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VALUES ON METRIC MEASURE SPACES

Takao Ohno, Oita, Tetsu Shimomura, Hiroshima
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Abstract. We define and study Musielak-Orlicz-Sobolev spaces with zero boundary values
on any metric space endowed with a Borel regular measure. We extend many classical
results, including completeness, lattice properties and removable sets, to Musielak-Orlicz-
Sobolev spaces on metric measure spaces. We give sufficient conditions which guarantee
that a Sobolev function can be approximated by Lipschitz continuous functions vanishing
outside an open set. These conditions are based on Hardy type inequalities.
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1. Introduction

Sobolev spaces on metric measure spaces have been studied during the last two

decades, see [6], [12], [13], [22], [33], etc. The theory was generalized to Orlicz-

Sobolev spaces on metric measure spaces in [4], [3], [34]. We refer to [1], [2], [9], [35]

for Sobolev spaces on R
N , [7], [8] for variable exponent Sobolev spaces and [31] for

Musielak-Orlicz spaces. Variable exponent Sobolev spaces on metric measure spaces

have been developed during the past decades (see e.g. [10], [11], [21], [20], [30]).

We recall the definition due to Haj lasz [12] of the first order Sobolev spaces on

metric measure spaces. He showed that a p-integrable function u, 1 < p < ∞,

belongs to W 1,p(RN ) if and only if there exists a nonnegative p-integrable function g

such that

(1.1) |u(x)− u(y)| 6 |x− y|(g(x) + g(y))

The second author was partially supported by Grant-in-Aid for Scientific Research (C ),
No. 24540174, Japan Society for the Promotion of Science.
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for almost every x, y ∈ R
N . If we replace |x − y| by the distance of the points x

and y, (1.1) can be stated in metric measure spaces. Spaces defined by using (1.1)

are called Haj lasz-Sobolev spaces. See also [13], [22]. The theory was generalized to

Orlicz-Sobolev spaces by Aı̈ssaoui ([4], [3]). Kilpeläinen, Kinnunen and Martio [24]

generalized the definition of the first order Sobolev spaces with zero boundary values

to an arbitrary metric space endowed with a Borel regular measure. In order to define

the first order Sobolev spaces with zero boundary values, the notion of the Sobolev

capacity was needed in the metric setting, and the rudiments were established in [28].

In [24], the authors extended many classical results, including completeness, lattice

properties and removable sets, to the metric setting. For Newtonian spaces, see e.g.

[6], [25], [33], [34].

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to discuss

nonlinear partial differential equations with non-standard growth conditions (see

[7], [8]). For the Sobolev capacity on variable exponent Sobolev spaces, see [16], [17],

[19], etc. Harjulehto, Hästö, Koskenoja and Varonen [18] studied variable exponent

Sobolev spaces with zero boundary values in the Euclidean setting. See also [15], [25].

In [20], basic properties of the variable exponent Haj lasz-Sobolev space were stud-

ied. Recently, we defined Musielak-Orlicz-Sobolev spaces on metric measure spaces

and proved the basic properties of such spaces (see [32]). For example, we showed

that Lipschitz continuous functions are dense, as well as other basic properties and

studied a related Sobolev type capacity on Musielak-Orlicz-Haj lasz-Sobolev spaces.

We also dealt with the boundedness of the Hardy-Littlewood maximal operator on

Musielak-Orlicz spaces on metric measure spaces.

In this paper, to develop the theory of Musielak-Orlicz-Sobolev spaces, we study

Musielak-Orlicz-Sobolev spaces with zero boundary values on metric measure spaces,

as an extension of [18], [24].

The present paper is organized as follows. In Section 2, we define Musielak-Orlicz

spaces on metric measure spaces.

In Section 3, we study Sobolev capacity on Musielak-Orlicz-Haj lasz-Sobolev

spaces. We give a characterization of the capacity in terms of quasicontinuous

functions (see Theorem 3.6), as an extension of [24], Theorem 3.4.

In Section 4, we define Musielak-Orlicz-Haj lasz-Sobolev spaces with zero bound-

ary values on metric measure spaces. We show that the sets of capacity zero are

removable in Musielak-Orlicz-Haj lasz-Sobolev spaces with zero boundary values (see

Theorem 4.5), as an extension of [24], Theorem 4.6.

In Section 5, we give sufficient conditions which guarantee that a Sobolev function

can be approximated by Lipschitz continuous functions vanishing outside an open

set (see Theorem 5.1), as an extension of [24], Theorem 5.1. These conditions are

based on Hardy type inequalities (see Theorem 5.2).
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In Section 6, we discuss Musielak-Orlicz-Sobolev spaces with zero boundary values

in the Euclidean setting, as an extension of [18].

2. Musielak-Orlicz spaces

Throughout this paper, let C denote various positive constants independent of the

variables in question.

We denote by (X, d, µ) a metric measure space, where X is a set, d is a metric

on X and µ is a nonnegative complete Borel regular outer measure on X which is

finite in every bounded set. For simplicity, we often write X instead of (X, d, µ). For

x ∈ X , r > 0 and a set E ⊂ X , we denote by B(x, r) the open ball centered at x

with radius r, dE = sup{d(x, y) : x, y ∈ E} and dist(x,E) = inf{d(x, y) : y ∈ E}.

We say that the measure µ is a doubling measure, if there exists a constant c1 > 0

such that

µ(B(x, 2r)) 6 c1µ(B(x, r))

for every x ∈ X and 0 < r < dX . A nonempty set E ⊂ X is uniformly µ-thick if

there exist constants 0 < c2 6 1 and 0 < r0 6 1 such that

µ(B(x, r) ∩ E) > c2µ(B(x, r))

for every x ∈ E and 0 < r < r0. This condition is often called the measure or

regularity condition (see [14]).

We consider a function

Φ(x, t) = tϕ(x, t) : X × [0,∞) → [0,∞)

satisfying the following conditions (Φ1)–(Φ3):

(Φ1) ϕ(·, t) is measurable on X for each t > 0 and ϕ(x, ·) is continuous on [0,∞)

for each x ∈ X ;

(Φ2) there exists a constant A1 > 1 such that

A−1
1 6 ϕ(x, 1) 6 A1 for all x ∈ X ;

(Φ3) ϕ(x, ·) is uniformly almost increasing, namely there exists a constant A2 > 1

such that

ϕ(x, t) 6 A2ϕ(x, s) for all x ∈ X whenever 0 6 t < s.
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Let ϕ(x, t) = sup
06s6t

ϕ(x, s) and

Φ(x, t) =

∫ t

0

ϕ(x, r) dr

for x ∈ X and t > 0. Then Φ(x, ·) is convex and

Φ
(
x,
t

2

)
6 Φ(x, t) 6 A2Φ(x, t)

for all x ∈ X and t > 0.

We shall also consider the following conditions:

(Φ4) there exists a constant A3 > 1 such that

ϕ(x, 2t) 6 A3ϕ(x, t) for all x ∈ X and t > 0;

(Φ5) for every γ1, γ2 > 0, there exists a constant Bγ1,γ2
> 1 such that

ϕ(x, t) 6 Bγ1,γ2
ϕ(y, t)

whenever d(x, y) 6 γ1t
−1/γ2 and t > 1;

(Φ6) there exist x0 ∈ X , a function g ∈ L1(X) and a constant B∞ > 1 such that

0 6 g(x) < 1 for all x ∈ X and

B−1
∞ Φ(x, t) 6 Φ(x′, t) 6 B∞Φ(x, t)

whenever d(x′, x0) > d(x, x0) and g(x) 6 t 6 1.

Note from (Φ4) that

(2.1) Φ(x, at) 6 alog2 A3+1A3Φ(x, t)

for all a > 1, x ∈ X and t > 0. In fact, if we choose a positive integer k such that

2k−1 6 a 6 2k, then we have by (Φ4)

Φ(x, at) =

∫ at

0

ϕ(x, r) dr = a

∫ t

0

ϕ(x, ar) dr

6 aAk
3

∫ t

0

ϕ(x, r) dr = alog2
A3+1A3Φ(x, t).

Example 2.1. Let p(·) and qj(·), j = 1, . . . , k, be measurable functions on X

such that
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(P1) 1 6 p− := inf
x∈X

p(x) 6 sup
x∈X

p(x) =: p+ <∞

and

(Q1) −∞ < q−j := inf
x∈X

qj(x) 6 sup
x∈X

qj(x) =: q+j <∞

for all j = 1, . . . , k.

Set Lc(t) = log(c+ t) for c > e and t > 0, L
(1)
c (t) = Lc(t), L

(j+1)
c (t) = Lc(L

(j)
c (t))

and

Φ(x, t) = tp(x)
k∏

j=1

(L(j)
c (t))qj (x).

Then Φ(x, t) satisfies (Φ1), (Φ2), (Φ3) and (Φ4) if p(·) and qj(·) satisfy the following

condition: for every x ∈ X , there exists a nonnegative integer 0 6 j0(x) 6 k such

that qj0(x)(x) > 0, qj(x) = 0 whenever 0 6 j < j0(x) and

(2.2) sup
x∈X

max
j0(x)<j6k

−qj(x)

qj0(x)(x)
<∞,

where q0(x) = p(x)−1. In fact, it is trivial that Φ(x, t) satisfies (Φ1), (Φ2) and (Φ4).

For (Φ3), it is sufficient to prove that

ϕ̃(x, t) = tq0(x)
k∏

j=1

(L
(j)
0 (t))qj (x)

is uniformly almost increasing on [c̃,∞) for some c̃ > 0. Note that

dϕ̃(x, t)

dt
= tq0(x)−1

k∏

j=1

(L
(j)
0 (t))qj(x)−1h(x, t),

where

h(x, t) =
k−1∑

n=0

(
qn(x)

k∏

l=n+1

L
(l)
0 (t)

)
+ qk(x).

Then (2.2) implies that there exists a constant c̃ > 0 such that h(x, t) > 0 for all

t > c̃, so that ϕ̃(x, t) is uniformly almost increasing on [c̃,∞).

Moreover, we see that Φ(x, t) satisfies (Φ5) if

(P2) p(·) is log-Hölder continuous, namely

|p(x) − p(y)| 6
Cp

Le(1/d(x, y))

with a constant Cp > 0 and
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(Q2) qj(·) is (j + 1)-log-Hölder continuous, namely

|qj(x) − qj(y)| 6
Cqj

L
(j+1)
e (1/d(x, y))

with constants Cqj > 0, j = 1, . . . , k.

Fix x0 ∈ X . Let κ and c be positive constants. If µ satisfies µ(B(x0, r)) 6 crκ for

all r > 1 and

(P3) p(·) is log-Hölder continuous at ∞, namely

|p(x′)− p(x)| 6
C∞

Le(d(x, x0))
for d(x′, x0) > d(x, x0)

with a constant C∞ > 0, then Φ(x, t) satisfies (Φ6) with g(x) = 1/(1 + d(x, x0))
κ+1.

Here note that if µ is a doubling measure, then µ(B(x0, r)) 6 crκ for all r > 1 and

some κ, c > 0.

Example 2.2. Let p1(·), p2(·), q1(·) and q2(·) be measurable functions on X

satisfying (P1) and (Q1). Then,

Φ(x, t) = (1 + t)p1(x)
(
1 +

1

t

)−p2(x)

Lc(t)
q1(x)Lc

(1
t

)−q2(x)

satisfies (Φ1), (Φ2) and (Φ4). It satisfies (Φ3) if p−j > 1, j = 1, 2 or q−j > 0, j = 1, 2.

As a matter of fact, it satisfies (Φ3) if and only if pj(·) and qj(·) satisfy the following

conditions:

(1) qj(x) > 0 at points x where pj(x) = 1, j = 1, 2;

(2) sup
x : pj(x)>1

{min(qj(x), 0) log(pj(x) − 1)} <∞.

Moreover, we see that Φ(x, t) satisfies (Φ5) if p1(·) is log-Hölder continuous and

q1(·) is 2-log-Hölder continuous.

Fix x0 ∈ X . Let κ and c be positive constants. If µ satisfies µ(B(x0, r)) 6 crκ for

all r > 1, p2(·) satisfies (P3) and

(Q3) q2(·) is 2-log-Hölder continuous at ∞, namely

|q2(x)− q2(x
′)| 6

Cq2,∞

L
(2)
c (d(x, x0))

for d(x′, x0) > d(x, x0)

with a constant Cq2,∞ > 0,

then Φ(·, ·) satisfies (Φ6) with g(x) = 1/(1 + d(x, x0))
κ+1.
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We say that u is a locally integrable function on X if u is an integrable function on

all balls B in X . From now on, we assume that Φ(x, t) satisfies (Φ1), (Φ2) and (Φ3).

The associated Musielak-Orlicz space

LΦ(X) =

{
f ∈ L1

loc(X) :

∫

X

Φ
(
y,

|f(y)|

λ

)
dµ(y) <∞ for some λ > 0

}

is a Banach space with respect to the norm

‖f‖LΦ(X) = inf

{
λ > 0:

∫

X

Φ
(
y,

|f(y)|

λ

)
dµ(y) 6 1

}

(cf. [31]). Note that if Φ(x, t) satisfies (Φ1) and (Φ2), then ‖·‖LΦ(X) is a norm

and LΦ(X) is complete. If Φ(x, t) satisfies (Φ1), (Φ2) and (Φ3), then the Lux-

emburg norm with Φ(x, t) instead of Φ(x, t) gives a quasinorm, these (quasi)norms

are equivalent, and LΦ(X) contains simple functions. We also note that if Φ(x, t)

satisfies (Φ1), then LΦ(X) is a lattice.

For a measurable function f on X , we define the modular ̺Φ(f) by

̺Φ(f) =

∫

X

Φ(y, |f(y)|) dµ(y).

Remark 2.3. Let f, fn and g be measurable functions in X . Then note that

the following statements hold.

(1) If Φ(x, t) satisfies (Φ1) and (Φ4), then ‖f‖LΦ(X) <∞ if and only if ̺Φ(f) <∞,

and ‖·‖LΦ(X) is absolutely continuous.

(2) If Φ(x, t) satisfies (Φ1), (Φ2), (Φ3) and (Φ4) and the conjugate function of

Φ(x, ·) satisfies (Φ4), then LΦ(X) is reflexive ([5], Corollary 4.4, and [8], Corol-

lary 2.7.18).

(3) Let 0 6 fn ր f µ-a.e. in X . If Φ(x, t) satisfies (Φ1), then ‖fn‖LΦ(X) ր

‖f‖LΦ(X). It follows from this fact that if 0 6 f 6 g µ-a.e. in X , then

‖f‖LΦ(X) 6 ‖g‖LΦ(X).

(4) Let E be a measurable set in X with µ(E) < ∞. If Φ(x, t) satisfies (Φ1), then

there exists a constant CE > 0 such that
∫

E

f(x) dµ(x) 6 CE‖f‖LΦ(X).

(5) If Φ(x, t) satisfies (Φ1), (Φ2) and (Φ3), then LΦ(X) is a Banach function space

(see [5], Definition 1.3).

Lemma 2.4 ([31], Theorem 1.6). Let {fi} be a sequence in L
Φ(X). Then ̺Φ(λfi)

converges to 0 for any λ > 0 if and only if ‖fi‖LΦ(X) converges to 0.
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3. Sobolev capacity on Musielak-Orlicz-Haj lasz-Sobolev

spaces M1,Φ(X)

We say that a function u ∈ LΦ(X) belongs to Musielak-Orlicz-Haj lasz-Sobolev

space M1,Φ(X) if there exists a nonnegative function g ∈ LΦ(X) such that

|u(x)− u(y)| 6 d(x, y)(g(x) + g(y))

for µ-almost every x, y ∈ X . Here, we call the function g a Haj lasz gradient of u.

We define the norm

‖u‖M1,Φ(X) = ‖u‖LΦ(X) + inf ‖g‖LΦ(X),

where the infimum is taken over all Haj lasz gradients of u. For the case when

Φ(x, t) = tp, the spaces M1,p(X) were first introduced by Haj lasz [12] as a gen-

eralization of the classical Sobolev spaces W 1,p(RN ) to the general setting of the

quasi-metric measure spaces. For variable exponent spaces M1,p(·)(X), see [20].

For u ∈M1,Φ(X), we define

˜̺Φ(u) = ̺Φ(u) + inf ̺Φ(g),

where the infimum is taken over all Haj lasz gradients of u.

Remark 3.1. For all 0 < ε < 1, ‖u‖M1,Φ(X) < ε implies ˜̺Φ(u) < ε due to the

convexity of Φ.

For E ⊂ X , we denote

SΦ(E) = {u ∈M1,Φ(X) : u > 1 in an open set containing E}.

The Sobolev capacity in Musielak-Orlicz-Haj lasz-Sobolev spaces is defined by

CΦ(E) = inf
u∈SΦ(E)

˜̺Φ(u).

In case SΦ(E) = ∅, we set CΦ(E) = ∞.

Remark 3.2. Suppose Φ(x, t) satisfies (Φ4). Then since u ∈ M1,Φ(X) if and

only if ˜̺Φ(u) <∞, note that

CΦ(E) = inf
u∈ŜΦ(E)

˜̺Φ(u),
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where

ŜΦ(E) = {u measurable on X : u > 1 in an open set containing E}.

Remark 3.3. We can redefine the Sobolev capacity in Musielak-Orlicz-Haj lasz-

Sobolev spaces by

CΦ(E) = inf
u∈S′

Φ
(E)

˜̺Φ(u)

since M1,Φ(X) is a lattice (see [28], Lemma 2.4 and Remark 3.1), where

S′
Φ(E) = {u ∈ SΦ(X) : 0 6 u 6 1}.

For the Sobolev capacity in Musielak-Orlicz-Haj lasz-Sobolev spaces the following

results hold.

Lemma 3.4 ([20], Theorem 3.11, [28], Theorem 3.2, Remark 3.3 and Lemma 3.4,

and [27], Theorem 4.1). The set function CΦ(·) satisfies the following conditions:

(1) CΦ(·) is an outer measure.

(2) CΦ(E) = inf
E⊂U,U : open

CΦ(U) for E ⊂ X (CΦ(·) is an outer capacity).

(3) If K1 ⊃ K2 ⊃ . . . are compact sets on X , then

lim
i→∞

CΦ(Ki) = CΦ

( ∞⋂

i=1

Ki

)
.

(4) If LΦ(X) is reflexive and E1 ⊂ E2 ⊂ . . . are subsets of X , then

lim
i→∞

CΦ(Ei) = CΦ

( ∞⋃

i=1

Ei

)
.

We say that a property holds CΦ-q.e. (quasi everywhere) in X , if it holds except

of a set F ⊂ X with CΦ(F ) = 0. A function u is CΦ-quasicontinuous on X if, for

any ε > 0, there is an open set E such that CΦ(E) < ε and u|X\E is continuous.

Proposition 3.5 ([24], Theorem 3.2 and Remark 3.3). Let u and v be CΦ-

quasicontinuous on an open set O ⊂ X .

(1) If u = v µ-a.e. in O, then u = v CΦ-q.e. in O.

(2) If u 6 v µ-a.e. in O, then u 6 v CΦ-q.e. in O.
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In fact, we can prove (1) by [23], since CΦ(·) is an outer capacity and satisfies

the compatibility condition: if O ⊂ X is an open set and E ⊂ X is a set such that

µ(E) = 0, then CΦ(O) = CΦ(O \ E). As in [24], Remark 3.3, we obtain (2) by (1).

Next, we consider a Sobolev capacity in Musielak-Orlicz-Haj lasz-Sobolev spaces

in terms of CΦ-quasicontinuous functions. For E ⊂ X , we denote

S̃Φ(E) = {u ∈M1,Φ(X) : u is CΦ-quasicontinuous and u > 1 CΦ-q.e. in E}.

We define

C̃Φ(E) = inf
u∈S̃Φ(E)

˜̺Φ(u).

In case S̃Φ(E) = ∅, we set C̃Φ(E) = ∞.

Theorem 3.6 ([24], Theorem 3.4). Let E ⊂ X .

(1) CΦ(E) 6 C̃Φ(E).

(2) If continuous functions are dense in M1,Φ(X), then C̃Φ(E) = CΦ(E).

P r o o f. First, we prove (1). Let v ∈ S̃Φ(E). Then we may assume that

0 6 v 6 1 as in Remark 3.3. For 0 < ε < 1, there exists an open set V ⊂ X such

that CΦ(V ) < ε, v = 1 on E \ V and v|X\V is continuous by Lemma 3.4 (2). Since

v|X\V is continuous, there is an open set U ⊂ X such that

U \ V = {x ∈ X \ V : v(x) > 1− ε} = {x ∈ X : v(x) > 1− ε} \ V.

Note that E \ V ⊂ U \ V . Since CΦ(V ) < ε, we can take u ∈ SΦ(V ) such

that ˜̺Φ(u) < ε, u = 1 on V and 0 6 u 6 1 by Remark 3.3. We define w =

max{v/(1 − ε), u}. Then w > 1 on (U \ V ) ∪ V = U ∪ V , which is an open neigh-

bourhood of E and hence w ∈ SΦ(E). We have

̺Φ(w) 6 ̺Φ

( v

1− ε

)
+ ̺Φ(u) 6 ̺Φ

( v

1− ε

)
+ ε→ ̺Φ(v)

as ε→ 0. Similarly, we see that max{g/(1− ε), h} is a Haj lasz gradients of w and

̺Φ

(
max

{ g

1− ε
, h

})
6 ̺Φ

( g

1− ε

)
+ ̺Φ(h) 6 ̺Φ

( g

1− ε

)
+ ε→ ̺Φ(g)

as ε → 0, where h, g are Haj lasz gradients of u, v with ̺Φ(h) < ε, respectively.

Hence we obtain CΦ(E) 6 C̃Φ(E).

Next, to prove (2), we show the inequality C̃Φ(E) 6 CΦ(E). Take u ∈ SΦ(E).

Then there exists an open set E ⊂ O such that u > 1 on O. Since [32], Propo-

sition 3.10, holds by our assumption, there exists a CΦ-quasicontinuous function

v ∈ M1,Φ(X) such that v = u µ-a.e. in X , so that v > 1 µ-a.e. in O. Then we

see from Proposition 3.5 (2) that v > 1 CΦ-q.e. in O. Hence v ∈ S̃Φ(E), so that

C̃Φ(E) 6 CΦ(E). �
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Remark 3.7. If Φ(x, t) satisfies (Φ4), then continuous functions are dense in

M1,Φ(X) (see [32], Proposition 3.4).

Lemma 3.8 ([24], Lemma 3.5). Suppose {ui} ∈ M1,Φ(X) is a sequence of CΦ-

quasicontinuous functions on X such that ui converges to u inM
1,Φ(X). Then there

exist ũ ∈ M1,Φ(X) and a subsequence of {ui} such that ũ is a CΦ-quasicontinuous

function on X , ũ = u µ-a.e. in X and a subsequence of {ui} converges pointwise to

ũ CΦ-q.e. in X .

P r o o f. We can take a subsequence of {ui}, which we denote again by {ui},

such that ‖ui − ui+1‖M1,Φ(X) 6 4−i for each positive integer i. Then note that

˜̺Φ(2i|ui − ui+1|) 6 2−i. Consider the sets

Ei = {x ∈ X : |ui(x) − ui+1(x)| > 2−i}

and Fj =
∞⋃
i=j

Ei. Since 2i|ui − ui+1| ∈ S̃(Ei) by CΦ-quasicontinuity of ui, we have

by Theorem 3.6 and (2.1) that

CΦ(Ei) 6 ˜̺Φ(2i|ui − ui+1|) 6 2−i.

Then it follows from Lemma 3.4 (1) that

CΦ(Fj) 6

∞∑

i=j

CΦ(Ei) 6 2−j+1,

so that

CΦ

( ∞⋂

j=1

Fj

)
6 lim

j→∞
CΦ(Fj) = 0.

Hence there exists ũ ∈ M1,Φ(X) such that ũ = u µ-a.e. in X and {ui} converges

pointwise to ũ CΦ-q.e. in X .

Next, we show that ũ is a CΦ-quasicontinuous function on X . For ε > 0, there

is a set Fj such that CΦ(Fj) < ε/2 and {ui} uniformly converges to ũ in X \ Fj .

Since {ui} is a sequence of CΦ-quasicontinuous functions on X , there exists an open

set Gi ⊂ X such that CΦ(Gi) < ε/2i+1 and ui|X\Gi
is continuous. Set G =

∞⋃
i=1

Gi.

Then we see from Lemma 3.4 (1) that

CΦ(G) 6

∞∑

i=1

CΦ(Gi) <
ε

2
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and

CΦ(Fj ∪G) 6 CΦ(Fj) + CΦ(G) < ε.

Since {ui} uniformly converges to ũ in X \ (Fj ∪ G), we conclude that ũ is a CΦ-

quasicontinuous function on X . �

4. Musielak-Orlicz-Haj lasz-Sobolev spaces with zero boundary values

Let E be a subset of X . We say that u belongs to the Musielak-Orlicz-Haj lasz-

Sobolev space with zero boundary values and write u ∈ M1,Φ
0 (E) if there is a CΦ-

quasicontinuous function ũ ∈M1,Φ(X) such that ũ = u µ-a.e. in E and ũ = 0 CΦ-q.e.

in X \ E. The space M1,Φ
0 (E) is endowed with the norm

‖u‖M1,Φ
0

(E) = ‖ũ‖M1,Φ(X).

By [32], Lemma 3.11, it follows that the norm does not depend on the choice of the

CΦ-quasicontinuous representative. Since M1,Φ(X) is a linear space, so is M1,Φ
0 (E).

Theorem 4.1 ([24], Theorem 4.1). Let E ⊂ X . ThenM1,Φ
0 (E) is a Banach space.

P r o o f. Let {ui} be a Cauchy sequence in M1,Φ
0 (E). Then for every ui there

exists a CΦ-quasicontinuous function ũi ∈ M1,Φ(X) such that ũi = ui µ-a.e. in E

and ũi = 0 CΦ-q.e. in X \E. By [32], Proposition 3.3, there exists u ∈M1,Φ(X) such

that ũi converge to u in M1,Φ(X). Lemma 3.8 yields that there exist ũ ∈M1,Φ(X)

and a subsequence of {ũi} such that ũ is a CΦ-quasicontinuous function on X , ũ = u

µ-a.e. in X and a subsequence of {ũi} converges pointwise to ũ CΦ-q.e. in X . This

shows that ũ = 0 CΦ-q.e. in X \ E, so that u ∈ M1,Φ
0 (E). Thus the theorem is

proved. �

By straightforward arguments, we obtain the following lattice properties.

Lemma 4.2 ([24], Theorem 4.3). Let E ⊂ X and let u, v ∈M1,Φ
0 (E).

(1) If λ > 0, then min(u, λ) ∈M1,Φ
0 (E) and ‖min(u, λ)‖M1,Φ

0
(E) 6 ‖u‖M1,Φ

0
(E).

(2) If λ 6 0, then max(u, λ) ∈M1,Φ
0 (E) and ‖max(u, λ)‖M1,Φ

0
(E) 6 ‖u‖M1,Φ

0
(E).

(3) |u| ∈M1,Φ
0 (E) and ‖|u|‖M1,Φ

0
(E) 6 ‖u‖M1,Φ

0
(E).

(4) min(u, v) ∈M1,Φ
0 (E).

(5) max(u, v) ∈M1,Φ
0 (E).

Lemma 4.3 ([24], Theorem 4.5). Let E ⊂ X . Suppose u ∈ M1,Φ
0 (E) and

v ∈ M1,Φ(X) are bounded functions. If v is CΦ-quasicontinuous in X , then

uv ∈M1,Φ
0 (E).
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P r o o f. Since u ∈ M1,Φ
0 (E), there exists a CΦ-quasicontinuous function ũ ∈

M1,Φ(X) such that ũ = u µ-a.e. in E and ũ = 0 CΦ-q.e. in X \ E. Here note that

a Haj lasz gradient of ũv is included in LΦ(X) since u and v are bounded functions.

Therefore, ũv ∈ M1,Φ(X) is CΦ-quasicontinuous in X and may be nonzero outside

E in a set A ∪B, where

A = {x ∈ X \E : ũ(x) 6= 0} and B = {x ∈ X \ E : v(x) = ∞}.

Noting that CΦ(A) = CΦ(B) = 0, we have CΦ(A∪B) = 0 in view of Lemma 3.4 (1).

Hence ũv = 0 CΦ-q.e. in X\E. Since ũv = uv µ-a.e. in E, we see that uv ∈M1,Φ
0 (E).

�

As in the proof of [24], Theorem 4.4, we have the following result.

Proposition 4.4 ([24], Theorem 4.4). Let E be a µ-measurable set in X . Assume

that continuous functions are dense in M1,Φ(X). Suppose u ∈ M1,Φ
0 (E) and v ∈

M1,Φ(E). If |v| 6 u µ-a.e. in E, then v ∈M1,Φ
0 (E).

We will show that the sets of capacity zero are removable in Musielak-Orlicz-

Haj lasz-Sobolev spaces with zero boundary values.

Theorem 4.5 ([24], Theorems 4.6 and 4.8). Let E ⊂ X be open and let N ⊂ X .

(1) If CΦ(N ∩ E) = 0, then M1,Φ
0 (E) =M1,Φ

0 (E \N).

(2) If µ(N) = 0 and M1,Φ
0 (E) =M1,Φ

0 (E \N), then CΦ(N ∩E) = 0.

P r o o f. First we show the case (1). Since CΦ(N ∩E) = 0, we have µ(N ∩E) = 0

by [32], Lemma 3.11. Hence M1,Φ
0 (E \N) ⊂ M1,Φ

0 (E). If u ∈ M1,Φ
0 (E), then there

exists a CΦ-quasicontinuous function ũ ∈ M1,Φ(X) such that ũ = u µ-a.e. in E

and ũ = 0 CΦ-q.e. in X \ E. Since CΦ(N ∩ E) = 0, we see that ũ = 0 CΦ-q.e. in

X \ (E \N). This implies M1,Φ
0 (E) ⊂M1,Φ

0 (E \N).

Next we show the case (2). We may assume that N ⊂ E. Let x0 ∈ E and set

Ei = B(x0, i) ∩
{
x ∈ E : dist(x,X \ E) >

1

i

}

for all positive integers i. Define ui(x) = max(0, 1 − dist(x,N ∩ Ei)) for x ∈ X .

Then we see that ui ∈ M1,Φ(X) is CΦ-quasicontinuous on X , 0 6 ui 6 1 and

ui = 1 on N ∩ Ei. Define vi(x) = dist(x,X \ Ei) for x ∈ X . Then we find that

wi = uivi ∈M1,Φ
0 (E) =M1,Φ

0 (E\N) by Lemma 4.3 since vi ∈M1,Φ
0 (Ei) ⊂M1,Φ

0 (E).

Since wi ∈M1,Φ
0 (E \N), there exists a CΦ-quasicontinuous function w̃i ∈M1,Φ(X)

such that w̃i = wi µ-a.e. in E \N and w̃i = 0 CΦ-q.e. in X \ (E \N). By µ(N) = 0,
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we have w̃i = wi µ-a.e. in E, so that Proposition 3.5 implies w̃i = wi CΦ-q.e. in E.

In particular, w̃i = wi > 0 CΦ-q.e. in N ∩ Ei. On the other hand, since w̃i = 0

CΦ-q.e. in X \ (E \ N), we have w̃i = 0 CΦ-q.e. in N ∩ Ei. This is possible only if

CΦ(N ∩ Ei) = 0, so that we have by Lemma 3.4 (1)

CΦ(N) 6

∞∑

i=1

CΦ(N ∩ Ei) = 0,

as required. �

5. Equivalence of function spaces

Our aim in this section is to describe M1,Φ
0 (E) as the completion of

Lip1,Φ0 (E) = {u ∈M1,Φ(X) : u is Lipschitz in X and u = 0 in X \ E}

in the norm ‖·‖M1,Φ(X). By [32], Proposition 3.3, this completion is the closure of

Lip1,Φ0 (E) in M1,Φ(X). We denote it by H1,Φ
0 (E).

Theorem 5.1 ([24], Theorem 5.1). Assume that Φ(x, t) satisfies (Φ4). Let E ⊂ X

be open and let u ∈M1,Φ(E). If

u(x)

dist(x,X \ E)
∈ LΦ(E),

then u ∈ H1,Φ
0 (E).

P r o o f. Let g ∈ LΦ(E) be a Haj lasz gradient of u and define

g(x) =





max
(
g(x),

|u(x)|

dist(x,X \ E)

)
x ∈ E,

0 x ∈ X \ E.

Let u be the zero extension of u to X \E. As in the proof of [24], Theorem 5.1, there

exists a set N ⊂ E such that µ(N) = 0 and

|u(x) − u(y)| 6 d(x, y)(g(x) + g(y))

for all x, y ∈ X \N . Hence g ∈ LΦ(X) is a Haj lasz gradient of u. Thus u ∈M1,Φ(X).
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Set

Fλ = {x ∈ E \N : |u(x)| 6 λ, g(x) 6 λ} ∪ (X \ E)

for λ > 1. Since u|Fλ
is 2λ-Lipschitz continuous, we extend it to a 2λ-Lipschitz

continuous function on X using the McShane extension

uλ(x) = inf{u(y) + 2λd(x, y) : y ∈ Fλ}.

Further, set

uλ(x) = min(max(uλ(x),−λ), λ).

By the same arguments as in [32] Proposition 3.4, we obtain that uλ ∈ Lip1,Φ0 (E)

and uλ converges to u in M1,Φ(X). Thus u ∈ H1,Φ
0 (E). �

We shall give a condition for the open set E such that the assumptions of Theo-

rem 5.1 hold for every u ∈M1,Φ
0 (E). Recall that a nonempty set E ⊂ X is uniformly

µ-thick if there exist constants 0 < c2 6 1 and 0 < r0 6 1 such that

µ(B(x, r) ∩ E) > c2µ(B(x, r))

for every x ∈ E and 0 < r < r0.

For a locally integrable function u on X , the Hardy-Littlewood maximal function

Mu is defined by

Mu(x) = sup
r>0

1

µ(B(x, r))

∫

B(x,r)

|u(y)| dµ(y).

Theorem 5.2 ([24], Theorem 5.6). Suppose µ is a doubling measure and the

Hardy-Littlewood maximal operator is bounded on LΦ(X). Let E ⊂ X be an open

set such that X \ E is uniformly µ-thick. Then there exists a constant C∗ > 0 such

that ∫

E

Φ
(
x,

|u(x)|

C∗ dist(x,X \ E)

)
dµ(x) 6 1

for all u ∈M1,Φ
0 (E) with ‖u‖M1,Φ

0
(E) 6 1.

P r o o f. Since u ∈ M1,Φ
0 (E), there exist a function ũ ∈ M1,Φ(X) and a set

N ⊂ X such that µ(N) = 0, ũ is a CΦ-quasicontinuous function on X , u = ũ in

E \ N , ũ = 0, CΦ-q.e. in X \ E and ‖ũ‖M1,Φ(X) 6 1. Let g ∈ LΦ(X) be a Haj lasz

gradient of ũ with ‖g‖LΦ(X) 6 1. Set

E0 = {x ∈ E : dist(x,X \ E) < r0}.
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Fix x ∈ E0 and let n be a positive integer. Choose xn ∈ X \ E such that rn =

d(x, xn) < r0 and rn 6 (1 + 1/n) dist(x,X \E). Then, for all positive integers n, we

have by the uniform µ-thickness and the doubling condition

1

µ(B(xn, rn) \ E)

∫

B(xn,rn)\E

g(y) dµ(y) 6
1

c2µ(B(xn, rn))

∫

B(xn,rn)

g(y) dµ(y)

6
c21

c2µ(B(x, 2rn))

∫

B(x,2rn)

g(y) dµ(y)

6
c21
c2
Mg(x)

for x ∈ E0. Here note that for µ-a.e. ξ ∈ B(xn, rn) \ E,

g(ξ) >
1

µ(B(xn, rn) \ E)

∫

B(xn,rn)\E

g(y) dµ(y)

does not hold, so that there exists zn ∈ B(xn, rn) \ E such that ũ(zn) = 0,

|u(x)| = |ũ(x)− ũ(zn)| 6 d(x, zn)(g(x) + g(zn)) 6 2rn(g(x) + g(zn))

for all x ∈ E0 \N and

g(zn) 6
1

µ(B(xn, rn) \ E)

∫

B(xn,rn)\E

g(y) dµ(y).

Therefore, we obtain for all x ∈ E0 \N

|u(x)| 6
2c21
c2
rn(g(x) +Mg(x)) 6

4c21
c2

(
1 +

1

n

)
dist(x,X \ E)Mg(x).

Letting n→ ∞, we have for all x ∈ E0 \N

|u(x)| 6
4c21
c2

dist(x,X \ E)Mg(x).

Since the Hardy-Littlewood maximal operator is bounded on LΦ(X), that is, there

exists a constant cM > 1 such that ‖Mg‖LΦ(X) 6 cM‖g‖LΦ(X), we have

∫

E0

Φ
(
x,

c2|u(x)|

8c21cM dist(x,X \ E)

)
dµ(x) 6

1

2

∫

E0

Φ
(
x,
Mg(x)

cM

)
dµ(x) 6

1

2
.

On the other hand, we have

∫

E\E0

Φ
(
x,

r0|u(x)|

2 dist(x,X \ E)

)
dµ(x) 6

1

2

∫

E\E0

Φ(x, |u(x)|) dµ(x) 6
1

2
.
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Consequently, for C∗ = max{8c21cM/c2, 2/r0}, we have

∫

E

Φ
(
x,

|u(x)|

C∗ dist(x,X \ E)

)
dµ(x) 6 1,

as required. �

By Theorems 5.1 and 5.2, we obtain the following corollary.

Corollary 5.3. Assume that Φ(x, t) satisfies (Φ4). Suppose µ is a doubling mea-

sure and the Hardy-Littlewood maximal operator is bounded on LΦ(X). Let E ⊂ X

be an open set such that X \ E is uniformly µ-thick. Then M1,Φ
0 (E) = H1,Φ

0 (E).

As in the proof of [26], Theorem 4.5, we can show the following result by [32],

Lemma 3.13.

Lemma 5.4. Assume that Φ(x, t) satisfies (Φ4). Let µ be a doubling measure

and let u ∈M1,Φ(X). Suppose the Hardy-Littlewood maximal operator is bounded

on LΦ(X). Then

ũ(x) = lim
r→0

1

µ(B(x, r))

∫

B(x,r)

u(y) dµ(y)

for CΦ-q.e. in X , where ũ is the CΦ-quasicontinuous representative of u.

By Lemma 5.4, we can show the following characterization of Musielak-Orlicz-

Haj lasz-Sobolev spaces with zero boundary values (see [25], Theorem 2.8).

Proposition 5.5. Assume that Φ(x, t) satisfies (Φ4). Let µ be a doubling measure

and let u ∈M1,Φ(X). Let E ⊂ X . Suppose the Hardy-Littlewood maximal operator

is bounded on LΦ(X) and

lim
r→0

1

µ(B(x, r))

∫

B(x,r)

u(y) dµ(y) = 0

for CΦ-q.e. in X \ E. Then u ∈M1,Φ
0 (E).

P r o o f. Let u ∈ M1,Φ(X) and let ũ be a CΦ-quasicontinuous representative

of u. By Lemma 5.4, we have

ũ(x) = lim
r→0

1

µ(B(x, r))

∫

B(x,r)

u(y) dµ(y) = 0

for CΦ-q.e. in X \ E. Hence u ∈M1,Φ
0 (E). �
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Appendix

A.1. Sobolev capacity on Musielak-Orlicz-Sobolev spaces W 1,Φ(RN ). Let

R
N be an N -dimensional Euclidean space. In the caseX = R

N , let µ be the Lebesgue

measure on R
N and let d be the Euclidean metric. We define the Musielak-Orlicz-

Sobolev space W 1,Φ(RN ) by

W 1,Φ(RN ) = {u ∈ LΦ(RN ) : |∇u| ∈ LΦ(RN )}.

The norm

‖u‖W 1,Φ(RN ) = ‖u‖LΦ(RN ) + ‖|∇u|‖LΦ(RN )

makes W 1,Φ(RN ) a Banach space. We know the following result.

Lemma A.1 ([32], Proposition 5.1). M1,Φ(RN ) ⊂ W 1,Φ(RN ). Moreover, if the

Hardy-Littlewood maximal operator is bounded on LΦ(RN ), then M1,Φ(RN ) =

W 1,Φ(RN ).

Remark A.2. Let N = 2. Then there exists a function Φ(x, t) on B(0, 1) ×

[0,∞) such that Φ(x, t) satisfies (Φ1), (Φ2), (Φ3) and (Φ4) and M1,Φ(B(0, 1)) 6=

W 1,Φ(B(0, 1)). In fact, there exists a function Φ(x, t) on B(0, 1)× [0,∞) such that

Φ(x, t) satisfies (Φ1), (Φ2), (Φ3) and (Φ4) and smooth functions are not dense in

W 1,Φ(B(0, 1)) (see [8], Example 9.2.6). By [32], Proposition 3.4, and the fact that

M1,Φ(B(0, 1)) →֒ W 1,Φ(B(0, 1)), M1,Φ(B(0, 1)) is included in the closure of Lip-

schitz functions in W 1,Φ(B(0, 1)). However, since smooth functions are not dense in

W 1,Φ(B(0, 1)), we obtain M1,Φ(B(0, 1)) 6=W 1,Φ(B(0, 1)).

For u ∈ W 1,Φ(RN ), we define

˘̺Φ(u) = ̺Φ(u) + ̺Φ(∇u).

For E ⊂ R
N , we denote

sΦ(E) = {u ∈W 1,Φ(RN ) : u > 1 in an open set containing E}.

The Musielak-Orlicz-Sobolev cΦ-capacity is defined by

cΦ(E) = inf
u∈sΦ(E)

˘̺Φ(u).

In case sΦ(E) = ∅, we set cΦ(E) = ∞. For the Sobolev capacity in Musielak-Orlicz-

Sobolev spaces the following results hold.
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Lemma A.3 ([19], Theorems 3.1 and 3.2). The set function cΦ(·) satisfies the

following conditions:

(1) cΦ(∅) = 0;

(2) if E1 ⊂ E2 ⊂ R
N , then cΦ(E1) 6 cΦ(E2);

(3) cΦ(·) is an outer capacity;

(4) for E1, E2 ⊂ R
N ,

cΦ(E1 ∪E2) + cΦ(E1 ∩ E2) 6 cΦ(E1) + cΦ(E2);

(5) if K1 ⊃ K2 ⊃ . . . are compact sets on R
N , then

lim
i→∞

cΦ(Ki) = cΦ

( ∞⋂

i=1

Ki

)
;

(6) if LΦ(RN ) is reflexive and E1 ⊂ E2 ⊂ . . . are subsets of RN , then

lim
i→∞

cΦ(Ei) = cΦ

( ∞⋃

i=1

Ei

)
;

(7) if Ei ⊂ R
N for i = 1, 2, . . ., then

cΦ

( ∞⋃

i=1

Ei

)
6

∞∑

i=1

cΦ(Ei).

P r o o f. We prove only (7). We may assume that
∞∑
i=1

cΦ(Ei) < ∞. Then, for

ε > 0, we can take ui ∈ sΦ(Ei) such that

˘̺Φ(ui) 6 cΦ(Ei) + 2−iε.

Set v = sup
16i<∞

ui and h = sup
16i<∞

|∇ui|. Then note that

̺Φ(v) 6

∫

RN

∞∑

i=1

Φ(x, |ui(x)|) dx 6

∞∑

i=1

(cΦ(Ei) + 2−iε) =

∞∑

i=1

cΦ(Ei) + ε <∞

and

̺Φ(h) 6

∞∑

i=1

̺Φ(|∇ui(x)|) 6
∞∑

i=1

cΦ(Ei) + ε <∞,
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so that v, h ∈ LΦ(RN ). By [9], Lemma 2 (iii), Section 4.7, we have |∇v| 6 h a.e.

in R
N . Hence, since v ∈ sΦ

( ∞⋃
i=1

Ei

)
, we conclude

cΦ

( ∞⋃

i=1

Ei

)
6 ˘̺Φ(v) 6

∞∑

i=1

˘̺Φ(ui) 6

∞∑

i=1

cΦ(Ei) + ε,

as required. �

We say that a property holds cΦ-q.e. in R
N if it holds except of a set F ⊂ R

N with

cΦ(F ) = 0, and a function u : R
N → R is cΦ-quasicontinuous if for every ε > 0 there

exists an open set E with cΦ(E) < ε such that u restricted to R
N \E is continuous.

Lemma A.4 ([19], Theorem 5.2). Suppose continuous functions are dense in

W 1,Φ(RN ). Then u ∈ W 1,Φ(RN ) has a cΦ-quasicontinuous representative.

Remark A.5. By [29], Theorem 3.5, we know that C∞-functions are dense in

W 1,Φ(RN ) if Φ(x, t) satisfies (Φ4), (Φ5) and (Φ6).

We can show the following result by [23].

Proposition A.6 ([18], Lemma 2.1). Let u and v be cΦ-quasicontinuous on an

open set O ⊂ R
N .

(1) If u = v µ-a.e. in O, then u = v cΦ-q.e. in O.

(2) If u 6 v µ-a.e. in O, then u 6 v cΦ-q.e. in O.

Next, we consider a Sobolev capacity in Musielak-Orlicz-Sobolev spaces in terms

of cΦ-quasicontinuous functions. For E ⊂ R
N , we denote

s̃Φ(E) = {u ∈W 1,Φ(RN ) : u is cΦ-quasicontinuous and u > 1 cΦ-q.e. in E}.

We define

c̃Φ(E) = inf
u∈s̃Φ(E)

˘̺Φ(u).

In case s̃Φ(E) = ∅, we set c̃Φ(E) = ∞.

As in the proof of Theorem 3.6, we have the following result.

Theorem A.7 ([18], Theorem 2.2). Let E ⊂ R
N .

(1) cΦ(E) 6 c̃Φ(E).

(2) If continuous functions are dense in W 1,Φ(RN ), then c̃Φ(E) = cΦ(E).
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As in the proof of Lemma 3.8, we have the following lemma.

Lemma A.8 ([18], Lemma 2.3). Suppose {ui} ∈ W 1,Φ(RN ) is a sequence of

cΦ-quasicontinuous functions on R
N such that ui converge to u in W 1,Φ(RN ).

Then there exist ũ ∈ W 1,Φ(RN ) and a subsequence of {ui} such that ũ is a cΦ-

quasicontinuous function on R
N , ũ = u µ-a.e. in R

N , and a subsequence of {ui}

converges pointwise to ũ cΦ-q.e. in R
N .

A.2. Musielak-Orlicz-Sobolev spaces with zero boundary values. Let E

be a subset of R
N . We say that u belongs to the Musielak-Orlicz-Sobolev space

with zero boundary values and write u ∈ W 1,Φ
0 (E) if there is a cΦ-quasicontinuous

function ũ ∈ W 1,Φ(RN ) such that ũ = u µ-a.e. in E and ũ = 0 cΦ-q.e. in R
N \ E.

The space W 1,Φ
0 (E) is endowed with the norm

‖u‖W 1,Φ
0

(E) = ‖ũ‖W 1,Φ(RN ).

It follows that the norm does not depend on the choice of the cΦ-quasicontinuous

representative. Since W 1,Φ(RN ) is a linear space, so is W 1,Φ
0 (E).

As in the proof of Theorem 4.1, we have the following result.

Theorem A.9 ([18], Theorem 3.1). Let E ⊂ R
N . Then W 1,Φ

0 (E) is a Banach

space.

As in the proof of Lemma 4.3, we have the following result by Lemma A.3 (4).

Lemma A.10 ([18], Lemma 3.6). Let E ⊂ R
N . Suppose u ∈ W 1,Φ

0 (E) and

v ∈ W 1,Φ(RN ) are bounded functions. If v is a cΦ-quasicontinuous function on R
N ,

then uv ∈W 1,Φ
0 (E).

As in the proof of Theorem 4.5, we have the following result.

Theorem A.11 ([18], Theorem 3.7). Let E ⊂ R
N be open and let N ⊂ R

N .

(1) If cΦ(N ∩ E) = 0, then W 1,Φ
0 (E) =W 1,Φ

0 (E \N).

(2) If µ(N) = 0, W 1,Φ
0 (E) =W 1,Φ

0 (E \N), then cΦ(N ∩E) = 0.

A.3. Equivalence of function spaces. Let E be a subset of RN . By D1,Φ
0 (E)

we denote the closure of C∞
0 (E) in the space W 1,Φ(E). By Theorem A.9, we have

the following result.

Lemma A.12 ([18], Corollary 3.2). Let E ⊂ R
N . Then D1,Φ

0 (E) ⊂ W 1,Φ
0 (E) ⊂

W 1,Φ(E).

391



Theorem A.13 ([18], Theorem 3.3). Let E ⊂ R
N . Assume that Φ(x, t) satis-

fies (Φ4). If continuous functions are dense inW 1,Φ(RN ). ThenD1,Φ
0 (E) =W 1,Φ

0 (E).

P r o o f. By Lemma A.12, it is sufficient to show D1,Φ
0 (E) ⊃ W 1,Φ

0 (E). Let

u ∈W 1,Φ
0 (E). Then there is a cΦ-quasicontinuous function ũ ∈ W 1,Φ(RN ) such that

ũ = u µ-a.e. in E and ũ = 0 cΦ-q.e. in R
N \E. As in the proof of [18], Theorem 3.3,

we may assume that ũ is a nonnegative and bounded function with compact support.

For ε > 0, we set ũε = max{ũ − ε, 0}. Since ũ is a cΦ-quasicontinuous function

and ũ = 0 cΦ-q.e. in R
N \ E, there exist an open set G and δ > 0 such that ũ|RN\G

is continuous, ũ = 0 in (RN \ E) \G and cΦ(G) < δ by Lemma A.3 (3). Then there

exists a function w ∈ W 1,Φ(RN ) such that 0 6 w 6 1, w|G = 1 and ˘̺Φ(w) < δ.

Define v = (1 − w)ũε. Here note that v vanishes in a neighborhood of R
N \ E.

Further, we find that

‖ũ− v‖W 1,Φ(RN ) 6 ‖ũ− ũε‖W 1,Φ(RN ) + ‖wũε‖W 1,Φ(RN ).

Since

‖ũ− ũε‖W 1,Φ(RN ) 6 ε‖χspt ũ‖LΦ(RN ) + ‖χ{0<ũ6ε}∇ũ‖LΦ(RN ),

we have ‖ũ− ũε‖W 1,Φ(RN ) → 0 as ε→ 0. We also find that

˘̺Φ(wũε) 6

∫

RN

Φ(x,w(x)ũ(x)) dµ(x)

+ 2A2
3

(∫

RN

Φ(x,w(x)|∇ũ(x)|) dµ(x) +

∫

RN

Φ(x, |∇w(x)|ũ(x)) dµ(x)

)

6 A3(2A
2
3 + 1)δmax

{
sup
x∈RN

ũ(x)log2
A3+1, 1

}

+ 2A2
3

∫

RN

Φ(x,w(x)|∇ũ(x)|) dµ(x)

by (2.1). Since w converges to 0 in LΦ(RN ) as δ → 0, we can choose a sequence wi

which tends to 0 pointwise a.e. Hence, by the dominated converge theorem, we have

˘̺Φ(wũε) → 0 as δ → 0 and so also ‖wũε‖W 1,Φ(RN ) → 0 as δ → 0 by Lemma 2.4.

Thus we see that v converges to ũ in W 1,Φ(RN ) as ε, δ → 0.

Let ϕi ∈ C∞(RN ) be functions in W 1,Φ(RN ) which tend to v. Let ψ ∈ C∞
0 (E) be

a function satisfying ψ = 1 on spt v since v vanishes in a neighborhood of RN \ E.

Then, since there exists a constant M > 1 such that |ψ(x)| 6M for all x ∈ R
N , we

have by (2.1)

̺Φ(v − ψϕi) =

∫

spt v

Φ(x, |v(x) − ϕi(x)|) dµ(x) +

∫

RN\spt v

Φ(x, |ψ(x)ϕi(x)|) dµ(x)
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6

∫

spt v

Φ(x, |v(x) − ϕi(x)|) dµ(x)

+A3M
log

2
A3+1

∫

RN\spt v

Φ(x, |ϕi(x)|) dµ(x).

Since ϕi tend to v in W 1,Φ(RN ) and ϕi converge to v = 0 µ-a.e. in R
N \ spt v, we

conclude ̺Φ(v − ψϕi) → 0 as i→ ∞. Similarly, we see that ̺Φ(∇(v − ψϕi)) → 0 as

i→ ∞. Thus we obtain the required result by Lemma 2.4. �
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