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E1-degeneration and d
′
d
′′-lemma

Tai-Wei Chen, Chung-I Ho, Jyh-Haur Teh∗

Abstract. For a double complex (A, d′, d′′), we show that if it satisfies the d′d′′-
lemma and the spectral sequence {Ep,q

r } induced by A does not degenerate at
E0, then it degenerates at E1. We apply this result to prove the degeneration at
E1 of a Hodge-de Rham spectral sequence on compact bi-generalized Hermitian
manifolds that satisfy a version of d′d′′-lemma.

Keywords: ∂∂-lemma; Hodge-de Rham spectral sequence; E1-degeneration; bi-
generalized Hermitian manifold

Classification: 55T05, 53C05

1. Introduction

Complex manifolds that satisfy the ∂∂-lemma enjoy some nice properties such
as they are formal manifolds ([DGMS]), their Bott-Chern cohomology, Aeppli
cohomology and Dolbeault cohomology are all isomorphic. Compact Kähler ma-
nifolds are examples of such manifolds. The Hodge-de Rham spectral sequence
E∗,∗

∗ of a complex manifold M is built from the double complex (Ω∗,∗(M), ∂, ∂̄) of
complex differential forms which relates the Dolbeault cohomology of M to the de
Rham cohomology of M . It is well known that Ep,q

1 is isomorphic to Hp(M, Ωq)
and the spectral sequence E∗,∗

r converges to H∗(M, C). The goal of this paper

is to prove an algebraic version of the result that the ∂∂-lemma implies the E1-
degeneration of a Hodge-de Rham spectral sequence. The following is our main
result.

Theorem 1.1. If a double complex (A, d′, d′′) satisfies the d′d′′-lemma and the

spectral sequence {Ep,q
r } induced by A does not degenerate at E0, then it dege-

nerates at E1.

We define a spectral sequence that is analogous to the Hodge-de Rham spectral
sequence of complex manifolds for bi-generalized Hermitian manifolds. Applying
result above, we are able to show that for compact bi-generalized Hermitian man-
ifolds that satisfy a version of ∂∂-lemma, the sequence degenerates at E1.
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2. Degeneration of a Hodge-de Rham spectral sequence

Definition 2.1. A spectral sequence is a sequence of differential bi-graded mo-
dules {(E∗,∗

r , dr)} such that dr is of degree (r, 1 − r) and Ep,q
r+1 is isomorphic to

Hp,q(E∗,∗
r , dr).

Definition 2.2. A filtered differential graded module is an N-graded module
A =

⊕∞

k=0 Ak, endowed with a filtration F and a linear map d : A → A satisfying

(1) d is of degree 1: d(Ak) ⊂ Ak+1;
(2) d ◦ d = 0;
(3) the filtered structure is descending:

A = F 0A ⊇ F 1A ⊇ · · · ⊇ F kA ⊇ F k+1A ⊇ · · · ;

(4) the map d preserves the filtered structure: d(F kA) ⊂ F kA for all k.

For p, q, r ∈ Z, let

Zp,q
r =

{

ξ ∈ F pAp+q

∣

∣

∣

∣

dξ ∈ F p+rAp+q+1

}

, Zp,q
∞ = F pAp+q ∩ ker d

Bp,q
r = F pAp+q ∩ dF p−rAp+q−1, Bp,q

∞ = F pAp+q ∩ Imd

Ep,q
r =

Zp,q
r

Zp+1,q−1
r−1 + Bp,q

r−1

, Ep,q
∞ =

F pAp+q ∩ ker d

F p+1Ap+q ∩ ker d + F pAp+q ∩ Imd

with the convention F−kAp+q = Ap+q and A−k = {0} for k ≥ 0. Let dr : Ep,q
r →

Ep+r,q−r+1
r be the differential induced by d : Zp,q

r → Zp+r,q−r+1
r .

Throughout this paper, we always assume that A =
⊕

p,q≥0 Ap,q is a double

complex of vector spaces over some field with two maps d′p,q : Ap,q → Ap+1,q and

d′′p,q : Ap,q → Ap,q+1 satisfying d′p+1,qd
′
p,q = 0, d′′p,q+1d

′′
p,q = 0 and d′p,q+1d

′′
p,q +

d′′p+1,qd
′
p,q = 0 for all p, q ≥ 0. To make notation cleaner, we allow p, q to be any

integers by defining Ap,q = 0 for p < 0 or q < 0.
Let Ak =

⊕

p+q=k Ap,q. Define

F pAk =

k
⊕

s=p

As,k−s.

For p > k, define F pAk = {0}. This gives a descending filtration on Ak.
Let d = d′ +d′′. The double complex (A, d′, d′′) then defines a filtered differen-

tial graded module (A, d, F ). Let {Ep,q
r } be the corresponding spectral sequence.

We are interested in the convergence of Ep,q
r .

Definition 2.3. Let {Ep,q
r } be the spectral sequence associated to the double

complex (A, d′, d′′). If ds = 0 for all s ≥ r, then we say that {Ep,q
r } or A

degenerates at Er.

The following simple lemmas will be used frequently.
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Lemma 2.4. If G′ is a vector space and H < G, H < H ′ are subspaces of G′, the

natural map ϕ : G
H

→ G′

H′
is injective if and only if G ∩ H ′ = H , and is surjective

if and only if G′ = G + H ′.

Lemma 2.5. Let p, q, r ∈ Z. There are inclusions

· · · ⊂ Bp,q
0 ⊂ Bp,q

1 ⊂ · · · ⊂ Bp,q
∞ ⊂ Zp,q

∞ ⊂ · · · ⊂ Zp,q
1 ⊂ Zp,q

0 ⊂ · · · ,

Zp+1,q−1
r−1 ⊂ Zp,q

r , Bp+1,q−1
r+1 ⊂ Zp,q

r , d(Zp−r,q+r−1
r ) = Bp,q

r .

Definition 2.6. Let αp,q,r : Ep,q
r+1 → Zp,q

r

Z
p+1,q−1

r−1
+B

p,q

r

be the map induced by the

composition of inclusion and projection, and βp,q,r : Ep,q
r →

Zp,q

r

Z
p+1,q−1

r−1
+B

p,q

r

be the

map induced by the projection.

Proposition 2.7. Let r ∈ Z. Then

(1) dr = 0 if and only if βp,q,r is an isomorphism for all p, q ∈ Z,

(2) dr = 0 implies that αp,q,r is an isomorphism for all p, q ∈ Z.

Proof: (1) We first note that the map βp,q,r is always surjective. By Lemma 2.4,

βp,q,r is an isomorphism if and only if Zp,q
r ∩(Zp+1,q−1

r−1 +Bp,q
r ) = Zp+1,q−1

r−1 +Bp,q
r−1,

or equivalently, Bp,q
r ⊆ Zp+1,q−1

r−1 + Bp,q
r−1. The map dp−r,q+r−1

r : Ep−r,q+r−1
r →

Ep,q
r is the zero map if and only if Imdp−r,q+r−1

r = {0}. This is equivalent to

d(Zp−r,q+r−1
r ) = Bp,q

r ⊆ Zp+1,q−1
r−1 + Bp,q

r−1, which is equivalent to βp,q,r being an
isomorphism.

(2) We recall that the isomorphism Ep,q
r+1

∼=
−→ Hp,q(E∗,∗

r , dr) (see [M, Proof
of Theorem 2.6]) is induced from some canonical projections and inclusions. If
dr = 0, Hp,q(E∗,∗

r , dr) ∼= Ep,q
r and we have a commutative diagram

Ep,q
r+1

∼=
//

αp,q,r
%%KKKKKKKKK

Ep,q
r

βp,q,ryyttt
tt

tt
ttt

Zp,q

r

Z
p+1,q−1

r−1
+B

p,q

r

By (1), βp,q,r is an isomorphism and hence αp,q,r is an isomorphism. �

Definition 2.8. Fix a pair of integers (p, q). For nonzero

ξ =
∑

i

ξi ∈
⊕

i≥0

Ap+i,q−i

where ξi ∈ Ap+i,q−i, let i0 = mini{ξi 6= 0}. We call ξi0 the leading term of ξ
and denote it as ℓp,q(ξ). We define ℓp,q(0) = 0. For r ≥ 1, p, q ∈ Z, let Ep,q

r be
the set of ξ = ξ0 + ξ1 + · · · + ξr−1 such that ξi ∈ Ap+i,q−i, dξ = d′ξr−1 /∈ Imd′′,
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ℓp,q(η) 6= ξ0 for all d-closed η and let

Ep,q−1
0 := Bp,q

0 − (Zp+1,q−1
−1 + Bp,q

−1 ).

Lemma 2.9. Fix r0 ≥ 1.

(1) If the map αp,q,r is an isomorphism for all p, q ∈ Z, r ≥ r0, then Ep,q
r = ∅

for all p, q ∈ Z, r ≥ r0.

(2) If the map αp,q,r0
is not an isomorphism, then Ep,q

r0
6= ∅.

Proof: Note that by Lemma 2.4, the surjectivity of αp,q,r is equivalent to the
condition

Zp,q
r = Zp,q

r+1 + Zp+1,q−1
r−1 + Bp,q

r = Zp,q
r+1 + Zp+1,q−1

r−1 .

(1) Suppose that αp,q,r is an isomorphism for all r ≥ r0. Then Zp,q
i = Zp,q

i+1 +

Zp+1,q−1
i−1 for all i ≥ r0. Assume that Ep,q

r 6= ∅ for some r ≥ r0, p, q ∈ Z. Let
ξ ∈ Ep,q

r . By definition, Zp,q
q+2 = Zp,q

q+3 = · · · = Zp,q
∞ . So we may take j > r such

that Zp,q
j = Zp,q

∞ . Note that ξ ∈ Zp,q
r . Using the relation above, we may write

ξ = η1 + η2 where η1 ∈ Zp,q
j , η2 ∈ Zp+1,q−1

j−2 + · · · + Zp+1,q−1
r−1 . Since ℓp,q(ξ) 6= 0,

by comparing the degrees of both sides of ξ = η1 + η2, we have ℓp,q(ξ) = ℓp,q(η1).
But dη1 = 0 which contradicts to the fact that ℓp,q(ξ) is not the leading term of
any d-closed element.

(2) Fix r ≥ 1. Suppose that αp,q,r is not an isomorphism, then Zp,q
r+1 +

Zp+1,q−1
r−1 $ Zp,q

r . Let

ξ = ξ0 + ξ1 + · · · + ξk ∈ Zp,q
r − (Zp,q

r+1 + Zp+1,q−1
r−1 ) where ξi ∈ Ap+i,q−i.

If k > r − 1, let ξ′ = ξr + ξr+1 + · · · + ξk ∈ F p+rAp+q ⊂ F p+1Ap+q . We have

dξ′ = dξr + · · · + dξk ∈ F p+rAp+q+1 = F (p+1)+(r−1)A(p+1)+(q−1)+1

which means that ξ′ ∈ Zp+1,q−1
r−1 . Let ξ′′ = ξ − ξ′. If ξ′′ ∈ Zp,q

r+1 + Zp+1,q−1
r−1 , then

ξ = ξ′ + ξ′′ ∈ Zp,q
r+1 + Zp+1,q−1

r−1 which contradicts to our assumption. Therefore

ξ′′ = ξ0 + · · · + ξr−1 ∈ Zp,q
r − (Zp,q

r+1 + Zp+1,q−1
r−1 ). Hence we may assume ξ =

ξ0 + · · · + ξr−1.

(i) Since ξ ∈ Zp,q
r , by definition, dξ ∈ F p+rAp+q+1. But d(ξ0 + · · ·+ ξr−2) +

d′′ξr−1 ∈ Ap,q+1 ⊕ Ap+1,q ⊕ · · · ⊕ Ap+r−1,q−r+2. This forces d(ξ0 + · · · +
ξr−2) + d′′ξr−1 = 0 and hence dξ = d′ξr−1.

(ii) If d′ξr−1 = d′′ηr for some ηr ∈ Ap+r,q−r, then d(ξ − ηr) = d′ξr−1 −
d′ηr − d′′ηr = −d′ηr ∈ Ap+r+1,q−r ⊂ F p+(r+1)Ap+q+1. Hence ξ −
ηr ∈ Zp,q

r+1. Since ηr ∈ F pAp+q and dηr ∈ Ap+r,q−r+1 ⊕ Ap+r+1,q−r ⊂

F (p+1)+(r−1)Ap+q+1, we have ηr ∈ Zp+1,q−1
r−1 . Therefore ξ = (ξ−ηr)+ηr ∈

Zp,q
r+1 + Zp+1,q−1

r−1 , which is a contradiction. Hence d′ξr−1 /∈ Imd′′.

(iii) If ξ0 is the leading term of a d-closed form τ ∈ F pAp+q, then ξ − τ ∈
F p+1Ap+q and d(ξ − τ) = dξ ∈ F p+rAp+q+1 = F (p+1)+(r−1)Ap+q+1.
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Hence ξ − τ ∈ Zp+1,q−1
r−1 . Then ξ = τ + (ξ − τ) ∈ Zp,q

∞ + Zp+1,q−1
r−1 ⊂

Zp,q
r+1 + Zp+1,q−1

r−1 , which is a contradiction.

Hence ξ ∈ Ep,q
r . �

Lemma 2.10. (1) Ep,q−1
0 = ∅ if and only if βp,q,0 is an isomorphism.

(2) For r ≥ 1, if Ep−r,q+r−1
r = ∅, then βp,q,r is an isomorphism.

(3) For r ≥ 1, if Ep−r,q+r−1
r 6= ∅, then βp,q,j is not an isomorphism for j =

1 or r.

Proof: We note that βp,q,r is an isomorphism if and only if Bp,q
r ⊂ Zp+1,q−1

r−1 +
Bp,q

r−1.
(1) This follows from the definition.
(2) Assume that βp,q,r is not an isomorphism. Then there exists ξ ∈ Bp,q

r −

(Zp+1,q−1
r−1 + Bp,q

r−1). So ξ = dη for some η ∈ F p−rAp+q−1. Let

η = η0 + η1 + · · · + ηk where ηi ∈ Ap−r+i,q+r−i−1.

If k ≥ r, let η′ = ηr + · · · + ηk ∈ F pAp+q−1 ⊂ F p−(r−1)Ap+q−1. Then dη′ ∈
F pAp+q ∩ d(F p−(r−1)Ap+q−1) = Bp,q

r−1. If d(η − η′) ∈ Zp+1,q−1
r−1 + Bp,q

r−1, then

ξ = d(η − η′) + dη′ ∈ Zp+1,q−1
r−1 + Bp,q

r−1, which is a contradiction. So d(η − η′) ∈

Bp,q
r − (Zp+1,q

r−1 + Bp,q
r−1). Hence we may assume ξ = dη where η = η0 + · · ·+ ηr−1.

(i) Comparing the degrees of ξ and dη, we see that dη = d′ηr−1.
(ii) If η0 = 0, then ξ = d(η1 + · · · + ηr−1) ∈ F pAp+q ∩ d(F p−(r−1)Ap+q−1) =

Bp,q
r−1, which is a contradiction. So η0 6= 0.

(iii) If η0 is the leading term of a d-closed form η′′, η − η′′ ∈ F p−r+1Ap+q−1

and ξ = dη = d(η − η′′) ∈ d(F p−(r−1)Ap+q−1) ∩ F pAp+q = Bp,q
r−1, which

is a contradiction. Hence η0 is not the leading term of any d-closed form.
(iv) If d′ηr−1 ∈ Imd′′, ξ = dη = d′ηr−1 = −d′′ηr for some ηr ∈ Ap,q−1,

then ξ = d′ηr − dηr ∈ Zp+1,q−1
∞ + Bp,q

0 ⊂ Zp+1,q−1
r−1 + Bp,q

r−1, which is a
contradiction. Hence d′ηr−1 /∈ Imd′′.

Therefore, η ∈ Ep−r,q+r−1
r .

(3) Assume that Ep−r,q+r−1
r 6= ∅. Let η = η0 + · · · + ηr−1 ∈ Ep−r,q+r−1

r where

ηi ∈ Ap−r+i,q+r−i−1. Since dη ∈ Bp,q
r , if dη /∈ Zp+1,q−1

r−1 + Bp,q
r−1, βp,q,r is not an

isomorphism. So we may assume dη = d′ηr−1 = ξ′ + dη′ where ξ′ ∈ Zp+1,q−1
r−1 and

dη′ ∈ Bp,q
r−1. Let η′ = η′

1 + η′
2 + · · · + η′

l, where η′
i ∈ Ap−r+i,q+r−1−i. The degree

of d′ηr−1 is (p, q), so by comparing degrees of both sides of d′ηr−1 = ξ′ + dη′, we
get

d′ηr−1 = d′η′
r−1 + d′′η′

r and d′′η′
r−1 = 0.

If d′η′
r−1 ∈ Imd′′, then d′ηr−1 ∈ Imd′′ which contradicts to the fact that η ∈

Ep−r,q+r−1
r . So d′η′

r−1 /∈ Imd′′. Note that if η′
r−1 is the leading term of a d-

closed element τ , we may write τ = η′
r−1 + τr + · · · + τk for some k > r − 1 and

each τi ∈ Ap−r+i,q+r−1−i. Then comparing the degrees of d′τ = −d′′τ , we get
d′ηr−1 = −d′′τr which contradicts to the fact that d′ηr−1 /∈ Imd′′.
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From the above verification, we see that η′
r−1 ∈ Ep−1,q

1 . Assume that dη′
r−1 ∈

Zp+1,q−1
0 + Bp,q

0 . Write dη′
r−1 = γ + dσ where γ = γ1 + γ2 + · · · ∈ Zp+1,q−1

0 ,

γi ∈ Ap+i,q−i, σ = σ0 + σ1 + · · · ∈ Bp,q
0 and σi ∈ Ap+i,q−1−i. Since the degree

of dη′
r−1 is (p, q), comparing the degrees of both sides of dη′

r−1 = γ + dσ, we

get dη′
r−1 = d′′σ0 which contradicts to the fact that η′

r−1 ∈ Ep−1,q
1 . Therefore

dη′
r−1 /∈ Zp+1,q−1

0 + Bp,q
0 and hence βp,q,1 is not an isomorphism. �

Theorem 2.11. Suppose that (A = ⊕p,q≥0A
p,q, d′, d′′) is a double complex and

r ≥ 1. The spectral sequence {Ep,q
r } induced by A degenerates at Er but not at

Er−1 if and only if the following conditions hold:

(1) Ep,q
k = ∅ for all p, q ∈ Z, k ≥ r and

(2) Ep,q
r−1 6= ∅ for some p, q.

Proof: Suppose that {Ep,q
r } degenerates at Er but not at Er−1 for some r ≥ 1.

By Proposition 2.7(2), αp,q,i is an isomorphism for all p, q ∈ Z, i ≥ r. Then by
Lemma 2.9, Ep,q

i = ∅ for all p, q ∈ Z, i ≥ r. Since dr−1 6= 0, by Proposition 2.7(1),
there are some p, q ∈ Z such that βp,q,r−1 is not an isomorphism. Then by

Lemma 2.10, Ep−r+1,q+r−2
r−1 6= ∅.

Conversely, suppose that (1) and (2) hold. By Lemma 2.10, βp,q,k is an iso-
morphism for all p, q ∈ Z, k ≥ r. Then by Proposition 2.7, dk = 0 for k ≥ r.
For the case r = 1, by definition, Ep,q

0 6= ∅ implies that βp,q+1,0 is not an isomor-
phism. And hence by Proposition 2.7, d0 6= 0. For the case r ≥ 2, if βp,q,r−1

is an isomorphism for all p, q ∈ Z, by Proposition 2.7, dr−1 = 0. Then we have
dk = 0 for k ≥ r − 1. By the proof above, Ep,q

k = ∅ for k ≥ r − 1. In particular,
Ep,q

r−1 = ∅ for all p, q ∈ Z which contradicts to our assumption (2). Therefore there
exist some p0, q0 such that βp0,q0,r−1 is not an isomorphism. By Proposition 2.7,
dr−1 6= 0. �

Definition 2.12. We say that a double complex (A, d′, d′′) satisfies the d′d′′-
lemma at (p, q) if

Imd′ ∩ ker d′′ ∩ Ap,q = kerd′ ∩ Imd′′ ∩ Ap,q = Imd′d′′ ∩ Ap,q

and A satisfies the d′d′′-lemma if A satisfies the d′d′′-lemma at (p, q) for all (p, q).

Now we can give a proof of the main result Theorem 1.1.

Proof: Note that by definition, d′d′′-lemma implies that Imd′ ∩ ker d′′ ∩ Ap,q =
Imd′ ∩ Imd′′ ∩ Ap,q for all p, q. Since {Ep,q

r } does not degenerate at E0, βp,q,0 is

not an isomorphism for some p, q, hence by Lemma 2.10, Ep,q−1
0 6= ∅. Assume

that Ep,q
r 6= ∅ for some p, q ∈ Z, r ≥ 1. Then there is α =

∑r−1
i=0 αi ∈ Ep,q

r where
αi ∈ Ap+i,q−i. From the condition dα = d′αr−1, we have d′′αr−1 = −d′αr−2

and hence d′′dα = −d′d′′αr−1 = 0. So dα = d′αr−1 ∈ (Imd′ ∩ ker d′′) ∩ Ap,q =
(Imd′ ∩ Imd′′)∩Ap,q. But by the definition of Ep,q

r , d′αr−1 /∈ Imd′′ which leads to
a contradiction. Therefore by Theorem 2.11, {Ep,q

r } degenerates at E1. �
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In the following, we apply the main result to prove the E1-degeneration of
a spectral sequence of bi-generalized Hermitian manifolds. We refer the reader
to [G1], [C] for generalized complex geometry, and to [CHT] for bi-generalized
complex manifolds. We give a brief recall here. A bi-generalized complex struc-
ture on a smooth manifold M is a pair (J1,J2) where J1,J2 are commuting
generalized complex structures on M . A bi-generalized complex manifold is a
smooth manifold M with a bi-generalized complex structure. A bi-generalized
Hermitian manifold (M,J1,J2, G) is an oriented bi-generalized complex manifold
(M,J1,J2) with a generalized metric G which commutes with J1 and J2. We
define

Up,q := Up
1 ∩ U q

2

where Up
1 , U q

2 ⊂ Γ(Λ∗TM ⊗ C) are eigenspaces of J1,J2 associated to the eigen-
values ip and iq respectively and TM = TM ⊕ T ∗M is the generalized tangent
space. It can be shown that the exterior derivative d is an operator from Up,q to
Up+1,q+1 ⊕ Up+1,q−1 ⊕ Up−1,q+1 ⊕ Up−1,q−1 and we write

δ+ : Up,q → Up+1,q+1, δ− : Up,q → Up+1,q−1

for the projection of d into corresponding spaces.

Definition 2.13. On a bi-generalized Hermitian manifold M , there is a double
complex {(A, d′, d′′)} given by

Ap,q := Up+q,p−q, d′ = δ+, d′′ = δ−.

We call the spectral sequence {E∗,∗
∗ } associated to this double complex the ∂1-

Hodge-de Rham spectral sequence.

By Theorem 1.1, we have the following result.

Theorem 2.14. Suppose that M is a compact bi-generalized Hermitian manifold

which satisfies the δ+δ−-lemma and has positive dimension. Then the ∂1-Hodge-

de Rham spectral sequence degenerates at E1.

Now we give a proof of the E1-degeneration of the ∂1-Hodge-de Rham spectral
sequence.

Proof: Since
⊕

p,q Up,q = Ω•(M) ⊗ C (see [Ca07], p. 36) where Ω•(M) is
the collection of smooth forms on M , some Up,q is not empty. The space Up,q

is a C∞(M, C)-module where C∞(M, C) is the ring of complex-valued smooth
functions on M , and M has positive dimension, therefore Up,q is an infinite di-
mensional complex vector space . If δ− is a zero map, we have Hp,q

δ−
(M) = Up,q

for all p, q. But M is compact, this contradicts to the fact that Hp,q
δ−

(M) is finite

dimensional ([CHT, Theorem 2.14, Corollary 3.11]). Hence δ− is not the zero
map and the spectral sequence does not degenerate at E0. Since we assume that
M satisfies the δ+δ−-lemma, by Theorem 1.1, the spectral sequence degenerates
at E1. �



162 Chen T.W., Ho Ch.I., Teh J.H.

Acknowledgment. The authors thank the referee for his/her extremely careful
review which largely improves this paper.

References

[C] Cavalcanti G., New aspects of the ddc-lemma, Oxford Univ. DPhil. thesis,
arXiv:math/0501406v1[math.DG].

[Ca07] Cavalcanti G., Introduction to generalized complex geometry , impa, 26-Coloquio
Brasileiro de Matematica, 2007.

[CHT] Chen T.W., Ho C.I., Teh J.H., Aeppli and Bott-Chern cohomology for bigeneralized

Hermitian manifolds and d′d′′-lemma, J. Geom. Phys. 93 (2015), 40–51.
[DGMS] Deligne P., Griffiths P., Morgan J., Sullivan D., Real homotopy theory of Kähler ma-

nifolds, Invent. Math.29 (1975), no. 3, 245–274.
[G1] Gualtieri M., Generalized complex geometry , Ann. of Math. 174 (2011), 75–123.
[M] McCleary J., A User’s Guide to Spectral Sequences, 2nd edition, Cambridge studies

in advanced mathematics, 58, Cambridge University Press, Cambridge, 2001.

Tai-Wei Chen, Jyh-Haur Teh:

Mathematics Department, National Tsing Hua University, Hsinchu, Taiwan

E-mail: d937203@oz.nthu.edu.tw

jyhhaur@math.nthu.edu.tw

Chung-I Ho:

Mathematics Department, National Tsing Hua University, National Center

of Theoretical Sciences, Mathematical Division, Hsinchu, Taiwan

E-mail: ciho@math.cts.nthu.edu.tw

(Received January 25, 2015, revised January 26, 2016)


		webmaster@dml.cz
	2018-01-10T09:48:51+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




