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THE CENTRAL HEIGHTS OF STABILITY GROUPS

OF SERIES IN VECTOR SPACES
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Abstract. We compute the central heights of the full stability groups S of ascending
series and of descending series of subspaces in vector spaces over fields and division rings.
The aim is to develop at least partial right analogues of results on left Engel elements and
related nilpotent radicals in such S proved recently by Casolo & Puglisi, by Traustason
and by the current author. Perhaps surprisingly, while there is an absolute bound on these
central heights for descending series, for ascending series the central height can be any
ordinal number.
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1. Introduction

Let L = {(Λα, Vα) : α ∈ A} be a series of subspaces of a vector space V over

the division ring D running from {0} to V (see [2], [3] for the definition and basic

properties of series in general). So in particular A is a linearly ordered set, the

Λα/Vα are the jumps of the series, V \ {0} =
⋃

α∈A

Λα \ Vα and Λα 6 Vβ whenever

α < β, except for descending series, when we usually order the series from the top

rather than from the bottom.

Let S = Stab(L), the full stability group of L in GL(V ); that is, we have S =
⋂

α

CGL(V )(Λα/Vα). Casolo and Puglisi in [1] studied various nilpotent radicals of S,

at least for complete series and D a field, a study extended in [4] and [5], the latter

extending it to cover left and bounded left Engel elements of S. In particular Casolo

and Puglisi showed that frequently the Hirsch-Plotkin radical HP(S), the Fitting

subgroup Fitt(S), various other nilpotent radicals of S and a certain subset F (L) of

Fitt(S) depending on the completion L∗ of L are all equal. For example they showed
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that this is the case if L is an ascending series or if V has countable dimension or

if V has a special type of basis. They asked whether this is the case in general.

A counterexample for descending series is given by Traustason in [4], where he also

proves that Fitt(S) at least is always equal to F (L).

Here we consider the right Engel analogues of some of these results. The right

analogue of the Hirsch-Plotkin radical in this context is the hypercentre ζ(S) of S

and of the Fitting subgroup is the ω-th term ζω(S) of the upper central series of S.

Thus we might reasonably expect that frequently ζω(S) and ζ(S) are equal; that is,

that the central height ctht(S) of S is at most ω. However this actually happens

very infrequently for ascending series but does always hold for descending series. We

show this by calculating precisely the central height of S for both ascending and

descending series. These calculations are the main results of this paper. We do have

the following for series in general, a result we make use of in both the ascending and

the descending cases.

Theorem 1.1. Let L = {(Λα, Vα) : α ∈ A} be a series of subspaces of the vector

space V over the division ring D running from {0} to V . Set S = Stab(L). If either

V 6= Λα for all α in A with Λα > Vα, or {0} 6= Vα for all α in A with Vα < Λα, then

ζ(S) = 〈1〉; that is, S has central height 0.

Theorem 1.2. Let L = {Vα : 0 6 α 6 λ} be a strictly ascending series of sub-

spaces of the vector space V over the division ring D indexed by the ordinal numbers

α 6 λ, where {0} = V0 and Vλ = V . Set λ = µ+n, where µ is zero or a limit ordinal

and n is a non-negative integer, and set S = Stab(L). Then S has central height

exactly

a) 0 if n = 0,

b) n− 1 if µ = 0 < n and

c) λ− 1 if µ > 0 and n > 0.

Clearly Theorem 1.2 a) is immediate from Theorem 1.1 and Theorem 1.2 b) is

well-known. The proof of Theorem 1.2 c) constitutes a major part of this paper

and occupies most of Section 3 below. It is easy to construct for each ordinal γ

and any division ring D an example as in Theorem 1.2 with S of central height γ,

λ = γ + 1 and dimD(V ) the cardinality of λ. In particular we have examples with

dimDV countable for all countable ordinals γ. The following is immediate from

Theorem 1.2.

Corollary 1.3. With the notation and hypotheses of Theorem 1.2 we have that

ζω(S) = ζ(S) if and only if either n = 0 or λ 6 ω + 1.
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With descending series the situation is in some ways much nicer.

Theorem 1.4. Let L = {Vα : 0 6 α 6 λ} be a strictly descending series of

subspaces of the vector space V over the division ring D indexed by the ordinal

numbers α 6 λ, where {0} = Vλ and V0 = V . Set λ = µ + n, where µ is zero or

a limit ordinal and n is a non-negative integer, and set S = Stab(L). Then S has

central height at most ω. Precisely S has central height exactly

a) 0 if n = 0,

b) n− 1 if µ = 0 < n and

c) ω if µ > 0 and n > 0.

Again Theorem 1.4 c) is the substantial part of the theorem and its proof occupies

Section 4 below. The following is immediate.

Corollary 1.5. With the notation and hypotheses of Theorem 1.4 always

ζω(S) = ζ(S).

In our proofs below we make a number of uses of the following three lemmas

from [5], where D is a division ring, V is a left vector space over D, L is a series of

subspaces of V running from {0} to V , S = Stab(L) and L
∗ is the completion of L.

Lemma 1.6 ([5], Lemma 1.2). Let W ∈ L
∗, u ∈ W and v ∈ V \ W with

V = Dv ⊕ U ⊕W for some subspace U . Then there is an x in S with vx = u + v,

V (x− 1) = Du 6 W , W (x− 1) = {0} and U(x− 1) = {0}.

Lemma 1.7 ([5], Lemma 1.3). Let g ∈ GL(V ), let ξ ∈ EndDV with ξ2 = 0

and set x = 1 + ξ. Then x ∈ GL(V ). Working in EndDV , if (g − 1)ξ = 0, then

[x, g] = 1 + ξ(g − 1), and if ξ(g − 1) = 0, then [x, g] = 1 + (g−1 − 1)ξ.

Lemma 1.8 ([5], Lemma 1.4). Let m > 2 be an integer and set n = 2m and

r = [log2(m − 1)]. For any division ring D, in GL(n,D) let x = 1 +
∑

i

e2i,2i+1 and

g = 1 +
∑

i

e2i−1,2i. Then [x, rg] 6= 1.

2. General series

In this section D denotes a division ring, V a left vector space over D and L =

{(Λα, Vα) : α ∈ A} a series of subspaces of V running from {0} to V with all jumps

nontrivial. Set S = Stab(L), the full stability subgroup of L in GL(V ). Theorem 1.1

is immediate from the following.
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Lemma 2.1. If the centre Z = ζ1(S) of S is nontrivial, then L has a maximal

jump (V, Vα) and a minimal jump (Λβ , {0}). Also [V, Z] 6 Λβ and [Vα, Z] = {0}.

P r o o f. Let z ∈ Z \ 〈1〉. There exists v ∈ V with u = v(z − 1) 6= 0. Then

v ∈ Λα \ Vα and u ∈ Λβ \ Vβ for some α > β in A. Suppose there exists γ ∈ A

with β > γ. Pick w ∈ Λγ \ Vγ . By Lemma 1.6 there exists x ∈ S with vx = v and

ux = u + w. Then vxz = vz = u + v and vzx = (u + v)x = v + u + w. But w 6= 0,

so xz 6= zx, contradicting z ∈ Z. Consequently no such γ exists, β is the minimal

member of A and Vβ = {0}.

Now v above is any v in V with v(z−1) 6= 0. Thus V (z−1) 6 Λβ = U , say. Suppose

there exists δ ∈ A with δ > α. Pick w ∈ Λδ \ Vδ. By Lemma 1.6 again there exists

y ∈ S with wy = w+v and U(y−1) = {0}. Then wyz = (w+v)z = w+w(z−1)+v+u

and wzy = (w + w(z − 1))y = w + v + w(z − 1), since w(z − 1) ∈ U . But u 6= 0, so

yz 6= zy, a contradiction. Thus no such δ exists, α is the maximal member of A and

Λα = V . If v ∈ V with v(z − 1) 6= 0, then v ∈ V \ Vα and hence [Vα, Z] = {0}. �

Let L∗ denote the completion of L (again see [2], [3] for definitions). Then S =

Stab(L) = Stab(L∗). Now L
∗ contains an element L such that {X ∈ L

∗ : X 6 L}

is an ascending series of L and {α ∈ A : Vα > L} has no minimal member. Then

Theorem 1.2 gives us the central height of S/CS(L) and Theorem 1.1 the central

height of S/CS(V/L). Thus we have the central height of S/(CS(L)∩CS(V/L)). On

the other hand L∗ also contains an element U such that {V ∈ L
∗ : X > U}modulo U

is a descending series of V/U and {α ∈ A : Λα 6 U} has no maximal member. Hence

Theorem 1.4 and Theorem 1.1 give us the central height of S/(CS(V/U) ∩ CS(U)).

All this gives us some, admittedly very weak, information about the central height

of S for a general series.

3. Ascending series

In this section we assume throughout the following notation. Let λ = µ + n be

an infinite ordinal, where µ is a limit ordinal and n is a positive integer (so λ is not

a limit ordinal). Let V be a left vector space over the division ring D and L the

strictly ascending series

{0} = V0 < V1 < . . . < Vα < . . . < Vλ = V

of subspaces of V of length λ. Let S denote the full stability group of L in GL(V ).
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Lemma 3.1. The group S has central height exactly λ− 1.

P r o o f. Set C = CS(V/Vµ) and T = CC(Vµ). Then S/C is nilpotent of

class n − 1 and S/CS(Vµ) has central height 0 by Theorem 1.1. Also T ∼= H =

HomD(V/Vµ, Vµ) as S-module, where S acts on H diagonally (meaning vθx =

vx−1θx for θ in H , x in S and v in V ) and where we regard H as a subset of

HomD(V, Vµ) in the obvious way. We begin our proof by considering the action of S

on H .

For α 6 µ set Hα = HomD(V/Vµ, Vα). Then

Lα = Hα+1 \Hα D
∼=S HomD(V/Vµ, Vα+1/Vα).

Thus Lα is centralized by C. If Lα,i = HomD(V/Vµ+i, Vα+1/Vα) then

Lα = Lα,0 > Lα,1 > . . . > Lα,n = {0}

and Lα,i/Lα,i+1 D
∼=S HomD(Vµ+i+1/Vµ+i, Vα+1/Vα). The latter is clearly S-central.

We now have the following.

Lemma 3.2. For each α < µ the space Hα+1/Hα is C-central and S-hypercentral

with S-central height at most n.

The problem now is what happens at the limit ordinals. Suppose ν 6 µ is a limit

ordinal and set Hν− =
⋃

α<ν

Hα. Consider, if possible, some θ in Hν \ Hν−. Then

for each α < ν there is some vα in V \ Vµ with vαθ in Vν \ Vα+1. Then there exists

α′ with α < α′ < ν and vαθ ∈ Vα′+1 \ Vα′ . This is for all α < ν, so
⋃

α<ν

α′ = ν

and consequently {α′ : α < ν} contains a strictly ascending sequence {α(β) : β <

ν′ 6 µ} for some limit ordinal ν′ with ν =
⋃

β

α(β) and with α(β) + 1 < α(β + 1)

(e.g. choose any α < ν, set α(0) = α, set α(β + 1) = α(β)′′ and for limit ordinals δ

set α(δ) =
⋃

β<δ

α(β)).

Changing notation slightly we have an element vβ of V \ Vµ with vβθ lying in

Vα(β)+1 \ Vα(β). Choose for each β an element uβ of Vα(β+1) \ Vα(β)+1. There exists

an L-basis B of V containing all the vβθ and all the uβ and then there exists an

element x of C given by vβ+1θ(x − 1) = uβ for each β < ν′ and bx = b for all other

b in B. Then vβ+1θ(x − 1) /∈ Vα(β)+1 and thus θ(x − 1) /∈ Hα(β)+1 for all β < ν′.

Hence [θ, x] = θ(x − 1) /∈ Hν− and we have proved the following.
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Lemma 3.3. For each limit ordinal ν 6 µ the space Hν/Hν− contains no non-

identity C-fixed points and hence no non-identity S-fixed points.

Let Z denote the S-hypercentre of H . Then Lemma 3.3 implies that Hν ∩ Z =

Hν− ∩Z for all limit ordinals ν 6 µ. Consequently Lemma 3.2 yields that {Hα ∩Z :

α 6 µ} is a C-hypercentral series of Z of length at most µ which refines to an

S-hypercentral series of Z, also of length at most µ. We have proved the following.

Lemma 3.4. The group H has S-central height at most µ.

Let K = {θ ∈ H : dimDV θ is finite} and set Kα = Hα ∩K for all α 6 µ. Note

that Kν =
⋃

α<ν

Kα whenever ν 6 µ is a limit ordinal. Also Lemma 3.2 implies that

[Kα+1, C] 6 Kα for all α < µ and that K is S-hypercentral with S-central height

at most µ. Let {Zα} denote the upper C-central series of K. Then Zα > Kα for

all α. Suppose Zα = Kα for some α < µ (as it clearly does for α = 0). Suppose

θ ∈ Zα+1 \ Kα+1. There exists v ∈ V \ Vµ with vθ /∈ Vα+1. Pick w ∈ Vα+1 \ Vα.

There exists x ∈ C with vθ(x−1) = w and clearly dimDV θ(x−1) 6 dimDV θ, which

is finite. Thus θ(x − 1) ∈ K \Kα. But [θ, x] ∈ Zα = Kα. This contradiction yields

that Zα+1 = Kα+1. If ν 6 µ is a limit ordinal with Zα = Kα for all α < ν, then

Zν =
⋃

α<ν

Zα =
⋃

α<ν

Kα = Kν . We have proved the following.

Lemma 3.5. The set {Kα : α 6 µ} is the upper C-central series of K.

Thus the C-central height of K is µ and hence the S-central height of K is also

at least µ; consequently the C-central height and the S-central height of H are at

least µ. Therefore by Lemma 3.4 we have the following.

Lemma 3.6. The S-module H has S-central height exactly µ.

We had above a canonical isomorphism of T onto H . Let TK denote the inverse

image of K in T . The above shows that TK 6 ζµ(S) and that TK and ζµ(S) have

S-central heights exactly µ. Let Tα denote the inverse image of Hα in T (including

Tν− the inverse image of Hν− for limit ordinals ν). Further {Tα∩TK : α 6 µ} is the

upper C-series of TK by Lemma 3.5 and T ∩ ζ(S) 6 ζµ(S) by Lemma 3.6.

The following structure for S was critical for the paper [5]. Choose a subspace W

of V with V = W ⊕ Vµ. Let S1 be the stability group of the series {L ∩ Vµ : L ∈ L}

in Vµ with its action extended to V by letting S1 centralize W . Similarly let S2 be

the stability group of the series {L∩W : L ∈ L} with its action extended to V by let-

ting S2 centralize Vµ. Then [S1, S2] = 〈1〉, S = S1TS2, C = S1T and CS(Vµ) = TS2.

Now S1 has central height 0 by Theorem 1.1, so S/T has central height n − 1,

[ζ(S), n−1S] 6 T ∩ ζ(S) 6 ζµ(S). Hence
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Lemma 3.7. The group S has central height at most µ+ n− 1.

We need the following lemma.

Lemma 3.8. If z ∈ S2\〈1〉 and if α < µ, then there exists θ inH with [θ, z] /∈ Hα.

To see Lemma 3.8, note that since z 6= 1, there exists w ∈ W with wz 6= w. If

wz ∈ Dw, then z normalizes Dw and also stabilizes a proper series in Dw. The

latter can only be 〈1〉 < Dw. Since wz 6= w this yields that w and wz are linearly

independent elements of V . Choose u ∈ Vα+1 \ Vα. There exists some θ in H

with wθ = u and wzθ = 0. Now z ∈ S2, which centralizes Vµ. Hence wz[θ, z] =

wθz−wzθ = wθ /∈ Vα. Consequently [θ, z] /∈ Hα, confirming the truth of Lemma 3.8.

For x ∈ S2 set Vx = {v ∈ V : v(x−1) ∈ Vµ} and set S3 = {x ∈ S2 : dimD(V/Vx) =

dimDV (x − 1) is finite}. Clearly S3 is a normal subgroup of S2 and, like S2, is

nilpotent of class n − 1 (both stabilize a series of length n in W and S3 contains

a copy of the unitriangular group Tr1(n,D)).

If x ∈ S3, θ ∈ H and v ∈ Vx, then v[θ, x] = vx−1θx − vθ = vθ − vθ = 0, where

we have used that vx−1θ = vθ since v ∈ Vx and Vµθ = {0}, and θx = θ since x ∈

S2 6 CS(Vµ). Thus Vx[θ, x] = {0}, so dimDV [θ, x] 6 dimD(V/Vx), which is finite.

Consequently [θ, x] ∈ K. Hence [H,S3] 6 K and therefore [T, S3] 6 TK 6 ζµ(S), the

latter by Lemma 3.6. But S = S1TS2, so [S3, S] 6 TK [S3, S2]. Also S2 is nilpotent

of class n− 1, so [S3, n−1S] 6 TK . Consequently

Lemma 3.9. TKS3 6 ζµ+n−1(S) = ζλ−1(S).

Let z ∈ S3 ∩ ζµ(S). Then z ∈ ζα(S) for some α < µ and [T, z] 6 T ∩ ζα(S) 6

T ∩ ζα(C) 6 Tα by Lemma 3.5 again. But then [H, z] 6 Hα, which contradicts

Lemma 3.8 unless z = 1. Hence S3∩ ζµ(S) = 〈1〉. Since S3 6 ζ(S) by Lemma 3.9, so

ζµ(S)S3 has S-central height at least µ+ n− 1 = λ− 1. Consequently S has central

height at least λ− 1 and therefore exactly λ− 1 by Lemma 3.7. This completes the

proofs of Lemma 3.1 and of Theorem 1.2. �

Remark 3.10. Note that CS(Vµ) is nilpotent of class n, since CS(Vµ) is just the

stability group of the series 〈1〉 = V0 < Vµ < Vµ+1 < . . . < Vλ = V . Trivially,

therefore, [T, S2] = [T,CS(Vµ)] < T .

Suppose dimD(V/Vµ) is finite. Then H = K, T = TK , S3 = S2, ζ(S) = TS2 and

ζµ(S) = T . Also [T, S1] = T , so [T,C] = T = [T, S]. To see this a simple induction

on α produces a basis B of V with B ∩ (Vα+1 \ Vα) a basis of Vα+1 modulo Vα for

each α < λ and with B1 = B ∩W a basis of W . Let θ ∈ H . Then θ ∈ Hα for some

α < µ and also Vµθ = {0}, so θ is determined by the bθ for b ∈ B1. Now B1 is finite,

while B2 = B∩ (Vµ \ Vα) is infinite. Hence we can choose for each b ∈ B1 a b
′ in B2
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such that the b′ are distinct for distinct b. Define ϕ ∈ H by bϕ = b′ for all b in B1

(and with Vµϕ = {0} of course). Define x ∈ GL(V ) by b′x = b′ + bθ for all b ∈ B1

and cx = c for all other c in B. Note that x does indeed lie in GL(V ) since b′ /∈ Vα

and bθ ∈ Vα, this for all b in B1. Clearly, x ∈ S1. Now

b[ϕ, x] = b(x−1ϕx− ϕ) = bϕx− bϕ = b′x− b′ = bθ,

for all b in B1. Consequently [ϕ, x] = θ. It follows that [H,S1] = H and hence that

[T, S1] = T , as claimed. (More generally if dimD(V/Vµ) is countable and if for each

α < µ there exists β with α < β < µ and with dimD(Vβ \ Vα) infinite, the above

argument also shows that TK = [TK , S1] = [TK , C] = [TK , S].)

4. Descending series

In this section we assume throughout the following notation. Let λ = µ + n be

an infinite ordinal, where µ is a limit ordinal and n is a positive integer (so λ is not

a limit ordinal). Let V be a left vector space over the division ring D and L the

strictly descending series

V = V0 > V1 > . . . > Vα > . . . > Vλ = {0}

of subspaces of V of length λ. Let S denote the full stability group of L in GL(V ).

The following confirms Part c) of Theorem 1.4 and completes the proof of this the-

orem.

Lemma 4.1. The group S has central height exactly ω.

Set H = HomD(V/Vµ, Vµ). Regard H as a right S-module via the diagonal action,

as in Section 3. Let K = {θ ∈ H : Viθ = {0} for some i < ω}. Clearly K is a D− S

bisubmodule of H . We need the following.

Lemma 4.2. The set K is the S-hypercentre of H and K has S-central height

exactly ω.

P r o o f of Lemma 4.2. Let Ki = HomD(V/Vi, Vµ) for 0 6 i < ω, regarded as

a subset of H in the obvious way. Then Ki 6 Ki+1 for each i and
⋃

i<ω

Ki = K. Now

Ki+1/Ki is isomorphic to Hom(Vi/Vi+1, Vµ) as D − S bimodule and the diagonal

action of S on this Hom module is just right multipication given by the action of

S on Vµ. Hence [Ki+1/Ki, nS] = {0}, [Ki+1, nS] 6 Ki for each i and K is S-

hypercentral with S-central height at most ω.
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Let vi ∈ Vi \Vi+1 for each i and let u ∈ Vµ \ {0}. For 1 6 i < ω there exists x ∈ S

with vjx = vj + vj+1 for each j 6 i and with v(x − 1) = 0 for all v in Vi+1. Also

there exists θi ∈ Ki+1 with viθi = u. Now w[θi, ix
−1] = w(x − 1)iθ for any w in V

and vj(x − 1) = vj+1 for each j 6 i. Thus v0[θi, ix
−1] = viθi = u 6= 0. Therefore

[K, iS] 6= {0} for all i > 1 and consequently the S-central height of K is exactly ω.

If H/K has no nontrivial elements fixed by S, then K is the S-hypercentre of H .

Thus suppose θ ∈ H \K with [θ, S] ⊆ K. Suppose first that Vωθ 6= {0}, say vθ 6= 0

for v ∈ Vω. If possible pick such a v with vθ /∈ Vλ−1 (so for the moment we are

assuming n > 2). If w 6= 0 lies in Vλ−1, there exists x ∈ S with V (x − 1) 6 Vµ and

vθx = vθ + w, see Lemma 1.6. Then v ∈ Vω =
⋂

i<ω

Vi and

v(x−1θx− θ) = vθx − vθ = vθ + w − vθ = w 6= 0.

Hence [θ, x] /∈ K, a contradiction. Thus vθ ∈ Vλ−1; that is, V θ 6 Vλ−1, not only

for n > 2, but trivially also for n = 1. For each i > 1 pick ei ∈ Vi \ Vi+1. There

exists y ∈ S with Vω(y− 1) = {0} and eiy = ei+ v. (The ei are linearly independent

modulo Vω so V has a basis B containing all the ei such that B∩ (V \ Vω) is a basis

of V modulo Vω and B∩Vω is a basis of Vω. Let ξ : V → Vω be the linear map given

by eiξ = v for each i and bξ = 0 for all other b in B. Then set y = 1 + ξ.) Then

ei[θ, y
−1] = eiyθ − eiθ = (ei + v)θ − eiθ = vθ 6= 0 for each i.

Consequently [θ, y−1] /∈ K, a contradiction.

The above shows that Vωθ = {0}. Since θ /∈ K we have (Vi \ Vi+1)θ 6= {0} for

infinitely many i < ω. Suppose there exists m and vj ∈ Vi(j) \ Vi(j)+1 with vjθ 6= 0

for j = 1, 2, . . . such that 0 6 m < n, m < i(1), i(j) + 1 < i(j + 1) for each j and

V θ 6 Vµ+m. Pick uj ∈ Vi(j)−1 \ Vi(j) for each j. Then there exists z ∈ S with

Vω(z − 1) = {0} and ujz = uj + vj for each j. (Notice that since i(j) + 1 < i(j + 1)

for each j, so z−1 ∈ S.) Then

uj[θ, z
−1] = uj(zθ − θ) = vjθ 6= 0.

Therefore [θ, z−1] /∈ K and consequently we cannot choose m and the vj with the

above properties.

If possible pick v1 ∈ V \ Vω with v1θ ∈ Vµ \ Vµ+1. If v1 ∈ Vi(1) \ Vi(1)+1 choose if

possible v2 ∈ Vi(2) \ Vi(2)+1 with i(1) + 1 < i(2) and v2θ ∈ Vµ \ Vµ+1. Keep going.

By the above, this process will stop after a finite number of steps with Vhθ 6 Vµ+1

for some h < ω. Repeat the above process, but now picking the vj in Vh with the

vjθ in Vµ+1 \ Vµ+2. Again the process halts when we find a k > h with k < ω and
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Vkθ 6 Vµ+2. Once more we repeat and after a finite number of repeats we eventually

arrive at an l < ω with Vlθ 6 Vµ+n = {0}. But then θ ∈ K, contrary to our choice

of θ. This final contradiction completes the proof of Lemma 4.2. �

P r o o f of Lemma 4.1. We continue with the notation of the proof above of

Lemma 4.2. Set T = CS(V/Vµ) ∩ CS(Vµ) and choose the subspace W with V =

W ⊕ Vµ. As in Section 3 define S1 6 GL(Vµ) ∩ CS(W ) and S2 6 GL(W ) ∩ CS(Vµ)

so that we have S = S1TS2, S1S2 = S1 × S2, CS(V/Vµ) = S1T and CS(Vµ) = TS2.

The difference from Section 3 is that here S1 is nilpotent of class n − 1 and S2 has

central height 0 and not the other way round. Let TK denote the inverse image of K

in T under the canonical isomorphism of T onto H . The above and Lemma 4.2 show

that ζ(S) 6 S1T and ζ(S) ∩ T = TK 6 ζω(S). In particular S has central height at

least ω (and at most ω + n− 1).

Let x ∈ S1 and t ∈ T with xt ∈ ζ(S). If also t′ ∈ T , then [t′, x] = [t′, xt] ∈

ζ(S) ∩ T = TK . Therefore θ(x − 1) = [θ, x] ∈ K for all θ in H . Suppose x 6= 1.

Then U = Vµ ∩ CV (x) 6= Vµ. Pick vi ∈ Vi−1 \ Vi for each i > 1 and pick u ∈ Vµ \ U .

Now the vi are linearly independent modulo Vµ. Hence there exists θ in H with

viθ = u for all i. Then vi[θ, x] = u(x − 1) 6= 0 for all i and hence [θ, x] /∈ K. This

contradiction shows that x = 1 and that ζ(S) 6 T . Consequently ζ(S) = TK and S

has central height exactly ω. �

Remark 4.3. Analogously to the case of ascending series, see Remarks in Sec-

tion 3, here we have CS(V/Vµ) nilpotent of class n, instead of CS(Vµ).
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