire one functions. It is not clear whether this class of

functions is the same as the class of all Baire one functions.

A c k n ow l e d g em e n t. We would like to thank the referee for reading carefully

our manuscript.

References
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