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Abstract. Let R be a commutative ring with nonzero identity and J(R) the Jacobson
radical of R. The Jacobson graph of R, denoted by JR, is defined as the graph with vertex
set R \ J(R) such that two distinct vertices x and y are adjacent if and only if 1 − xy is
not a unit of R. The genus of a simple graph G is the smallest nonnegative integer n such
that G can be embedded into an orientable surface Sn. In this paper, we investigate the
genus number of the compact Riemann surface in which JR can be embedded and explicitly
determine all finite commutative rings R (up to isomorphism) such that JR is toroidal.
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1. Introduction

The study of algebraic structures, using the properties of graphs, became an ex-

citing research topic in the past twenty years, leading to many fascinating results

and questions. Beck in [10] began the study of associating a graph called the zero-

divisor graph to a commutative ring being mainly interested in the coloring of the

zero-divisor graph. For a commutative ring R, the zero-divisor graph Γ(R) is the

simple graph with R as the vertex set in which two distinct elements x and y are

adjacent if and only if xy = 0, see [10]. In [4], Anderson and Livingston modified

and studied the zero-divisor graph Γ(R) as the graph with the nonzero zero-divisors

Z(R)∗ of R as the vertex set. While they focus just on the zero-divisors of the rings
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awarded to the first author by the University Grants Commission, Government of India.
The work is also supported by the INSPIRE programme (IF 140700) of Department of
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(see [1], [2], [3], [4], [10]), there are many other kinds of graphs associated to rings,

some of which have been extensively studied, see for example [5], [6], [13], [17], [18].

Using the notions of Jacobson radicals and semi-simplicity of rings we intend to

associate a graph to a ring and investigate some of its graph theoretical properties.

Throughout this paper R stands for a commutative ring with nonzero identity. Recall

that the Jacobson radical of R is defined by

J(R) =
⋂

{m : m is the maximal ideal of R}.

It is known that an element r ∈ R belongs to J(R) if and only if 1−rx is invertible for

all x ∈ R. We recall that R is semi-simple if J(R) = (0) and hence the quotient ring

R/J(R) is always a semi-simple ring. In [8], Azimi et al. introduced the Jacobson

graph of R, denoted by JR, as the graph with vertex set V (JR) = R \ J(R) in such

a way that two distinct vertices x, y ∈ V (JR) are adjacent if and only if 1−xy /∈ U(R),

where U(R) denotes the group of units ofR. Also in that article, the authors classified

the finite commutative rings R for which JR is planar (see [8], Theorem 4.3).

In recent years, many research articles have been published on the genera of

zero-divisor graphs. The planarity of zero-divisor graphs was studied in [11], [20].

Toroidal zero-divisor graphs were classified independently by Wang [21], [14] and

Wickham [23]. Genus two zero-divisor graphs of local rings are studied by Bloom-

field and Wickham [12]. Also various research articles have been published on the

genera of the graphs constructed out of the rings [6], [12], [19]. In [8], the authors

classified the finite commutative rings R for which JR is planar (see Theorem 4.3).

In this paper, we characterize all finite commutative rings whose Jacobson graph JR

has genus one.

Throughout the paper, we assume that R is a finite commutative ring with identity,

Z(R) its set of zero-divisors, N(R) its set of nilpotent elements and U(R) its group

of units. We denote the ring of integers modulo n by Zn and the Galois field with q

elements by Fq. If X is a subset of R, we denote X−{0} by X∗. For basic definitions

on rings, one may consult [7], [16].

2. Preliminaries

In this section, we summarize notation, concepts and results related to the genus

of a graph which will be needed in the subsequent sections.

By a graph G = (V,E), we mean an undirected simple graph with vertex set V

and edge set E. A graph in which each pair of distinct vertices is joined by the edge

is called a complete graph. We use Kn to denote the complete graph with n vertices.

An r-partite graph is one whose vertex set can be partitioned into r subsets so that
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no edge has both ends in any one subset. A complete r-partite graph is one in which

each vertex is joined to every vertex that is not in the same subset. The complete

bipartite graph (2-partite graph) with part sizes m and n is denoted by Km,n.

The main objective of topological graph theory is to embed a graph into a surface.

Let Sk denote the sphere with k handles, where k is a nonnegative integer, that is,

Sk is an oriented surface of genus k. The genus of a graph G, denoted by g(G), is

the minimal integer n such that the graph can be embedded in Sn. Intuitively, G is

embedded in a surface if it can be drawn in the surface so that its edges intersect

only at their common vertices. A graph G with genus 0 is called a planar graph while

a graphG with genus 1 is called a toroidal graph. Further note that ifH is a subgraph

of a graph G, then g(H) 6 g(G). A result of Battle, Harary, Kodama, and Youngs

states that the genus of a graph is the sum of the genera of its blocks, see [9]. For

example, the graph H in Figure 2.1 has two blocks, both isomorphic to K3,3, and so

has genus 2, see Wickham [23]. For details on the notion of embedding a graph in

a surface, see [22].

b b b

b b b

b

b

b bb

b b b

b b b

b

b

b bb

x1

x2 x3

x4

x5x6x7

x8x9

x10

x11

Figure 2.1. Graph H.

Now we summarize some results and bounds for the genus of a graph.

Lemma 2.1 ([22]). g(Kn) = ⌈(n− 3)(n− 4)/12⌉ if n > 3. In particular,

g(Kn) = 1 if n = 5, 6, 7.

Lemma 2.2 ([22]). g(Km,n) = ⌈(m− 2)(n− 2)/4⌉ if m,n > 2. In particular,

g(K4,4) = g(K3,n) = 1 if n = 3, 4, 5, 6. Also g(K3,n) = 2 if n = 7, 8, 9, 10 and

g(K5,4) = g(K6,4) = 2.

3. Genus of Jacobson graph

The main goal of this section is to determine all finite rings R whose Jacobson

graph has genus one. Azimi et al. [8] determined the finite commutative rings R

for which JR is planar. The following observation proved by Azimi et al. [8] is used

frequently in this article.
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Theorem 3.1 ([8], Theorem 2.2). Let (R,m) be a finite local ring with associated

field F . Then the connected components of JR are either complete graphs of size |m|

or complete bipartite graphs K|m|,|m|. Moreover,

(1) if |F | is odd, then JR has two complete components and (|F | − 3)/2 complete

bipartite components, and

(2) if |F | is even, then JR has one complete component and (|F | − 2)/2 complete

bipartite components.

Theorem 3.2 ([8], Theorem 4.3). Let R be a commutative finite ring. Then JR

is planar if and only if either R is a field, or R is isomorphic to one of the following

rings:

Z4, F2 × F2,
F2[x]

〈x2〉
, F2 × F3, Z8, F2 × Z4, F2 ×

F2[x]

〈x2〉
, F2 × F2 × F2,

F2[x]

〈x3〉
,

Z4[x]

〈2x, x2〉
,

Z4[x]

〈2x, x2 − 2〉
, F2 × F4,

F2[x, y]

〈x, y〉2
, Z9, F3 × F3,

F3[x]

〈x2〉
.

The next theorem gives the genus of the Jacobson graph of a finite commutative

local ring.

Theorem 3.3. Let (R,m) be a finite commutative local ring with associated

field F , |F | = α and |m| = β. Then the following formulas are true:

g(JR) =







⌈(β − 3)(β − 4)

12

⌉

+
(α− 2)

2

⌈ (β − 2)2

4

⌉

if α is even;

2
⌈(β − 3)(β − 4)

12

⌉

+
(α− 3)

2

⌈ (β − 2)2

4

⌉

if α is odd.

P r o o f. By Theorem 3.1,

JR =







Kβ ∪Kβ,β ∪ . . . ∪Kβ,β ∪ . . . ∪Kβ,β
︸ ︷︷ ︸

(α−2)/2 copies

if α is even;

Kβ ∪Kβ ∪Kβ,β ∪ . . . ∪Kβ,β ∪ . . . ∪Kβ,β
︸ ︷︷ ︸

(α−3)/2 copies

if α is odd.

By Lemmas 2.1 and 2.2, we have

g(JR) =







⌈(β − 3)(β − 4)

12

⌉

+
(α− 2)

2

⌈ (β − 2)2

4

⌉

if α is even;

2
⌈(β − 3)(β − 4)

12

⌉

+
(α− 3)

2

⌈ (β − 2)2

4

⌉

if α is odd.

�
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Corollary 3.4. Let (R,m) be a finite commutative local ring. Then g(JR) = 1 if

and only if R is isomorphic to F4[x]/〈x
2〉 or Z4[x]/〈x

2 + x+ 1〉.

P r o o f. The proof follows from Theorem 3.3. �

The fact given in the following Lemma 3.5 will be used in this paper on many

occasions.

Lemma 3.5. Let R be a finite commutative ring. For any maximal idealM in R,

the subgraph induced by 1 +M in JR is complete.

P r o o f. Let M be any maximal ideal in R. Let x, y ∈ 1 +M . Then x = 1 + a,

y = 1+ b for some a, b ∈ M . Also 1−xy = 1− (1+a)(1+ b) = a+ b+ab ∈ M and so

x and y are adjacent in JR. Hence the subgraph induced by 1 +M is complete. �

If R is a finite commutative ring with identity, then R = R1×R2× . . .×Rn where

each (Ri,mi) is a local ring and n > 2. Hence Max(R) = {R1 × . . . × Ri−1 × mi ×

Ri+1 × . . .×Rn : 1 6 i 6 n} is the set of maximal ideals of R.

In the following theorem, we characterize all finite commutative nonlocal rings

whose JR is toroidal.

Theorem 3.6. Let R be a finite commutative nonlocal ring. Then g(JR) = 1 if

and only if R is isomorphic to one of the following rings:

F2 × F5, F2 × F7, F3 × F4, F3 × Z4, F3 ×
F2[x]

〈x2〉
.

P r o o f. Let us assume that g(JR) = 1. It is well known that R = R1 ×

R2 × . . .× Rn where each (Ri,mi) is a local ring and n > 2. Note that |Ri| > 2 for

all i.

Suppose that n > 4. Then there existsM = R1×. . .×Ri−1×mi×Ri+1×. . .×Rn ∈

Max(R) such that |M | > 8 for some i. By Lemma 3.5, the subgraph induced by

1 +M in JR is complete and hence JR contains K8 as a subgraph. By Lemma 2.1,

g(JR) > 2, a contradiction. Hence n 6 3.

Suppose that n = 3. If |R1| > 3 and |R2| > 3, then there exists a maximal ideal

M = R1×R2×m3 such that |M | > 9. By Lemma 3.5, JR contains K9 as a subgraph

and hence by Lemma 2.1, g(JR) > 3, a contradiction. Hence |R1| = 2 and |R2| = 2

and so R1
∼= F2, R2

∼= F2.

If |R3| > 4, then there existsM = (0)×R2×R3 ∈ Max(R) such that |M | > 8. By

virtue of Lemmas 3.5 and 2.1, K8 is a subgraph of JR and g(JR) > 1, a contradiction.

From this, we get |R3| = 2 or 3. By Theorem 3.2, R3 ≇ F2 and so R3
∼= F3.
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Consider the case that R = F2 × F2 × F3. Note that G is a subgraph of JR. Then

K3,6 is a subgraph of G (see Figure 3.1). Recall that the genus of K3,6 is one and

hence one can fix an embedding of K3,6 on the surface of torus. By Euler’s formula,

there are 9 faces in the embedding of K3,6, say {S1, . . . , S9}. Let ni be the length of

the face Si. Note that
9∑

i=1

ni = 36 and ni > 4 for every i. Thus ni = 4 for every i. Let

U = {(0, 1, 2), (0, 1, 0), (0, 1, 1)} ⊂ V (K3,6). Further, the subgraph G′ of G induced

by the vertices in U is K3, E(G′) ∩ E(K3,6) = ∅. Since K3 cannot be embedded in

the torus along with an embedding with only rectangles as faces, one cannot have an

embedding of G′ and K3,6 together in the torus. This implies that g(G) > 2. Since

g(G) 6 g(JR), g(JR) > 2, a contradiction.

b

b b

b bb

b

b

b (1, 0, 2)

(1, 0, 0)

(1, 0, 1)
(1, 1, 1)(0, 1, 1)

(0, 1, 0)

(0, 1, 2)
(1, 1, 2)

(1, 1, 0)

b

b b

b bb

b

b

b

Figure 3.1. G.

Suppose n = 2. If mi 6= {0} for all i, then |Ri| > 4 for all i, M1 = m1 ×R2 and so

|M1| > 8. From this we get JR would contain a copy of K8, it follows that g(JR) > 2.

Hence mi = {0} for some i.

Suppose m1 6= {0}. Then R2 is a field. If |m∗
1| > 2, then |R1| > 8, |R1 × (0)| > 8

and so JR contains K8 as a subgraph, a contradiction. Thus |m∗
1| = 1 and so R1 is

isomorphic to one of the following rings:

Z4 or
F2[x]

〈x2〉
.

If |R2| > 4, then |m1 × R2| > 8 and so K8 is a subgraph of JR, a contradiction.

Hence |R2| 6 3. By Theorem 3.2, R2
∼= F3 and hence R is isomorphic to one of the

following rings: F3 × Z4, F3 × F2[x]/〈x2〉.

Consider the ring F3 × F2[x]/〈x2〉. Define a mapping f : V (JF3×F2[x]/〈x2〉) →

V (JF3×Z4
) by f((1, 〈x2〉)) = (1, 0), f((2, 〈x2〉)) = (2, 0), f((0, 1 + 〈x2〉)) = (0, 1),

f((1, 1 + 〈x2〉)) = (1, 1), f((2, 1 + 〈x2〉)) = (2, 1), f((1, x + 〈x2〉)) = (1, 2),

f((2, x + 〈x2〉)) = (2, 2), f((0, 1 + x + 〈x2〉)) = (0, 3), f((1, 1 + x + 〈x2〉)) =
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(2, 0)(0, 3)

(0, 1)

(1, 2)

(1, 0)

(2, 3) (1, 3) (1, 1) (2, 3)
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b b b b

b

b b b

b

b

b

b

Figure 3.2. (a) JF3×Z4
, (b) embedding of JF3×Z4

.

(1, 3), f((2, 1 + x + 〈x2〉)) = (2, 3). Then f is a graph isomorphism and hence

JF3×F2[x]/〈x2〉
∼= JF3×Z4

.

Suppose R1 and R2 are fields. Then |Ri| 6 7 for all i. Otherwise if |Ri| > 8

for some i, then there is a maximal ideal containing at least 8 elements, so that JR
would contain a copy of K8 and so g(JR) > 2. By Theorem 3.2, R is not isomorphic

to the rings F2 × F2, F2 × F3, F3 × F3 and F2 × F4. For further use in the proof, we

list below all finite commutative rings R with |Ri| 6 7 for i = 1, 2:

F2 × F5, F2 × F7, F3 × F4, F3 × F5, F3 × F7,

F4 × F4, F4 × F5, F4 × F7, F5 × F5, F5 × F7, F7 × F7.

b b b

b b b

b

b

b

b b b

b b b

b

b

b

(0, 3)(1, 2)(1, 0)

(0, 1)

(1, 1)

(1, 3) (0, 2)
(1, 4)

(0, 4)

(a)

b b b

b

b

b

b

b b b

b

b

b

b

(1, 4) (1, 0) (1, 2)

(1, 1)

(0, 2)

(0, 3)
(1, 3)

(b)

Figure 3.3. (a) JF2×F5
, (b) embedding of JF2×F5

.
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Figure 3.4. (a) JF2×F7
, (b) embedding of JF2×F7

.
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Figure 3.5. (a) JF3×F4
, (b) embedding of JF3×F4

.

Consider the ring F3 × F5. Note that 2K5 is a subgraph of JR (see Figure 3.6).

By Lemma 4.4 [15], g(2K5) > 1. This yields g(JR) > 2.

Note that JF3×F5
is a subgraph of JF3×F7

. Hence g(JF3×F7
) > 2.

Now consider the ring F4×F4. Let F4 = {0, 1, ω, ω2}. Then the graph in Figure 3.7

is a subgraph of JF4×F4
. Note that the graph in Figure 3.7 is not toroidal. Therefore

g(JF4×F4
) > 2.
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.
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(1, ω2)

(ω, ω2)

Figure 3.7.

Note that JF4×F4
is a subgraph of JR1×R2

and g(JR1×R2
) > 2, where each Ri is

a field with |Ri| > 4. Hence R is isomorphic to one of the following rings:

F2 × F5, F2 × F7, F3 × F4, F3 × Z4, F3 ×
F2[x]

〈x2〉
.

�
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