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EQUATION WITH CRITICAL EXPONENTIAL GROWTH IN R
N
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Abstract. In this work, we study the existence of nonnegative and nontrivial solutions
for the quasilinear Schrödinger equation

−∆Nu+ b|u|N−2
u−∆N (u

2)u = h(u), x ∈ R
N
,

where ∆N is theN-Laplacian operator, h(u) is continuous and behaves as exp(α|u|
N/(N−1))

when |u| → ∞. Using the Nehari manifold method and the Schwarz symmetrization with
some special techniques, the existence of a nonnegative and nontrivial solution u(x) ∈

W 1,N (RN ) with u(x)→ 0 as |x| → ∞ is established.

Keywords: N-Laplacian equation; critical exponential growth; Schwarz symmetrization;
Nehari manifold

MSC 2010 : 35D30, 35J20, 35J92

1. Introduction and main result

In this paper, we study the existence of solutions for a class of quasilinear

Schrödinger equations of the form

(1.1) −∆Nu+ b|u|N−2u−∆N (u2)u = h(u), x ∈ R
N ,

where ∆Nu = div(|∇u|N−2∇u) (N > 2) is the N -Laplacian operator, b > 0 is

a constant and h(u) is a continuous function having critical exponential growth.

The research has been supported by the Fundamental Research Funds for the Central
Universities of China (2015B31014) and NSFC-11571092.
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There has been recently a good amount of work on the quasilinear elliptic equations

of the form

(1.2) −∆u+ V (x)u −∆(u2)u = h(u), x ∈ R
N .

Such equations arise in various branches of mathematical physics and they have

been the subject of extensive study in recent years. Part of the interest is due to the

fact that solutions of (1.2) are related to the existence of solitary wave solutions for

Schrödinger equations of the form

(1.3) izt = −∆z +W (x)z − h1(|z|2)z − k∆g(|z|2)g′(|z|2)z, (t, x) ∈ R× R
N ,

where z : R × R
N → C, W : R

N → R is a given potential, k is a positive constant,

g, h1 are real functions.

Schrödinger equations of the form (1.3) appear naturally in mathematical physics

and have been derived as models of several physical phenomena corresponding to

various types of the nonlinear term g. The case g(s) = s was used for the superfluid

film equation in plasma physics by Kurihura in [18] (see also [19]). In the case

g(s) = (1 + s)1/2, equation (1.3) models the self-channeling of a high-power ultra

short laser in matter, see [7]. Equation (1.3) also appears in plasma physics and fluid

mechanics, see [25], in mechanics, see [17], and in condensed matter theory, see [24].

Here we consider the case where g(s) = s, k = 1 and our special interest is in the ex-

istence of standing wave solutions, that is, solutions of type z(t, x) = exp(−iωt)u(x),

where ω ∈ R and u > 0 is a real function. It is obvious that z satisfies (1.3) if and

only if u(x) solves the equation of elliptic type (1.2) with h(u) = h1(u
2)u, where

V (x) = W (x)− ω is the new potential.

Motivated by (1.2), Severo in [28] studied the equation

(1.4) −∆pu+ V (x)|u|p−2u−∆p(u
2)u = h(u), x ∈ R

N ,

where h has subcritical growth, that is, |h(t)| 6 c(1+ |t|r), (t ∈ R) with 2p−1 < r <

2p∗−1 if 1 < p < N and r > 2p if p = N. Using Lion’s compactness lemma (see [21])

and mountain pass lemma, the author proved the existence of a nontrivial solution in

C1,α
loc (R

N ) when 1 < p 6 N . We also refer to the recent work of Wang et al. in [29],

where the authors studied the problem (1.4) with p = N and h, V (x) satisfying the

following conditions:

(H1) h(t) ∈ C(R) and h(t) = o(|t|N−2t) at the origin.

(H2) There exists µ > 2N such that

0 < µH(t) 6 th(t) ∀ t > 0, where H(t) =

∫ t

0

h(s) ds.
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(H3) There exists α0 > 0 such that

lim
t→∞

(|h(t)| exp(−α|t|2N/(N−1))) =

{

0 if α > α0,

∞ if α < α0.

(H4) Let α0 be the constant in (H3). Then there exists β0 > 0 such that

lim inf
t→∞

(

th(t) exp(−α0|t|2N/(N−1))
)

> β0 > 0.

(H5) V (x) ∈ C(RN ) and there exists V0 > 0 such that V (x) > V0 in R
N and

lim
|x|→∞

V (x) = V∞ < ∞, and V (x) 6= V∞ ∀x ∈ R
N .

They used a similar argument as in [12], [21], [22] and obtained the following result.

Theorem 1.1. Assume that (H1)–(H5) hold. Then problem (1.4) with p = N

possesses a nontrivial solution in W 1,N(RN ).

R em a r k 1.2. It is easy to see that the function h(t) = λt|t|m−2 satisfies (H1)–

(H2), but fails to verify (H3)–(H4), where λ > 0 and m > 2N .

The present paper is motivated by [28], [29], we are interested in the existence of

nonnegative and nontrivial solutions to equation (1.4) with V (x) = b > 0 and p = N .

The assumptions (H3)–(H5) are not necessary for our consideration. Our argument

is new and different from that in [15], [23], [26], [28], [29]. To establish the existence

of a nonnegative and nontrivial solution for (1.1), we will use the Nehari manifold

method and Schwarz symmetrization as in [10], [11] with some special techniques.

Throughout this paper, let E = W 1,N (RN ). Since we are looking for a nonnega-

tive and nontrivial solution, we suppose that h(s) = 0 in (−∞, 0] and satisfies the

following hypotheses.

(A1) The function h(t) ∈ C1(R), h(t) > 0 in (0,∞) and there exist the constants

b1, α0 > 0 and q > 0 such that

(1.5) |h(t)| 6 b1|t|q−1R(α0, t) ∀ t ∈ R,

where

(1.6) R(α0, t) = exp(α0|t|2N/(N−1))− SN−2(α0, t),

SN−2(α0, t) =
N−2
∑

k=0

αk
0

k!
|t|2kN/(N−1).
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(A2) The function h(t) also satisfies

(1.7) (q − 1 + 2N)
h(t)

t
6 h′(t), (q + 2N)H(t) 6 th(t) ∀ t ∈ R \ {0},

where H(t) =
∫ t

0
h(s) ds.

R em a r k 1.3. Obviously, the function

(1.8) h(t) = λt|t|m−2 exp(α0|t|2N/(N−1)), t > 0, h(t) = 0, t 6 0,

satisfies (A1)–(A2), where the constants λ > 0, α0 > 0, and m > 2N .

The main result in this paper is as follows.

Theorem 1.4. Assume (A1)–(A2). Then, the problem (1.1) admits at least one

nonnegative and nontrivial solution u0(x) ∈ E = W 1,N (RN ) with u0(x) → 0 as

|x| → ∞.

This paper is organized as follows. In Section 2, we set up the variational frame-

work and prove some lemmas which will be used in the proof of Theorem 1.4. The

proof of the main result is given in Section 3.

2. Preliminaries

Let Ω be a open subset of RN . We denote by Lp(Ω) (p > 1) the usual Lebesgue

spaces with the norm ‖u‖p ≡ ‖u‖Lp(Ω) = (
∫

Ω |u|p dx)1/p. Let W 1,p(Ω)(W 1,p
0 (Ω)) be

the usual Sobolev spaces with the norm

(2.1) ‖u‖W 1,p(Ω) =

(
∫

Ω

(|∇u|p + |u|p) dx
)1/p

.

In this paper, we will use the following lemmas.

Lemma 2.1 ([1], [5], [16]). Let Ω be a open subset of RN with a Lipschitz

continuous boundary ∂Ω. Then,

(i) the embedding W 1,N (Ω)(W 1,N
0 (Ω)) →֒ Lq(Ω) is continuous for q ∈ [N,∞),

(ii) if Ω is bounded, the embedding W 1,N (Ω)(W 1,N
0 (Ω)) →֒ Lq(Ω) is compact for

q ∈ [N,∞).

In particular, for u ∈ W 1,N
0 (Ω),

(2.2) ‖u‖N 6 (ω−1
N |Ω|)1/N‖∇u‖N ,
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where |Ω| is the N -dimensional volume of Ω and ωN is the volume of the unit sphere

B1 ⊂ R
N , that is,

(2.3) ωN =
π
N/2

Γ(1 +N/2)
.

R em a r k 2.2. Clearly, NωN is the surface area of the unit sphere ∂B1 in R
N .

Lemma 2.3 ([14]). Let u ∈ W 1,N
0 (Ω) ∩ Lr(Ω), where r ∈ [1,∞) and Ω ⊆ R

N is

an arbitrary domain. Then for q ∈ [r,∞),

(2.4) ‖u‖q 6 c(N, r)q1−1/N‖∇u‖1−r/q
N ‖u‖r/qr .

The exponent 1− 1/N of q is the best possible. In particular,

(2.5) c(N,N) =
1√
π

(Γ(N/2)Γ(2N)

2Γ2(N)

)
1/N

≡ dN .

R em a r k 2.4. By Lemma 2.3, the embedding W 1,N
0 (Ω) →֒ Lq(Ω) is continuous

for every q ∈ [N,∞) and

(2.6) ‖u‖Lq(Ω) 6 dNq1−1/N‖u‖W 1,N
0

(Ω).

Lemma 2.5 (Trudinger-Moser inequality [10], [16]). Let N > 2 and α > 0.

(i) If Ω ⊂ R
N is a bounded domain and u ∈ W 1,N

0 (Ω), then

(2.7)
∫

Ω

exp(α|u|N/(N−1)) dx < ∞.

(ii) If u ∈ E, then

(2.8)
∫

RN

(

exp(α|u|N/(N−1))− SN−2(α, u)
)

dx < ∞.

We now establish the variational setting for problem (1.1). We observe that the

natural energy functional associated to (1.1) is

(2.9) I(u) =
1

N

∫

RN

(1 + 2N−1|u|N )|∇u|N dx+
b

N

∫

RN

|u|N dx−
∫

RN

H(u) dx,

where H(u) =
∫ u

0 h(s) ds. It should be pointed out that the functional I is not

well defined in general in E. To overcome this difficulty, we employ an argument
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developed by Colin and Jeanjean in [6] (see also [28]). We make the change of

variables u = f(v) or v = f−1(u), where f is defined by

(2.10) f ′(t) = (1 + 2N−1|f(t)|N )−1/N , t > 0, f(0) = 0,

and by f(t) = −f(−t) on (−∞, 0].

Lemma 2.6 ([6], [13], [28]).

(f1) The function f is uniquely defined, C2 and invertible in R,

(f2) 0 < f ′(t) 6 1 for all t ∈ R,

(f3) |f(t)| 6 |t| for all t ∈ R,

(f4) f(t)/t → 1 as t → 0,

(f5) |f(t)| 6 21/2N |t|1/2 for all t ∈ R,

(f6)
1
2f(t) 6 tf ′(t) 6 f(t) for all t ∈ R

+ = [0,∞) and f(t) 6 tf ′(t) 6 1
2f(t) for all

t ∈ R
− = (−∞, 0],

(f7) there exists a ∈ (0, 21/2N ] such that f(t)/
√
t → a as t → ∞,

(f8) there exists b0 > 0 such that

(2.11) |f(t)| >
{

b0|t| if |t| 6 1,

b0|t|1/2 if |t| > 1.

So after the change of variables, we can write I(u) as

(2.12) J(v) =
1

N

∫

RN

|∇v|N dx+
b

N

∫

RN

|f(v)|N dx−
∫

RN

H(f(v)) dx,

which is well defined on the space E under the assumptions (A1)–(A2).

As in [28], we observe that if v ∈ E∩L∞
loc(R

N ) is a critical point of the functional J ,

that is, J ′(v)ϕ = 0 for all ϕ ∈ E, where

(2.13) J ′(v)ϕ =

∫

RN

|∇v|N−2∇v∇ϕdx+

∫

RN

[b|f(v)|N−2f(v)− h(f(v))]f ′(v)ϕdx,

then v is a weak solution of the equation

(2.14) −∆Nv = g(v), x ∈ R
N ,

where

(2.15) g(s) = −b|f(s)|N−2f(s)f ′(s) + h(f(s))f ′(s), s ∈ R,
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and then u = f(v) is a weak solution of (1.1). By Theorem 1 in [27], we can conclude

that v is locally bounded in R
N . So, we consider the existence of weak solutions to

(2.14) in E.

We first construct a subspace Er ⊂ E. The function u ∈ Lp(RN ) is called radially

nonincreasing if u(x) 6 u(y) when |x| > |y| and x, y ∈ R
N .

Lemma 2.7 ([3]). If u ∈ Lp(RN ) (p > 1) is a nonnegative and radially nonin-

creasing function, then one has

(2.16) |u(x)| 6 |x|−N/pω
−1/p
N ‖u‖p ∀x ∈ R

N \ {0}.

In particular,

(2.17) |u(x)| 6 |x|−1ω
−1/N
N ‖u‖N ∀x ∈ R

N \ {0}.

Denote

(2.18) Er = {u ∈ E : u is nonnegative and radially nonincreasing in R
N}.

R em a r k 2.8. By Lemma 2.7, we have u(x) → 0 as |x| → ∞ if u(x) ∈ Er.

Lemma 2.9. Let s > N . Then the embedding Er →֒ Ls(RN ) is compact.

P r o o f. Let {un} ⊂ Er be a bounded sequence in E. Without loss of a gener-

ality, we assume that un ⇀ 0 in E and ‖un‖E 6 M for all n ∈ N with some M > 0.

For our purpose, it is sufficient to show that un → 0 in Ls(RN ). By Lemma 2.1, we

can assume un → 0 in Ls
loc(R

N ) and un(x) → 0 a.e. in R
N as n → ∞. Let B1 be

a unit sphere in R
N and Bc

1 = R
N \B1. Then, as n → ∞, we obtain

(2.19)
∫

RN

|un(x)|s dx =

∫

B1

|un(x)|s dx+
∫

Bc

1

|un(x)|s dx =

∫

Bc

1

|un(x)|s dx+ o(1).

Furthermore, from (2.17), it follows that

(2.20) |un(x)|s 6 C1|x|−s, x ∈ R
N \ {0} and n ∈ N,

where C1 > 0, independent of n. Using the assumption s > N and the Lebesgue

dominated convergence theorem, we derive that the function |x|−s ∈ L1(Bc
1) and

(2.21)
∫

Bc

1

|un(x)|s dx → 0 as n → ∞.
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Then the limits (2.19) and (2.21) show that

(2.22)
∫

RN

|un|s dx → 0 as n → ∞.

Thus, the embedding Er →֒ Ls(RN ) is compact. This completes the proof of

Lemma 2.9. �

Lemma 2.10. Let Ω ⊂ R
N be a domain (maybe unbounded) with the smooth

boundary ∂Ω. If {un} is a sequence with un → u in X = Lq(Ω) (q > 1), then there

exists a subsequence {ukn} ⊂ {un} and v ∈ X such that |ukn(x)| 6 v(x), a.e. in Ω

and for any k > 1.

P r o o f. Since un → u in X , we have un(x) → u(x) a.e. in Ω. Also we can

extract a subsequence {ukn} of {un} which we denote by {uk} such that

(2.23) ‖uk+1 − uk‖X 6 2−k, k > 1.

Setting

(2.24) gn(x) =

n
∑

k=1

|uk+1(x) − uk(x)|, x ∈ Ω, n = 1, 2, . . . ,

we get gn ∈ X and ‖gn‖X 6 1 for any n > 1. Obviously, gn(x) is monotonic increas-

ing. By Levi’s lemma and Brezis-Lieb lemma (see [4]), there exists a nonnegative

function g ∈ X such that ‖gn − g‖X → 0 and gn(x) → g(x) a.e. in Ω as n → ∞.
Now, for m > k > 2, it follows that

|um(x)−uk(x)| 6 |um(x)−um−1(x)|+. . .+|uk+1(x)−uk(x)| 6 g(x)−gk−1(x) 6 g(x)

for a.e. x ∈ Ω. Letting m → ∞, we obtain

(2.25) |u(x)− uk(x)| 6 g(x), for a.e. x ∈ Ω, k > 2

and for k > 2, |uk(x)| 6 v(x) a.e. in Ω with v(x) = |u(x)|+ g(x) ∈ X and the proof

is complete. �

Having established the main functional properties of the space Er, we need a way

to pass from functions in E to functions in Er. A way to do this, suitable for our

purpose, is given by a procedure called Schwarz symmetrization. We just describe

roughly the idea for nonnegative functions and state the result that we will need in

this paper, for details, see [2], [10], [20] and the references therein.
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Let u ∈ Lp(RN ) (1 6 p 6 ∞) be such that u(x) > 0 a.e. in R
N . For t > 0, set

(2.26) Ω(t) = {x ∈ R
N : u(x) > t} and µ(t) = meas(Ω(t)).

Here and in the sequel, meas(Ω) is Lebesgue measure of Ω. Since u ∈ Lp(RN ),

we have µ(t) < ∞ for all t > 0. The Schwarz symmetrization constructs a radial

function u∗ : R
N → R such that

(2.27) {x ∈ R
N : u∗(x) > t} = B̺(t) with meas (B̺(t)) = µ(t),

where B̺(t) is the sphere with the radius ̺(t) > 0 and the center at the origin.

Thus, the sets where u and u∗ are greater than t have the same Lebesgue measure.

Obviously, the function u∗ is radially nonincreasing. The most important properties

of u∗ are stated in the following results.

Lemma 2.11 ([2], [10], [20]).

(i) Let f : R
+ → R

+ be a continuous and increasing function with f(0) = 0. Then,

(2.28)
∫

RN

f(u∗) dx =

∫

RN

f(u) dx.

(ii) Let 1 6 p 6 ∞. If u ∈ E is a nonnegative function, then u∗ ∈ E and

(2.29)
∫

RN

|∇u∗|p dx 6

∫

RN

|∇u|p dx.

R em a r k 2.12. Lemma 2.11 shows that if u ∈ E and u(x) > 0 in R
N , then

u∗ ∈ Er.

To prove the existence of nontrivial solutions for problem (2.14), we introduce the

Nehari manifold

(2.30)

N = {v ∈ E \ {0} : J ′(v)v = 0}

=

{

v ∈ E \ {0} : ‖∇v‖NN +

∫

RN

[

b|f(v)|N−2f(v)− h(f(v))
]

f ′(v)v dx = 0

}

and the fibering maps φv(t) = J(tv) for t > 0. Clearly, we have that v ∈ N if and
only if φ′

v(1) = 0 and, more generally, tv ∈ N if and only if φ′
v(t) = 0. By the

definition, one sees

(2.31) φv(t) = J(tv) =
1

N
‖t∇v‖NN +

b

N

∫

RN

|f(tv)|N dx−
∫

RN

H(f(tv)) dx,

φ′
v(t) = tN−1‖∇v‖NN +

∫

RN

[b|f(tv)|N−2f(tv)− h(f(tv))]f ′(tv)v dx.

325



Notice that, if v ∈ N , then

(2.32) J(v) =
1

N

∫

RN

[

h(f(v))f ′(v)v −NH(f(v))

+ b|f(v)|N−2(f2(v)− f(v)f ′(v)v)
]

dx.

In the following, under the assumptions (A1)–(A2), we derive some properties

for N .

Lemma 2.13. The Nehari manifold N 6= ∅.

P r o o f. Choose the nonnegative function v1 ∈ C∞
0 (RN ) ⊂ E such that

(2.33)
∫

RN

h(f(v1))f
′(v1)v1 dx > 0

and ‖v1‖E 6 ̺ for small ̺ > 0. For t > 0, let

(2.34) γ(t) = J ′(tv1)tv1 = tN‖∇v1‖NN+

∫

RN

(b(f(tv1))
N−1−h(f(tv1)))f

′(tv1)tv1 dx.

By Lemma 2.6, one sees

(2.35)
∫

RN

(f(tv1))
N−1f ′(tv1)tv1 dx >

1

2
bN0 tN‖v1‖NN ,

provided that 0 6 tv1(x) 6 1 in R
N . Set Ω = {x ∈ R

N : v1(x) 6= 0}. Then
Ω is bounded in R

N and ‖v1‖Lq(Ω) = ‖v1‖Lq(RN ) = ‖v1‖q, ‖v1‖W 1,N
0

(Ω) 6 ‖v1‖E .
Furthermore, it follows from (2.6) and Lemma 2.6 that

(2.36) 0 6

∫

RN

h(f(tv1))f
′(tv1)tv1 dx 6

∫

RN

h(f(tv1))f(tv1) dx

6 b1

∫

RN

|f(tv1)|q[exp(α0|f(tv1)|2N/(N−1))− SN−2(α0, f(tv1))] dx

6

∞
∑

k=N−1

b1α
k
0

k!
tq+N

∫

RN

|v1|sk dx 6

∞
∑

k=N−1

b1α
k
0

k!
tq+NdskN s

(1−1/N)sk
k ‖v1‖skE

6 b1t
q+NdqN‖v1‖qE

∞
∑

k=N−1

ak,

where dN is given in (2.5) and

(2.37) sk = qk + q, β =
N + q

N − 1
, qk =

kN

N − 1
,

ak =
αk
0

k!
d
kN/(N−1)
N ‖v1‖kN/(N−1)

E (βk)k+q(1−1/N )
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with k > N − 1. Since ̺ > 0 is so small that

(2.38) lim
k→∞

ak+1

ak
= eβα0‖v1‖N/(N−1)

E d
N/(N−1)
N 6 eβα0̺

N/(N−1)d
N/(N−1)
N < 1,

the positive series
∞
∑

k=N−1

ak is convergent. Therefore, from (2.36), there is C2 > 0

such that

(2.39) 0 6

∫

RN

h(f(tv1))f
′(tv1)tv1 dx 6 C2t

q+N‖v1‖qE.

Then it follows from (2.34)–(2.36) and (2.39) that γ(t) > 0 for small t > 0.

On the other hand, since q > 0, we choose p > N such that q > 2(p − N). We

now prove γ(t) → −∞ as t → ∞. Set

(2.40) G(t) = t−p+1h(f(tv1))f
′(tv1)v1 − h(f(v1))f

′(v1)v1, t > 1.

We claim that G′(t) > 0 for t > 1. In fact, it follows from (1.7) and Lemma 2.6 that

(2.41) G′(t) = t−p−1
(

h′(f)(f ′)2t2v21 − (p− 1)h(f)f ′tv1 + h(f)f ′′t2v21
)

> t−p−1h(f)

f

(

(q − 1 + 2N)(f ′)2t2v21 + f ′′ft2v21 − (p− 1)f ′ftv1
)

> t−p−1h(f)

f

(

(q − 1 + 2N)(f ′)2t2v21 + f ′′ft2v21 − 2(p− 1)(f ′)2t2v21
)

=
t−p+1v21h(f)

f(1 + 2N−1|f |N)2/N

(

q + 1− 2(p−N)− 2N−1|f |N
1 + 2N−1|f |N

)

> 0,

provided that q > 2(p−N), where f = f(tv1), f ′ = f ′(tv1), f ′′ = f ′′(tv1). Then,

(2.42) h(f(tv1))f
′(tv1)tv1 > tph(f(v1))f

′(v1)v1, t > 1.

Moreover, the application of (2.34) yields

(2.43) γ(t) 6 tN‖∇v1‖NN + btN
∫

RN

|v1|N dx− tp
∫

RN

h(f(v1))f
′(v1)v1 dx → −∞

as t → ∞. Then there exists t1 > 1 such that γ(t1) = 0. Obviously, t1v1 6≡ 0 in R
N .

In conclusion, t1v1 ∈ N and so N 6= ∅. �
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Lemma 2.14. The following properties hold:

(2.44) d = inf
v∈N

J(v) > 0, d0 = inf
v∈N

{‖v‖E} > 0.

P r o o f. Let v ∈ N . Then,

(2.45) ‖∇v‖NN + b

∫

RN

|f(v)|N−2f(v)f ′(v)v dx =

∫

RN

h(f(v))f ′(v)v dx.

By (1.7) and (2.32), we derive from Lemma 2.6 that

(2.46)

J(v) =
1

N

∫

RN

[h(f)f ′(v)v −NH(f(v)) + b(|f(v)|N − |f(v)|N−2f(v)f ′(v)v))] dx

>
1

N

∫

RN

h(f(v))f(v)
(f ′(v)v

f(v)
− N

q + 2N

)

dx+
b

2N

∫

RN

|f(v)|N dx

>

(1

2
− N

q + 2N

)

∫

RN

h(f(v))f(v) dx+
b

2N

∫

RN

|f(v)|N dx > 0.

This shows that J > 0 on N and d > 0. Now let us show that d0 > 0.

Assume, by contradiction, that there is {vn} ⊂ N such that 0 < ‖vn‖E 6 εn → 0

as n → ∞. As in (2.36), we obtain

(2.47) ‖∇vn‖NN + b

∫

RN

|f(vn)|N−2f(vn)f
′(vn)vn dx =

∫

RN

h(f(vn))f
′(vn)vn dx

6

∞
∑

k=N−1

b1α
k
0

k!
‖vn‖qk+q

qk+q 6

∞
∑

k=N−1

b1α
k
0

k!
dqk+q
N (qk + q)(1−1/N)(qk+q)‖vn‖qk+q

E

6 b1‖vn‖q+N
E dqNβq(N−1)/N

∞
∑

k=N−1

bk,

where dN is given in (2.5), β, qk are in (2.37) and

(2.48) bk =
αk
0

k!
βk(d

N/(N−1)
N )k‖vn‖N(k−N+1)/(N−1)

E kk+q(N−1)/N , k > N − 1.

Since

(2.49) lim
k→∞

bk+1

bk
= eα0β‖vn‖N/(N−1)

E 6 eα0βε
N/(N−1)
n < 1,

the positive series
∞
∑

k=N−1

bk is convergent. Denote B0 =
∞
∑

k=N−1

bk.
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On the other hand, we have from (f6) and (f8) (see Lemma 2.6) that

(2.50) ‖∇vn‖NN + b

∫

RN

|f(vn)|N−2f(vn)f
′(vn)vn dx

> ‖∇vn‖NN +
b

2

∫

RN

|f(vn)|N dx

> ‖∇vn‖NN +
1

2
bbN0 ‖vn‖NN > C3‖vn‖NE ,

with C3 = min{1, bbN0 /2} > 0. Then (2.47) and (2.50) show that

(2.51) 0 < C3 6 b1‖vn‖qEdqNβq(N−1)/NB0 6 b1ε
q
nd

q
Nβq(N−1)/NB0,

which is impossible if εn is small enough. Thus, d0 = inf
v∈N

{‖u‖E} > 0. The proof is

finished. �

Lemma 2.15. There exists a nonnegative and nontrivial function v0 = v0(x) ∈ N
such that J(v0) = d > 0 and v0(x) → 0 as |x| → ∞.

P r o o f. We first show that there exists a minimizing sequence for d in N ∩Er.

To this aim, let {zn} ⊂ N be a minimizing sequence for d. The fact J(zn) =

J(|zn|) implies that {|zn|} is also a minimizing sequence, so we can assume from the
beginning that zn > 0 a.e. in R

N , that is, J(zn) → d, J ′(zn) → 0 in E∗ as n → ∞.
Similarly as in the proof of Lemma 3.1 in [29], we can prove that the sequence {zn}
is bounded in E. Let wn = z∗n ∈ Er be the Schwarz symmetrization of zn. Then,

noticing that the functions g1(t) = h(f(t))f ′(t)t and g2(t) = |f(t)|N−2f(t)f ′(t)t are

nonnegative and increasing in R
+, we have from Lemma 2.11 that

∫

RN

|∇wn|N dx 6

∫

RN

|∇zn|N dx,

∫

RN

g1(wn) dx =

∫

RN

g1(zn) dx,(2.52)
∫

RN

g2(wn) dx =

∫

RN

g2(zn) dx,

∫

RN

|f(wn)|N dx =

∫

RN

|f(zn)|N dx,

∫

RN

H(f(wn)) dx =

∫

RN

H(f(zn)) dx.

Since zn ∈ N , then

‖∇wn‖NN +

∫

RN

bg2(wn) dx 6 ‖∇zn‖NN +

∫

RN

bg2(zn) dx

=

∫

RN

g1(zn) dx =

∫

RN

g1(wn) dx.
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Hence, setting

(2.53) γn(t) = J ′(twn)twn = ‖∇twn‖NN + b

∫

RN

g2(twn) dx−
∫

RN

g1(twn) dx,

we have γn(1) 6 0 and γn(t) > 0 for small t > 0. This shows that there exists

tn ∈ (0, 1] such that γn(tn) = 0 and tnwn ∈ N . On the other hand, it is noted that the
functions G1(t) = h(f(t))f ′(t)t−NH(f(t)) and G2(t) = |f(t)|N−|f(t)|N−2f(t)f ′(t)t

are increasing in R
+.

Then, it follows from (2.32) and (2.52) that

(2.54) d 6 J(tnwn) =
1

N

∫

RN

(G1(tnwn) + bG2(tnwn)) dx

6
1

N

∫

RN

(G1(wn) + bG2(wn)) dx

=
1

N

∫

RN

(G1(zn) + bG2(zn)) dx = J(zn).

This implies that {tnwn} is also a minimizing sequence for d and tnwn ∈ N ∩ Er.

Let vn = tnwn > 0. We can assume that, up to a subsequence, vn ⇀ v0 in E.

By Lemma 2.9, it follows that vn → v0 in Ls(RN ) for all s > N , and, again up to

a subsequence, vn(x) → v0(x) a.e. in R
N . So v0(x) > 0 a.e. in R

N and v0 ∈ Er . We

now show that v0 ∈ N and J(v0) = d. We first claim that v0 6= 0 in E. Otherwise,

vn → 0 in E as n → ∞. Arguing as in the proof of (2.51), it is impossible. So, one
has ‖v0‖E > 0.

Noticing that vn ∈ N , one has

(2.55) ‖∇vn‖NN + b

∫

RN

|f(vn)|N−2f(vn)f
′(vn)vn dx =

∫

RN

h(f(vn))f
′(vn)vn dx.

Then, the application of the weak lower semicontinuity of norms and Fatou’s lemma

yields

(2.56) ‖∇v0‖NN + b

∫

RN

|f(v0)|N−2f(v0)f
′(v0)v0 dx

6 lim inf
n→∞

∫

RN

h(f(vn))f
′(vn)vn dx.

In what follows we make use of the following results (to be proved later):

(2.57) lim
n→∞

∫

RN

h(f(vn))f
′(vn)vn dx =

∫

RN

h(f(v0))f
′(v0)v0 dx,

lim
n→∞

∫

RN

H(f(vn)) dx =

∫

RN

H(f(v0)) dx.
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Clearly, if

(2.58) ‖∇v0‖NN + b

∫

RN

|f(v0)|N−2f(v0)f
′(v0)v0 dx =

∫

RN

h(f(v0))f
′(v0)v0 dx,

then v0 ∈ N . So, arguing by contradiction, we let

(2.59) ‖∇v0‖NN + b

∫

RN

|f(v0)|N−2f(v0)f
′(v0)v0 dx <

∫

RN

h(f(v0))f
′(v0)v0 dx.

Let γ(t) = J ′(tv0)tv0. Clearly, γ(t) > 0 for small t > 0 and γ(1) < 0. So there

exists t ∈ (0, 1) such that γ(t) = 0 and tv0 ∈ N . Then we have from (2.32) and
(2.57) that

d 6 J(tv0) =
1

N

∫

RN

(G1(tv0) + bG2(tv0)) dx <
1

N

∫

RN

(G1(v0) + bG2(v0)) dx

6
1

N
lim inf
n→∞

∫

RN

(G1(vn) + bG2(vn)) dx = lim inf
n→∞

J(vn) = d.

This contradiction proves that (2.58) holds and then v0 ∈ N . Again, applying the
weak lower semicontinuity of norms, we get J(v0) 6 lim inf

n→∞
J(vn) = d. On the other

hand, for every v ∈ N , J(v) > d. So, J(v0) = d. Furthermore, from (2.46), it follows

d > 0.

Now, we prove the first limit in (2.57). Since {vn} is bounded in E, we assume

‖vn‖E 6 M(n > 1) for some constant M > 0. Then, it follows from J(vn) → d and

(1.7) that there exists M1 > 0 such that

(2.60) 0 6

∫

RN

h(f(vn))f
′(vn)vn dx 6 M1, 0 6

∫

RN

H(f(vn)) dx 6 M1 ∀n > 1

with some constant M1 > 0. For any r > 0, (2.60) gives

(2.61) 0 6

∫

Br

h(f(vn))f
′(vn)vn dx 6 M1, 0 6

∫

Br

H(f(vn)) dx 6 M1 ∀n > 1.

Arguing as in the proof of Lemma 4 in [9] and Lemma 2.1 in [8], we have gn(x) =

h(f(vn(x))f
′(vn(x)) → g0(x) = h(f(v0(x))f

′(v0(x)) in L1(Br) as n → ∞. Then, by
Lemma 2.10, there exists g(x) ∈ L1(Br) such that |gn(x)| 6 g(x) a.e. in Br for all

n > 1. Noticing that (2.17), we obtain |vn(x)| 6 M |x|−1 for x 6= 0 and n > 1. Then

|gn(x)vn(x)| 6 Mg(x)|x|−1 6 Mτ−1g(x) in Dτ = Br \Bτ for any τ ∈ (0, r). Clearly,

Br = Dτ ∪Bτ . By the Lebesgue dominated convergence theorem, we obtain

(2.62) lim
n→∞

∫

Dτ

h(f(vn))f
′(vn)vn dx =

∫

Dτ

h(f(v0))f
′(v0)v0 dx.
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On the other hand, from Lemma 2.5, it follows that |v0|qR(α0, v0) ∈ L1(Br), where

R(α0, t) is defined by (1.6). Furthermore, using the integral absolute continuity, we

derive that for any small ε > 0, there exists τ > 0 such that

(2.63) b1

∫

Bτ

|v0|qR(α0, v0) dx 6 ε,

where the constant b1 > 0 is given in (A1). Clearly, if we can prove

(2.64) lim sup
n→∞

∫

Bτ

h(f(vn))f
′(vn)vn dx 6 b1

∫

Bτ

|v0|qR(α0, v0) dx,

then it follows from (2.62), (2.63), and (2.64) that

(2.65) lim
n→∞

∫

Br

h(f(vn))f
′(vn)vn dx =

∫

Br

h(f(v0))f
′(v0)v0 dx.

We now prove (2.64) and let k = N − 1. By Lemmas 2.9 and 2.10, there exists

a subsequence {v(N−1)n} ⊂ {vn} and µN−1 ∈ Lq+qN−1(Bτ ) such that |v(N−1)n(x)| 6
µN−1(x), a.e. in Bτ for all n ∈ N. Then, by Fatou’s lemma, we get

(2.66) lim sup
n→∞

∫

Bτ

|v(N−1)n(x)|q+qN−1 dx 6

∫

Bτ

|v0(x)|q+qN−1 dx,

where qk = kN/(N − 1), k > N − 1.

Likewise, by Lemmas 2.9 and 2.10, we take a subsequence {vNn} ⊂ {v(N−1)n} and
µN ∈ Lq+qN (Bτ ) such that |vNn(x)| 6 µN (x), a.e. in Bτ for all n > 1. Furthermore,

using Fatou’s lemma, one sees

(2.67) lim sup
n→∞

∫

Bτ

|vNn(x)|q+qN dx

6

∫

Bτ

lim sup
n→∞

|vNn(x)|q+qN dx =

∫

Bτ

|v0(x)|q+qN dx.

Continuing this line of reasoning, we obtain a subsequence {vkn} ⊂ {v(k−1)n}
(k > N) with the property

(2.68) lim sup
n→∞

∫

Bτ

|vkn|q+qk dx 6

∫

Bτ

|v0|q+qk dx ∀ k > N − 1.

By a diagonal process, we take a subsequence {vmm} ⊂ {vn}. For convenience, we
set vm = vmm with m > 1. Thus, the application of assumption (A1) and Lemma 2.6

gives that

(2.69) lim sup
n→∞

∫

Bτ

|vn|q+qk dx 6

∫

Bτ

|v0|q+qk dx ∀ k > N − 1
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and

(2.70) lim sup
n→∞

∫

Bτ

|h(f(vn))f ′(vn)vn| dx 6 lim sup
n→∞

∞
∑

k=N−1

b1α
k
0

k!

∫

Bτ

|vn|q+qk dx

6

∞
∑

k=N−1

b1α
k
0

k!
lim sup
n→∞

∫

Bτ

|un|q+qk dx 6

∞
∑

k=N−1

b1α
k
0

k!

∫

Bτ

|v0|q+qk dx

= b1

∫

Bτ

|v0|qR(α0, v0) dx.

This yields (2.64). Therefore, limit (2.65) holds. Similarly, we can derive that

(2.71) lim
n→∞

∫

Br

H(f(vn)) dx =

∫

Br

H(f(v0)) dx.

In the following, we prove that, for any small ε > 0, there exists a large r0 > 1 such

that r > r0 and

(2.72)
∫

Bc
r

|h(f(vn))f ′(vn)vn| dx < ε,

∫

Bc
r

|H(f(vn))| dx < ε ∀n > 1,

∫

Bc
r

|h(f(v0))f ′(v0)v0| dx < ε,

∫

Bc
r

|H(f(v0))| dx < ε.

In fact, it follows from (2.17) that

(2.73)
∫

Bc
r

|vn|q+qk dx 6 M qk+qω
−(qk+q)/N
N

∫ ∞

r

∫

|ω|=1

̺N−1−qk−q dω d̺

= M qk+qNω
1−(qk+q)/N
N

rN−qk−q

qk + q −N

6
r−q

q
M qNω

(N−q)/N
N

(

MN/(N−1)ω
−1/(N−1)
N

)k

≡ Ak r
−q

q
M qNω

(N−q)/N
N

and

(2.74)
∫

Bc
r

|h(f(vn))f ′(vn)vn| dx 6

∞
∑

k=N−1

b1α
k
0

k!

∫

Bc
r

|vn|q+qk

6 b1
r−q

q
M qNω

(N−q)/N
N

∞
∑

m=N−1

(Aα0)
m

m!
→ 0 as r → ∞.
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This shows that for any ε > 0, there is a large r0 > 1 such that r > r0 and

(2.75)
∫

Bc
r

|h(f(vn))f ′(vn)vn| dx < ε ∀n > 1.

The other three inequalities in (2.72) can be proved similarly. Now, the application

of (2.65) and (2.75) yields

(2.76) lim
n→∞

∫

RN

h(f(vn))f
′(vn)vn dx =

∫

RN

h(f(v0))f
′(v0)v0 dx.

Similarly, we can show that

(2.77) lim
n→∞

∫

RN

H(f(vn)) dx =

∫

RN

H(f(v0)) dx

and (2.57) holds. This completes the proof of Lemma 2.15. �

3. Proof of Theorem 1.4

We now can prove the main result in this paper by dint of lemmas in Section 2.

P r o o f of Theorem 1.4. Clearly, it is sufficient to prove that v0 is a critical point

for J in E, that is, J ′(v0)v = 0 for all v ∈ E and thus J ′(v0) = 0 in E∗, where v0 is

in the position of Lemma 2.15.

For every v ∈ E, we choose ε > 0 such that ws = v0 + sv 6= 0 for all s ∈ (−ε, ε).

Clearly, w0 = v0. Define a function ϕ : (−ε, ε)× (0,∞) → R by

ϕ(s, t) = J ′(t(ws))t(ws)

= −
∫

RN

h(f(t(ws)))f
′(t(ws))t(ws) dx

+ ‖∇t(ws)‖NN + b

∫

RN

|f(t(ws))|N−2f(t(ws))f
′(t(ws))t(ws) dx.

Then J ′(v0)v0 = 0 and

(3.1)
∂ϕ

∂t
(0, 1) = b(N − 1)

∫

RN

(f(v0))
N−2((f ′(v0))

2v20 − f(v0)f
′(v0)v0) dx

+

∫

RN

(b(f(v0))
N−1f ′′(v0)v

2
0 + F (v0)) dx,
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where f(v0) > 0, f(v0)− f ′(v0)v0 > 0, f ′′(v0) < 0 and

(3.2) F (v0) = (N − 1)h(f)f ′(v0)v0 − h(f)f ′′(v0)v
2
0 − h′(f)(f ′(v0))

2v20

6 (N − 1)h(f)f ′(v0)v0 − h(f)f ′′(v0)v
2
0 −

(q − 1 + 2N)h(f)(f ′(v0))
2v20

f

6
h(f)

f
[2(N − 1)(f ′(v0))

2v20 − (q − 1 + 2N)(f ′(v0))
2v20 − f ′′(v0)fv

2
0 ]

=
v20h(f)

f(1 + 2N−1|f |N)2/N

( 2N−1|f |N
1 + 2N−1|f |N − q − 1

)

6 0,

provided that q > 0, where f = f(v0). Therefore, ∂ϕ/∂t(0, 1) < 0.

So, by the implicit function theorem, there exists ε0, 0 < ε0 6 ε, and a C1 function

t : (−ε0, ε0) → R such that t(0) = 1 and ϕ(s, t(s)) = 0 for all s ∈ (−ε0, ε0). This

also shows that t(s) 6= 0, at least for ε0 very small. Therefore, t(s)(u + sv) ∈ N .
Denote t = t(s), ws = v0 + sv and

(3.3) φ(s) = J(t(ws))

=
1

N

∫

RN

(|∇t(ws)|N + b|f(t(ws))|N ) dx−
∫

RN

H(f(t(ws))) dx.

We see that the function φ(s) is differentiable and has a minimum point at s = 0.

Thus,

(3.4) 0 = φ′(0) = t′(0)J ′(v0)v0 + J ′(v0)v.

Since v0 ∈ N and J ′(v0)v0 = 0, it follows from (3.4) that J ′(v0)v = 0 for every

v ∈ E and thus J ′(v0) = 0 in E∗. So, v0 is a critical point for J and then v0 is

a weak solution of (2.14) in E, and so u = f(v0) is a weak solution of (1.1). Since

J(v0) = J(|v0|) = d > 0, we can assume that v0 is nonnegative and nontrivial in RN

and so is u0(x) = f(v0(x)) in R
N . On the other hand, it follows from Remark 2.8

that v0(x) → 0 as |x| → ∞. Since |u0(x)| = |f(v0(x))| 6 |v0(x)| in R
N , we have

u0(x) → 0 as |x| → ∞. Then the proof of Theorem 1.4 is completed.
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