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Abstract. We deal with the construction of sequences of irreducible polynomials with
coefficients in finite fields of even characteristic. We rely upon a transformation used by
Kyuregyan in 2002, which generalizes the Q-transform employed previously by Varshamov
and Garakov (1969) as well as by Meyn (1990) for the synthesis of irreducible polynomi-
als. While in the iterative procedure described by Kyuregyan the coefficients of the initial
polynomial of the sequence have to satisfy certain hypotheses, in the present paper these
conditions are removed. We construct infinite sequences of irreducible polynomials of non-
decreasing degree starting from any irreducible polynomial.
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1. Introduction

In the last decades many investigators dealt with the iterative construction of

sequences of irreducible polynomials of non-decreasing degree with coefficients over

finite fields. A survey of works related to such a topic can be found in [6], Section 3.2.

One of the possible iterative constructions relies on the so-called Q-transform,

which takes any polynomial f of positive degree n to fQ(x) = xnf(x+x−1). Among

others, the construction of irreducible polynomials via the Q-transform was studied

by Varshamov and Garakov [10] and later by Meyn [5].

Adopting the notation of [5], the reciprocal f∗ of a polynomial f of degree n is

the polynomial f∗(x) = xnf(1/x). If f = f∗, then f is self-reciprocal. In general,

the Q-transform fQ of any polynomial f is self-reciprocal.
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If α is an element of the field F2n with 2n elements for some positive integer n,

then the absolute trace of α is

Trn(α) =

n−1∑

i=0

α2i .

We remind the reader that Trn(α) ∈ {0, 1}.
The following result plays a crucial role for the synthesis of sequences of irreducible

polynomials over finite fields of even characteristic.

Theorem 1.1 ([5], Theorem 9). The Q-transform of a self-reciprocal irreducible

monic polynomial f(x) = xn + a1x
n−1 + . . . + a1x + 1 ∈ F2k [x] with Trk(a1) = 1

is a self-reciprocal irreducible monic polynomial of the same kind, i.e., fQ(x) =

x2n + ã1x
2n−1 + . . .+ ã1x+ 1 satisfies Trk(ã1) = 1.

Relying upon Theorem 1.1 Meyn shows, after [5], Example 3, page 50, how to

construct iteratively a sequence {fi}i>0 of irreducible polynomials in F2[x], starting

from any monic irreducible polynomial f0 = xn + an−1x
n−1 + . . .+ a1x+ a0 ∈ F2[x]

such that an−1 = a1 = 1. The polynomials of the sequence are inductively defined

as fi := fQ
i−1 for any positive integer i. Moreover, according to Theorem 1.1, the

degree of fi is twice the degree of fi−1 for any positive integer i.

In the same paper, Meyn noticed that the Q-transform was not suitable for the

iterative construction of irreducible polynomials over finite fields of odd character-

istic. Indeed, he was not able to find easy conditions upon which starting from

an irreducible polynomial a sequence of irreducible polynomials could be generated.

For that reason Cohen [1] defined the so-called R-transform, which is obtained by

a slight modification of the Q-transform, and proved that a sequence of irreducible

polynomials could be produced by means of repeated applications of such a trans-

form starting from any irreducible polynomial satisfying certain conditions on the

coefficients.

Later, in [7] we analysed how the R-transform behaves when any additional con-

dition on the initial irreducible polynomial is removed.

In [8] we concentrated on the construction of sequences of irreducible polynomials

with coefficients in F2 removing any assumption on the coefficients of the initial

polynomial of the sequence. The drawback of relaxing the hypotheses on the initial

polynomial is that we could face a finite number of factorizations of a polynomial in

two equal-degree polynomials in F2[x]. The number of factorizations depends on the

greatest power of 2 which divides the degree of the initial polynomial of the sequence,

as explained in [8], Section 3.2.
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In [4] Kyuregyan introduced a more general construction of sequences of irre-

ducible polynomials having coefficients in finite fields of even characteristic. Such

a construction is based on the transformations which take a polynomial f of de-

gree n to the polynomial xnf(x+ δ2x−1) for some nonzero element δ in the field of

the coefficients of f . For the sake of clarity we introduce a notation for this family

of transformations.

Definition 1.2. If f is a polynomial of a positive degree n in F2s [x] for some

positive integer s, and α ∈ F
∗

2s , then the (Q,α)-transform of f is

f (Q,α)(x) = xnf(x+ αx−1).

Remark 1.3. For α = 1 the (Q,α)-transform coincides with the Q-transform.

The forthcoming theorem proved by Kyuregyan [4] furnishes an iterative procedure

for constructing sequences of irreducible polynomials with coefficients in finite fields

of even characteristic. The procedure is based on the (Q,α)-transforms and requires

that some hypotheses on the initial polynomial of the sequence be satisfied. We

state [4], Theorem 3, using the notation introduced in the present paper. Actually,

we adapt the statement of the theorem as presented in [3].

Theorem 1.4 ([3], Proposition 3). Let δ ∈ F
∗

2s and let F1(x) =
n∑

u=0
cux

u be

an irreducible polynomial over F2s whose coefficients satisfy the conditions

Trs

(c1δ
c0

)
= 1 and Trs

(cn−1

δ

)
= 1.

Then all members of the sequence (Fk(x))k>1 defined by

Fk+1(x) = F
(Q,δ2)
k (x), k > 1

are irreducible polynomials over F2s .

In the present paper we aim at constructing sequences of irreducible polynomials

{fk}k>0, where the initial polynomial f0 of the sequence is monic and irreducible,

but the other hypotheses of [3], Proposition 3, are removed. To do that, we rely on

the dynamics of the maps

θα : x 7→
{
∞ if x ∈ {0,∞},
x+ αx−1 otherwise

over P1(F2s) = F2s ∪ {∞} for any positive integer s and any choice of α ∈ F
∗

2s .
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Actually, the dynamics of the maps θα is strictly related to the dynamics of

the map θ1, studied by us in [9]. Consider in fact the bijective map defined over

P
1(F2s) = F2s ∪ {∞} for any positive integer s and for any γ ∈ F

∗

2s , as follows:

ψγ : x 7→
{
∞ if x = ∞,
γx otherwise.

If γ =
√
α, namely γ is the square root of α for a generic element α ∈ F

∗

2s , then

(1.1) θα = ψγ ◦ θ1 ◦ ψγ−1 .

We can construct a graph Grs(α) related to the dynamics of the map θα over

P
1(F2s) as in [9]. The vertices of the graph are labelled by the elements of P

1(F2s)

and an arrow joins a vertex β1 to a vertex β2 if β2 = θα(β1).

We notice that the graph Grs(1) is isomorphic to Grs(α). Indeed, if δ1 and δ2 are

two adjacent vertices in Grs(1), namely δ2 = θ1(δ1), then

θα(ψγ(δ1)) = ψγ(θ1(δ1)) = ψγ(δ2)

according to (1.1), namely ψγ(δ1) and ψγ(δ2) are adjacent in Grs(α).

As in [9] we say that an element β ∈ P
1(F2s) is θα-periodic if θ

i
α(β) = β for some

positive integer i. If β is θα-periodic, then the vertex β in Grs(α) belongs to a cycle

whose length is equal to the smallest of the positive integers i such that θiα(β) = β.

If for some β ∈ P
1(F2s) there is no positive integer i such that θ

i
α(β) = β, then we

say that β is non-θα-periodic. Nevertheless, since P
1(F2s) is finite, there exist two

positive integers d and e such that

θdα(β) = θd+e
α (β).

For this reason, any non-θα-periodic element in P
1(F2s) is preperiodic, namely some

iterate θiα(β) is θα-periodic. In particular, if β is a non-θα-periodic element ofP
1(F2s)

and t is the smallest of the positive integers i such that θiα(β) is θα-periodic, then the

vertex β belongs to the level t of a reversed binary tree rooted at θtα(β) in Grs(α).

The paper is organized as follows: in Section 2 we briefly describe some prop-

erties of the graphs Grs(α) and in Section 3 we study the sequences of irreducible

polynomials generated by the iterations of the (Q,α)-transforms.

We note that, while the current setting is more general than [8], in the proofs of

the current paper we can still employ the same arguments as in [8].
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2. The structure of the graphs Grs(α)

Since all graphs Grs(α) are isomorphic to Grs(1), from [9] we deduce the following,

for a chosen element α ∈ F
∗

2s :

⊲ every connected component of Grs(α) is formed by a cycle whose vertices are roots

of binary trees of the same depth;

⊲ either all the trees of a connected component of Grs(α) have depth 1 or they have

depth l+2, where l is positive integer such that 2l is the greatest power of 2 which

divides s (see [9], Lemma 4.3, Lemma 4.4).

Example 2.1. In this example we construct the graph Gr6(α), where α is a root

of the Conway polynomial x6+x4+x3+x+1, which is primitive in F2[x]. The labels

of the vertices are ∞, “0” (the zero of F2) and the exponents i of the powers α
i for

0 6 i 6 62.

We notice that the graph Gr6(α) is isomorphic to the graph Gr6(1), which the

reader can find in [8], Example 4.2. Since the greatest power of 2 dividing 6 is 1, the

trees belonging to a connected component of Gr6(α) either have depth 3 or 1.
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3. The synthesis of irreducible polynomials

via the (Q,α)-transforms

The following lemma about the irreducibility of the polynomials f (Q,α) holds in

analogy with [5], Lemma 4.

Lemma 3.1. If f is an irreducible monic polynomial of degree n in F2s [x] for

some positive integers n and s, and α ∈ F
∗

2s , then either f
(Q,α) is an irreducible

monic polynomial of degree 2n in F2s [x] or f
(Q,α) splits into the product of a pair of

irreducible monic polynomials g1, g2 of degree n in F2s [x]. In the latter case at least

one of g1 and g2 has no θα-periodic roots.

P r o o f. Let β ∈ F2sn be a root of f and γ a solution of the equation θα(x) = β.

Then f (Q,α)(γ) = γnf(γ+αγ−1) = 0. Since θα(γ) = β, either γ belongs to F2sn or γ

belongs to F22sn \ F2sn . In the latter case f
(Q,α) is irreducible of degree 2n over F2s ,

while in the former case f (Q,α) splits into the product of a pair of irreducible monic

polynomials g1, g2 of degree n.

Suppose now that f (Q,α)(x) = g1(x)g2(x), where g1 and g2 have degree n. We

proceed by proving that one of g1 and g2 has no θ-periodic roots. First we notice

that θα(x) = β if and only if x ∈ {γ, αγ−1}. If β is not θα-periodic, then the same
holds for γ too. If β is θα-periodic then, up to a renaming, γ belongs to the first

level of the binary tree of Grsn(α) rooted in β. Since f
(Q,α)(γ) = 0, we conclude

that either g1(γ) = 0 or g2(γ) = 0.

Suppose, without loss of generality, that g1(γ) = 0. If δ is any root of g1, then

γ = δ2
si

for some integer i. Therefore, θkα(δ) = δ for some positive integer k if

and only if (θkα(δ))
2si = δ2

si

= γ. Since (θkα(δ))
2si = θkα(γ), we conclude that δ

is θα-periodic if and only if γ is θα-periodic. Hence, none of the roots of g1 is

θα-periodic. �

The following theorem describes the iterative procedure for the construction of irre-

ducible polynomials over finite fields of even characteristic via the (Q,α)-transforms.

Theorem 3.2. Let f0 ∈ F2s [x], where s is a positive integer, be an irreducible

monic polynomial of positive degree n. Suppose that 2ls is the greatest power of 2

which divides s, while 2ln is the greatest power of 2 which divides n. Fix an element α

in F
∗

2s .

Let f1 be one of the at most two irreducible monic polynomials which factor f
(Q,α)
0 .

Suppose also that the roots of f1 are not θα-periodic.

Consider the sequence of polynomials {fi}i>0 constructed inductively setting fi
equal to one of the irreducible monic factors of f

(Q,α)
i−1 for i > 2.
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Then there exists a positive integer t 6 ls + ln + 3 such that ft has degree 2n,

while ft+1 has degree 4n. Moreover, for any i > t, the polynomial f
(Q,α)
i is irreducible

in F2s [x] and the degree of fi+1 is twice the degree of fi.

P r o o f. Since f0 is an irreducible polynomial of degree n in F2s [x], all its roots

are in F2sn . Let β0 ∈ F2sn be a root of f0. Then it is possible to construct inductively

a sequence of elements {βi}i>0, where any βi belongs to an appropriate extension of

F2sn , such that

⊲ any βi is a root of fi;

⊲ βi = θα(βi+1).

Since β0 ∈ F2sn and β1 is not θα-periodic, all the elements βi for i > 1, belong to a tree

of the graph Gr2sn(α). In particular, such a tree has depth at least 2 in Gr2sn(α).

Indeed, there are two possibilities for β1: either β1 ∈ F2sn or β1 ∈ F22sn \ F2sn .

In the former case β1 lies on a level not smaller than 1 of a tree in Grsn(α) and

consequently β2 lies on a level not smaller than 2 of a tree in Gr2sn(α). In the latter

case, β0 is a leaf of a tree in Grsn(α). Such a tree has depth at least 1.

Consequently, β2 lies on a level not smaller than 2 of a tree in Gr2sn(α). In both

cases we conclude that such a tree has not depth 1 in Gr2sn(α), namely it has depth

(1 + ln + ls) + 2 in Gr2sn(α) (see Section 2). Hence, there exists a positive integer

t 6 ln + ls + 3 such that βt ∈ F22sn , while βt+j ∈ F22
j+1sn for any j > 1. For

such an integer t we have that ft has degree 2n, while f
(Q,α)
t has degree 4n. In

general, for any i > t, we have that fi+1 = f
(Q,α)
i and the degree of fi+1 is twice the

degree of fi. �

Remark 3.3. In the hypotheses of Theorem 3.2 we require that the roots of f1
are not θα-periodic. Indeed, this is true if f1 = f

(Q,α)
0 , since in this circumstance the

degree of f1 is twice the degree of f0 and consequently the roots of f0 are leaves of

Grsn(α).

Consider now the case that f
(Q,α)
0 (x) = g1(x)g2(x) for some irreducible monic

polynomials g1, g2 of degree n in F2s [x]. According to Lemma 3.1, at least one of g1
and g2 has no θα-periodic roots. Suppose that g2 has no θα-periodic roots. If we

set f1 := g1 and all the polynomials fi have degree n for 0 6 i 6 ls + ln + 3, then

we break the iterations and set f1 := g2. Since g2 has no θα-periodic roots, the

hypotheses of Theorem 3.2 are satisfied and we can construct inductively a sequence

of irreducible monic polynomials, as explained in the theorem.

Example 3.4. In this example we construct a sequence of irreducible monic

polynomials over F8[x] starting from the polynomial f0(x) = x4 + x + a3, being a

a root of the primitive polynomial x3+x+1 ∈ F2[x]. We notice that f0 is irreducible

in F8[x] (see [2], Table 5).
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We set α := a and proceed as explained in Theorem 3.2. Adopting the notation

of the theorem, in the current example we have that s = 3, n = 4, ls = 0 and ln = 2.

Since f
(Q,α)
0 is not irreducible, it splits into the product of two irreducible monic

polynomials of degree 4. We set f1 equal to one of the two factors of f
(Q,α)
0 , namely

f1(x) := x4 + a4x3 + x2 + a2x+ a6.

We notice that f
(Q,α)
1 is irreducible of degree 8 and set f2 := f

(Q,α)
1 . Since f

(Q,α)
2

is irreducible of degree 16 in F8[x], implying that f3 has degree 4n = 16, according

to Theorem 3.2 all the polynomials f
(Q,α)
i are irreducible for i > 2. Hence, no more

factorization is required and we can generate an infinite sequence of irreducible monic

polynomials of increasing degree.
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