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K Y B E R N E T I K A — V O L U M E 5 2 ( 2 0 1 6 ) , N U M B E R 2 , P A G E S 2 8 0 – 2 9 3

ESTIMATES OF THE COVARIANCE MATRIX
OF VECTORS OF U-STATISTICS AND CONFIDENCE
REGIONS FOR VECTORS OF KENDALL’S TAU

Frantǐsek Rubĺık

Consistent estimators of the asymptotic covariance matrix of vectors of U -statistics are used
in constructing asymptotic confidence regions for vectors of Kendall’s correlation coefficients
corresponding to various pairs of components of a random vector. The regions are products
of intervals computed by means of a critical value from multivariate normal distribution. The
regularity of the asymptotic covariance matrix of the vector of Kendall’s sample coefficients is
proved in the case of sampling from continuous multivariate distribution under mild conditions.
The results are applied also to confidence intervals for the coefficient of agreement. The coverage
and length of the obtained (multivariate) product of intervals are illustrated by simulation.

Keywords: consistent estimate of asymptotic covariance matrix, U-statistics, vector of
Kendall’s coefficients, coefficient of agreement, confidence interval

Classification: 62G05, 62G15

1. INTRODUCTION

Kendall’s tau is a common measure of dependence in a pair of random variables. It
is commonly used to check for independence and when the estimate of Kendall’s tau
is significantly different from 0, a confidence interval with appropriate coverage can be
constructed, owing to the asymptotic normality of this U-statistic. This paper considers
the construction of rectangular asymptotic confidence regions for vectors of Kendall’s
tau measuring the dependence between various pairs of components of a multivariate
random vector. As explained in Section 3, the regions can be used for construction
of multiple comparisons procedures for the hypothesis of independence, because the
pairs of coordinates for which the corresponding subintervals do not contain zero can be
declared as the ones violating the assumption of independence. In general, the resulting
rule can serve for detecting the violators of the quasi-independence. In accordance with
[4] quasi-independence means that for each of the chosen pairs of coordinates of the
random vector the corresponding pair of coordinate variables is a pair of independent
random variables. The results of the paper include also an assertion on regularity of
the asymptotic covariance matrix of the vector of sample Kendall’s coefficients, and
the construction of the asymptotic confidence intervals for the coefficient of agreement,
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which is an extension of assertions on the asymptotic distribution of this coefficient
presented in [3] and [2].

Throughout the paper we assume that {Xj}∞j=1 are independent identically dis-
tributed copies of a random vector X taking values in the space Rd of column vectors.
Further we assume that Ψ(x1, . . . ,xm) : Rd× · · · ×Rd → Rs is a measurable symmetric
function of its arguments xi ∈ Rd such that

E(‖Ψ(X1, . . . ,Xm)‖2) < +∞. (1.1)

The corresponding multivariate U -statistic is defined by the formula

Un = U(X1, . . . ,Xn) =
1(
n
m

) ∑
r∈C(m,n)

Ψ(Xr1 , . . . ,Xrm), (1.2)

where C(m,n) denotes the collection of all subsets of {1, . . . , n} consisting of m elements.
The topic of Section 2 is estimation of the asymptotic covariance matrix of U -

statistics. Results on Kendall’s correlation coefficient and on the coefficient of agreement
can be found in Section 3, and simulation results are in Section 4.

2. ESTIMATION OF THE ASYMPTOTIC COVARIANCE MATRIX
OF A U -STATISTIC

Obviously, the mean vector µ = E(Ψ(X1, . . . ,Xm)) exists. The results of Theorem
7.1 of [6] (cf. also Theorem 2 on p. 76 of [10]) imply that the U -statistic (1.2) is
asymptotically normal. More precisely, let for c = 1, . . . ,m

ζc = E
(
Ψc(X1, . . . ,Xc)Ψc(X1, . . . ,Xc)>

)
− µµ>, (2.1)

where Ψc(x1, . . . ,xc) = E
(
Ψ(x1, . . . ,xc,Xc+1, . . . ,Xm)

)
if the coordinates of this in-

tegral are real numbers, otherwise Ψc(x1, . . . ,xc) = 0. Then
√
n(Un − µ) −→ Ns(0,VΨ) (2.2)

in distribution as n→∞, where
VΨ = m2ζ1. (2.3)

Theorem 2.1. Let

C∗(m− 1, n, i) =
{
r∗ ∈ C(m− 1, n); r∗ = {r∗1 , . . . , r∗m−1}, i /∈ {r∗1 , . . . , r∗m−1}

}
(2.4)

denote the collection of all subsets of size m−1 of elements from {1, . . . , n} not containing
the number i. Put

Γ(n)
i =

1(
n−1
m−1

) ∑
r∗∈C(m−1,n,i)

Ψ(Xi,Xr∗1
, . . . ,Xr∗m−1

), Γn =
1
n

n∑
i=1

Γ(n)
i Γ(n)

i
>. (2.5)
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Then Γn = E(Ψ1(X1)Ψ1(X1)>) + oP (1) and the matrix

Ṽn = m2(Γn −UnU>n ) (2.6)

is a consistent estimate of the asymptotic covariance matrix VΨ.

P r o o f . This theorem is a straightforward consequence of the results of [14]. Indeed,
fix an arbitrary t ∈ Rs and note that t>Un is a univariate U-statistic with kernel t>Ψ :
Rd → R. By Proposition 1 in [14] , t>Ṽnt is a consistent estimator of the asymptotic
variance t>VΨt of t>Un. Hence by taking successively t = ei and t = ei − ej , where
ei ∈ Rs has in its ith coordinate 1 and 0 elsewhere, it is easy to see that Ṽn is a
consistent estimate of VΨ, as claimed. �

Now consider the special case where m = 2 and Ψ(xi,xj) = 0 whenever xi = xj .
Making use of the transformation Un → t>Un and the results of [6] one obtains that
the covariance matrix

cov(
√
nUn) = 4

n− 2
n− 1

ζ1 +
2

n− 1
ζ2. (2.7)

This suggests that for n > 2 an alternative consistent estimate of VΨ is given by

V̂n = 4
n− 2
n− 1

ζ̂1 +
2

n− 1
ζ̂2, (2.8)

ζ̂1 = Γn−UnU>n , ζ̂2 =
1(
n
2

) ∑
r∈C(2,n)

(
Ψ(Xr1 ,Xr2)−Un

)(
Ψ(Xr1 ,Xr2)−Un

)>
. (2.9)

3. CONFIDENCE REGIONS FOR KENDALL’S COEFFICIENTS

Throughout this section we consider fixed, mutually distinct pairs of coordinate indexes
(`1, u1), · · · , (`s, us) of the d-dimensional random vector X (i. e., |`i− `j |+ |ui− uj | > 0
whenever i 6= j) such that for v = 1, . . . , s

1 ≤ `v < uv ≤ d. (3.1)

For x = (x1, . . . , xd)′ ∈ Rd let
x(j) = πj(x) = xj (3.2)

denote the jth coordinate of the vector. Suppose that it is desired to construct a
confidence region for the vector (τ(`1, u1), . . . , τ(`s, us))>, where for each v ∈ {1, . . . , s},
τ(`v, uv) denotes the theoretical value of Kendall’s tau in the pair (π`v (X), πuv (X)).
Suppose that x1, . . . ,xn belong to Rd and `, u are two integers such that 1 ≤ ` < u ≤ d.
A standard consistent estimate of τ(`, u) is then given by

τn(`, u) = τn(`, u,x1, . . . ,xn)

=
2

n(n− 1)

∑
1≤i<j≤n

sign
(
xj(`)− xi(`)

)
sign

(
xj(u)− xi(u)

)
, (3.3)
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which is called the sample Kendall’s correlation coefficient of the pair (`, u). When X
is a continuous random variable, the asymptotic distribution of τn(`, u) is known, as
well as its finite sample behavior under the null hypothesis of independence between
components π`(X) and πu(X) (cf. [5]).

In constructing a confidence region for the vector τ = (τ(`1, u1), . . . , τ(`s, us))> we
shall use the vector of sample coefficients

τn = τn(x1, . . . ,xn) = τ [(`1,u1),...,(`s,us)]
n (x1, . . . ,xn) =

 τn(`1, u1)
...

τn(`s, us)

 . (3.4)

To use the results of the previous section define the mapping Ψ : Rd × Rd → Rs by the
formula

Ψ(x1,x2) = Ψ(x1,x2)[(`1,u1),...,(`s,us)]

=


sign

(
x2(`1)− x1(`1)

)
sign

(
x2(u1)− x1(u1)

)
...

sign
(
x2(`s)− x1(`s)

)
sign

(
x2(us)− x1(us)

)
 .

(3.5)

Observe that

τ = E
(
Ψ(X1,X2)

)
=

 τ(`1, u1)
...

τ(`s, us)

 (3.6)

and that
τn = Un = Un(x1, . . . ,xn) =

2
n(n− 1)

∑
1≤i<j≤n

Ψ(xi,xj). (3.7)

It follows from (3.7), (2.2) and (2.3) that the convergence in distribution
√
n(τn − τ )→ Ns(0,V) (3.8)

holds as n → ∞. Here V = VΨ is the matrix defined by means of equality (2.3) and
the mappping (3.5). This convergence was established in Theorem 2.3 of [12] where also
a more detailed expression for the asymptotic covariance matrix V is presented.

Finally, if 0 < α < 1 and A is a p.s.d. symmetric s × s matrix then crα(A) will
denote the critical value defined by the equality

P
(

max
i=1,...,s

|y(i)| > crα(A)
∣∣∣y ∼ Ns(0,A)

)
= α. (3.9)

The simplest way to obtain this constant appears to be through simulation.

Theorem 3.1. (I) Suppose An is a p.s.d. symmetric s× s matrix and (cf. (3.2))

In(An) =
{

z ∈ Rs; max
j=1,...,s

|πj(z)− τn(`j , uj)| ≤
crα(An)√

n

}
(3.10)
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is the corresponding s-dimensional rectangle. Let

Fj(t) = P (πj(X) ≤ t) (3.11)

stand for the distribution function of the jth coordinate of the population. If An is a
consistent estimate of the matrix V from (3.8) and there exist real numbers t1, . . . , td
such that

0 < Fj(tj) < 1, j = 1, . . . , d, (3.12)

then
lim
n→∞

P
(
τ ∈ In(An)

)
= 1− α. (3.13)

(II) Suppose that X posseses a density f with respect to the Lebesque measure
µL on Rd and the function f is continuous on the set N = {x ∈ Rd; f(x) > 0}. If
N = (a1, b1) × · · · × (ad, bd), where −∞ ≤ aj < bj ≤ +∞ for j = 1, . . . , d, then the
matrix V is positive definite.

P r o o f . (I) Suppose that {nt}∞t=1 is an increasing sequence of positive integers. Since
An is a consistent estimate of V, there exists a subsequence {ntw}∞w=1 such that

Antw
→ V

almost surely. Thus almost surely Ns(0,Antw
) → Ns(0,V) in the sense of weak con-

vergence of probability measures. Taking into account (3.5), (2.1), (2.3) and (3.12)
one finds that the diagonal elements of the matrix V are positive and therefore the
boundary of the s-dimensional interval 〈c1, h1〉 × · · · × 〈cs, hs〉 has zero mass under the
Ns(0,V) distribution for every real numbers cv < hv, v = 1, . . . , s. This together with
the mentioned weak convergence yields

P
(
〈−c, c〉s

∣∣∣Ns(0,Antw
)
)
→ P

(
〈−c, c〉s

∣∣∣Ns(0,V)
)

almost surely. Therefore crα(Antw
)→ crα(V) almost surely and by the Egoroff theorem

almost uniformly. Hence by (3.8)

lim
n→∞

P
(√

n max
j=1,...,s

|τntw (`j , uj)− τ(`j , uj)| > crα(Antw
)
)

= P
(

max
j=1,...,s

|y(j)| > crα(V)
∣∣∣Ns(0,V)

)
= α

and the convergence (3.13) is proved.

(II) Fix an integer j ∈ {1, . . . , d}. Let z be a real number and

Kz = {(z1, . . . , zj−1, zj+1, . . . , zd)>; (z1, . . . , zj−1, z, zj+1, . . . , zd)> ∈ N}.

By Fubini’s theorem the density of the distribution function (3.11) is

fj(z) =
∫
Kz

f(z1, . . . , zj−1, z, zj+1, . . . , zd) dz1 . . . dzj−1dzj+1 . . . dzd (3.14)
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if this integral is a real number and fj(z) = 0 otherwise, and the second possibility
occurs with one-dimensional Lebesgue measure zero. Fix numbers cj < gj ∈ (aj , bj).
Then for each number x ∈ 〈cj , gj〉

Fj(x) = Fj(cj) +

x∫
cj

fj(t) dt

and according to Theorem 9.3 from [9] for almost all x ∈ 〈cj , gj〉

F ′j(x) = fj(x). (3.15)

Therefore this equality holds on (aj , bj) a.e. with respect to the one-dimensional Lebes-
gue measure and obviously fj is positive on (aj , bj) a.e. with respect to the Lebesgue
measure.

Since the distribution function of the random vector (π`v (X), πuv (X)) and its marginal
distribution functions are continuous, for x ∈ Rd

πv(Ψ1(x)) =
∫

sign
(
π`v (X2)− π`v (x)

)
sign

(
πuv (X2)− πuv (x)

)
dPX2

= 2
(
P (π`v (X2) < π`v (x), πuv (X2) < πuv (x))

+ P (π`v (X2) > π`v (x), πuv (X2) > πuv (x))
)
− 1

(3.16)

and the mapping Ψ1 is continuous on N .
Let c = (c1, . . . , cs)> ∈ Rs be a vector such that c>ζ1c = 0. Then with the proba-

bility PX1 = 1

c>Ψ1(x) =
s∑
j=1

cjπj(Ψ1(x)) = c>τ . (3.17)

The assumptions imply that each point from N is a limit of points from N for which
(3.17) holds and therefore (3.17) holds for each point from N .

Without loss of generality assume that `1 ≤ `2 ≤ . . . ≤ `s. Let `1 = . . . = `k1 < `k1+1.
Fix a number x ∈ (a`1 , b`1) and assume that x ∈ N is such that π`1(x) = x. Since (3.16)
holds, for each v = 1, . . . , k1

lim
πuv (x)↗buv

πv(Ψ1(x)) = 2P (π`1(X2) < π`1(x))− 1,

lim
πuv (x)↘auv

πv(Ψ1(x)) = 2P (π`1(X2) > π`1(x))− 1.

As it has been shown, there exists a number x ∈ (a`1 , b`1) such that both (3.15) and the
inequality fj(x) > 0 hold for j = `1. Thus letting πuv (x) go to buv , v = 1, . . . , k1 and
differentiating the limit of (3.17) with respect to π`1(x) at π`1(x) = x we obtain that

0 =
k1∑
j=1

cj2f`1(x),
k1∑
j=1

cj = 0.
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Similarly, fixing i ∈ {1, . . . , k1}, letting πui(x) go to aui , πuv (x) go to buv , v = 1, . . . , k1,
v 6= i, and differentiating the limit of of (3.17) with respect to π`1(x) at π`1(x) = x we
obtain that

0 =
k1∑

j=1,j 6=i

cj2f`1(x)− ci2f`1(x), ci =
k1∑

j=1,j 6=i

cj .

Hence ci = −ci = 0 for i = 1, . . . , k1, and therefore

c>τ =
s∑

j=k1+1

cjπj(Ψ1(x)).

Repeating this procedure yields c1 = . . . = cs = 0. This means that the matrix ζ1 is
regular. �

Classical confidence sets for parameters are ellipsoids formed by means of quantiles
of the chi-square distribution, but in this case such an approach would result in the
situation with slower convergence of coverage probability to 1 − α. Nowadays, with
computers at our disposal, the use of critical constants as in (3.9) is not as complicated
a problem as it was in the past. We remark that the constants of the type (3.9) were
used for statistical inference in [11].

The advantage of the multivariate confidence region (3.10) for τ from (3.6) is that it
yields the multiple comparisons rule for the null hypothesis that for each v ∈ {1, . . . , s}
the random variables π`v (X) and πuv (X) are independent. Indeed, although two random
variables need not be independent if their Kendall’s correlation coefficient is zero, in the
case when this coefficient is different from zero they are not independent. Therefore if
the interval (τn(`v, uv) − crα(An)√

n
, τn(`v, uv) + crα(An)√

n
) does not contain zero, then the

random variables π`v (X), πuv (X) are declared to be dependent. Moreover, because of
the dimensionality s of the parameter of interest, the multivariate products of intervals
are easier to interpret than the s-dimensional ellipsoids, because in contradistinction to
the confidence ellipsoids, the limits of the particular coordinate need not be computed
by means of remaining coordinates.

The estimators Ṽn, V̂n defined by means of (2.6), (2.8) and (3.5) are asymptoti-
cally equivalent, but (as simulations show), the estimator Ṽn generally yields shorter
multivariate intervals and V̂n generally yields larger probability of coverage.

Now we are going to deal with confidence interval for a linear combination of Kendall’s
population coefficients.

Corollary 3.1. Let c ∈ Rs be a non-zero vector. Then
√
n(c>τn−c>τ )→ N(0, σ2) in

distribution, where σ2 = c>Vc and V is the matrix appearing in (3.8). Therefore for any
consistent estimate An = An(X1, . . . ,Xn) of the matrix V the statistic σ2

n = c>Anc
is a consistent estimate of σ2 and if σ2 > 0 (which is true under the assumptions of
Theorem 3.1(II)), then

lim
n→∞

P
(
c>τ ∈ (c>τn − g1−α/2

σn√
n
, c>τn + g1−α/2

σn√
n

)
)

= 1− α. (3.18)

Here g1−α/2 denotes the 1− α/2 quantile of the standard N(0, 1) distribution.



U-statistics and confidence intervals for Kendall’s coefficients 287

P r o o f . This corollary is an immediate consequence of the convergence (3.8) and of
the regularity of the matrix V following from Theorem 3.1. �

The dependence of the components of the d-dimensional random vector X can be
characterized by the coefficient of agreement

Td = Td(X) =
1

d(d− 1)

∑
i 6=j

τ(i, j) =
2

d(d− 1)

∑
1≤i<j≤d

τ(i, j) (3.19)

which was introduced in [8]. It is estimated by its sample counterpart

Td,n =
2

d(d− 1)

∑
1≤i<j≤d

τn(i, j) (3.20)

which was studied in [2] and [3]. To describe the variation and the limiting distribution
of the statistic (3.20) assume that the coordinates (3.1) are those appearing above the
diagonal of the matrix ((i, j))di,j=1. In accordance with this assumption and (3.5) let

Ψ(x1,x2) = Ψ(x1,x2)[(1,2),(1,3)...,(1,d),(2,3),...,(2,d),...,(d−1,d)]. (3.21)

In what follows for any matrix M by M(i, j) we mean the element of M on the position
(i, j).

Corollary 3.2. Let ζ1, ζ2 be defined by means of (3.21) and (2.1) (where the mean
µ = E(Ψ(X1,X2)) = E(Ψ(X1,X2)[(1,2),(1,3)...,(1,d),(2,3),...,(2,d),...,(d−1,d)]) is the vector of
all population Kendall’s coefficients).

(I) The equality

var(
√
nTd,n) =

1
s2

s∑
i=1

s∑
j=1

Vn(i, j), Vn = 4
n− 2
n− 1

ζ1 +
2

n− 1
ζ2,

s =
(d− 1)d

2
,

(3.22)

holds and

√
n(Td,n − Td)→ N(0, σ2) in distribution, σ2 =

1
s2

s∑
i=1

s∑
j=1

V(i, j), (3.23)

where V = 4ζ1.

(II) Suppose that the number σ2 in (3.23) is positive (which is true under the as-
sumptions of Theorem 3.1(II)). If An = An(X1, . . . .Xn) is a consistent estimate of the
matrix V, then σ2

n = (1/s2)
∑s
i=1

∑s
j=1 An(i, j) is a consistent estimate of σ2 and

lim
n→∞

P
(
Td ∈ ITd,n(An)

)
= 1− α,

ITd,n(An) = (Td,n − g1−α/2
σn√
n
, Td,n + g1−α/2

σn√
n

).
(3.24)
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In this framework, if An = Ṽn denotes the matrix defined by means of (3.21), (3.5) and
(2.6) or An = V̂n denotes the matrix defined by means of (3.21), (3.5) and (2.8), (2.9),
then (3.24) holds.

P r o o f . Obviously

Td,n =
2

d(d− 1)
1>τn (3.25)

where τn = τ
[(1,2),(1,3)...,(1,d),(2,3),...,(2,d),...,(d−1,d)]
n are the sample Kendall’s coefficients

(3.4) and 1 ∈ Rd(d−1)/2 is the column vector whose coordinates equal 1. Hence (3.22)
follows from (3.7) and (2.7). Similarly (3.23), (3.24) follow from Corollary 3.1. Since
according to the previous Section the matrices Ṽn and V̂n are consistent estimators of
the matrix V, the Corollary is proved. �

In contrast to the approach of this paper, formulas for variance, asymptotic variance
and the asymptotic normality of the sample coefficient of agreement (3.20) are derived
in [3] in terms of the underlying copula models, but neither confidence intervals are
mentioned nor the positivity of the asymptotic variance is mentioned there. We re-
mark that the conditions imposed in Theorem 3.1(II) on the density of the multivariate
distributions are fulfilled perhaps by every continuous multivariate distribution used in
statistical inference.

The data used in the next example are taken from DASL (The Data and Story
Library), Carnegie Mellon University, Story Names: Air Pollution and Mortality.

Example. The following data were recorded in 59 metropolitan areas of the USA.
The monitored variables are: v1 – mean of January temperature (Fahrenheit), v2 –
mean of July temperature (Fahrenheit), v3 – relative humidity, v4 – annual rainfall
(inches), v5 – age adjusted mortality, v6 – median education, v7 – population den-
sity, v8 – percentage of non whites, v9 – percentage of white collar workers, v10 –
population, v11 – population per household, v12 – median income, v13 – HC pollu-
tion potential, v14 – Nitrous Oxide pollution potential, v15 – Sulfur Dioxide pollution
potential. In difference from the 60 areas in the original data, the observations from
Forth Worth are here omitted because for this area 2 items are missing. Therefore
we consider 59 areas. The data for the 59 areas can be found in the public domain
http://ugrad.stat.ubc.ca/˜stat447j/datasets/mortality.txt.

Our task is to compute from these observations the 95% confidence region for Kendall’s
correlation coefficients of age adjusted mortality and the rest of the variables, i. e., the
95% confidence region for the vector

τ = (τ(5, j); j = 1, . . . , 15, j 6= 5)> (3.26)

by means of the product of intervals In(Ṽn) from (3.10) based on (2.6), and to compute
for the coefficient of agreement the 95% confidence interval ITd,n(Ṽn) from (3.24) based
on (2.6).

The coordinates (3.1) are in this case the pairs (5, j), j = 1, . . . , 15, j 6= 5. For these
data the dimension of the vector of Kendall’s coefficients s = 14, the estimate (3.4) of

http://ugrad.stat.ubc.ca/~stat447j/datasets/mortality.txt
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the vector (3.26) and the matrix Ṽn (rounded for typographical reasons to 3 decimal
places) are

τn = (0.057, 0.262, −0.093, 0.265, −0.369, 0.177, 0.429, −0.233, 0.064, 0.254, −0.157, 0.226, 0.297, 0.340)
>
,

Ṽn =



0.651 0.183 −0.034 0.116 0.045 −0.094 0.236 0.134 0.184 0.040 0.056 0.204 0.193 −0.077
0.183 0.514 −0.213 0.201 −0.024 −0.037 0.219 0.046 −0.039 0.047 −0.011 −0.254 −0.225 −0.149
−0.034 −0.213 0.608 −0.112 0.045 −0.069 −0.068 0.006 0.063 −0.039 0.010 0.144 0.107 −0.142

0.116 0.201 −0.112 0.583 −0.221 −0.068 0.128 −0.168 −0.160 0.099 −0.215 −0.226 −0.210 −0.111
0.045 −0.024 0.045 −0.221 0.387 0.003 −0.026 0.235 0.159 −0.151 0.220 0.095 0.067 −0.012
−0.094 −0.037 −0.069 −0.068 0.003 0.467 −0.023 0.004 0.097 −0.203 0.081 0.016 0.052 0.221

0.236 0.219 −0.068 0.128 −0.026 −0.023 0.299 0.017 0.065 0.039 −0.009 −0.030 −0.023 −0.050
0.134 0.046 0.006 −0.168 0.235 0.004 0.017 0.343 0.192 −0.117 0.235 0.104 0.098 −0.036
0.184 −0.039 0.063 −0.160 0.159 0.097 0.065 0.192 0.476 −0.139 0.230 0.239 0.236 0.106
0.040 0.047 −0.039 0.099 −0.151 −0.203 0.039 −0.117 −0.139 0.419 −0.132 −0.049 −0.042 −0.105
0.056 −0.011 0.010 −0.215 0.220 0.081 −0.009 0.235 0.230 −0.132 0.416 0.143 0.123 0.024
0.204 −0.254 0.144 −0.226 0.095 0.016 −0.030 0.104 0.239 −0.049 0.143 0.538 0.486 0.211
0.193 −0.225 0.107 −0.210 0.067 0.052 −0.023 0.098 0.236 −0.042 0.123 0.486 0.493 0.227
−0.077 − 0.149 −0.142 −0.111 −0.012 0.221 −0.050 −0.036 0.106 −0.105 0.024 0.211 0.227 0.396


.

By means of a random sample of size 5000 from the normal N14(0, Ṽn) distribution we
obtain the simulation estimate of the constant from (3.9)

cr0.05(Ṽn) = 2.0172.

From these quantities the confidence region In(Ṽn) from (3.10) based on (2.6) equals

τ(5, 1) ∈ (−0.205, 0.320), τ(5, 2) ∈ (−0.001, 0.524), τ(5, 3) ∈ (−0.356, 0.170),
τ(5, 4) ∈ (0.003, 0.528), τ(5, 6) ∈ (−0.631,−0.106), τ(5, 7) ∈ (−0.086, 0.440),
τ(5, 8) ∈ (0.166, 0.692), τ(5, 9) ∈ (−0.495, 0.030), τ(5, 10) ∈ (−0.199, 0.326),
τ(5, 11) ∈ (−0.009, 0.516), τ(5, 12) ∈ (−0.420, 0.105), τ(5, 13) ∈ (−0.037, 0.488),
τ(5, 14) ∈ (0.0343, 0.560), τ(5, 15) ∈ (0.077, 0.602).

Thus the multiple comparisons rule detects (5, 4), (5, 6), (5, 8), (5, 14), (5, 15) as the
pairs of indexes of dependent coordinate random variables, because the corresponding
subintervals of the multivariate confidence region do not contain zero.

Since the computation of the interval ITd,n(Ṽn) requires the computation of all
15 × 14/2 = 105 Kendall’s correlation coefficients τ(i, j), 1 ≤ i < j ≤ 15 and the
computation of the 105 × 105 matrix Ṽn, we present only the final numerical results.
For these data

Td,n = 0.0764, σn = 0.1295

and therefore an asymptotic 95% confidence interval for the coefficient agreement is

Td ∈ (0.043, 0.110).

4. SOME SIMULATION RESULTS ON CONFIDENCE REGIONS

All simulations estimates presented in this section are carried out by means of MATLAB.
They are based on N = 5000 trials and the nominal probability of coverage is 1−α = 0.95
in each case.

Let Ψ be the mapping (3.5). In the following tables simulation estimates of the
probability of the coverage P (τ ∈ In(An)) of the population Kendall’s correlation coef-
ficient (3.6 ) by the multivariate rectangle (3.10) are presented. The tables include also
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simulation estimates of the mean of the length of this multivariate interval and simula-
tion estimates concerning the coefficient of agreement. By the length of (3.10) we mean
the number le(In(An)) = 2 crα(A)√

n
and by the length of ITd,n(An) from (3.24) we mean

the number le(ITd,n(An)) = 2g1−α/2σn/
√
n. The symbol σ(ξ) denotes the simulation

estimate of the standard deviation of the random variable ξ.
In accordance with the previous text, Ṽn denotes the matrix defined by means of

(3.5) and (2.6), V̂n denotes the matrix defined by means of (3.5) and (2.8), (2.9).
An explicit formula for the value of Kendall’s tau is available for a special type of

distributions, known as meta-elliptical distributions (studied in [7], [1] and in the pa-
pers quoted ibidem). Suppose that W is a symmetric positive definite d × d matrix
and X has the normal Nd(0,W) distribution or the multivariate td(0,W, ν) distri-
bution with ν degrees of freedom (having the density f(x) = det(W)−1/2K(d, ν)(1 +
x>W−1x/ν)−(ν+d)/2, which includes the multivariate Cauchy distributions determined
with this density when ν=1). Since the Kendall’s coefficient is invariant under mono-
tone increasing transformations of the coordinate random variables, it follows from the
properties of the meta-elliptical distributions that the population Kendall’s coefficient
of X

τ(i, j) =
2
π

arcsin
( W(i, j)√

W(i, i)W(j, j)

)
, i, j = 1, . . . , d, (4.1)

where W(i, j) denotes the element of W on the position (i, j).
For r ∈ (0, 1) let Σd(r) denote the d × d matrix having on the position (i, j) the

number 1 if i = j and r otherwise, i. e., Σd(r) corresponds to the equicorrelated case.
Note that according to Section 1f, Exercise 1.1 of [13] this matrix is positive definite
provided that −1/(d− 1) < r < 1.

Now we assume that d = 7 and(
`1 `2 . . . `s
u1 u2 . . . us

)
=
(

1 1 1 1 2 2 2 2 3 3 3 3
4 5 6 7 4 5 6 7 4 5 6 7

)
,

i. e., the dimension of the vector of Kendall’s correlation coefficients (3.4) is s = 12.
Further, let

W = KK>, K =


1 0 0 0 0 0 0
r 1 0 0 0 0 0
r2 r 1 0 0 0 0
r3 r2 r 1 0 0 0
r4 r3 r2 r 1 0 0
r5 r4 r3 r2 r 1 0
r6 r5 r4 r3 r2 r 1

 , r = 0.7,

i. e., W7 is an autoregressive matrix of order 1. For this matrix the Kendall coefficients
(4.1) in τ = (τ(1, 4), τ(1, 5), τ(1, 6), τ(1, 7), τ(2, 4), τ(2, 5), τ(2, 6), τ(2, 7), τ(3, 4), τ(3, 5), τ(3, 6), τ(3, 7))′

are
τ(1, 4) = 0.1624 τ(1, 5) = 0.1113 τ(1, 6) = 0.0771 τ(1, 7) = 0.0537
τ(2, 4) = 0.2901 τ(2, 5) = 0.1962 τ(2, 6) = 0.1352 τ(2, 7) = 0.0939
τ(3, 4) = 0.4737 τ(3, 5) = 0.3093 τ(3, 6) = 0.2104 τ(3, 7) = 0.1453

and the coefficient of agreement Td = 0.2696.
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r -0.16 0 0.40 0.80 0.99
P (τ ∈ In(Ṽn)) 0.957 0.960 0.959 0.969 0.989
E( le(In(Ṽn)) ) 0.631 0.639 0.595 0.418 0.144
σ( le(In(Ṽn)) ) 0.019 0.018 0.029 0.050 0.024
P ( τ ∈ In(V̂n) ) 0.968 0.973 0.972 0.980 0.996
E( le(In(V̂n)) ) 0.654 0.662 0.618 0.443 0.164
σ( le(In(V̂n)) ) 0.018 0.017 0.028 0.048 0.024
P (Td ∈ ITd,n(Ṽn) ) 0.982 0.927 0.937 0.934 0.954
E( le(ITd,n(Ṽn)) ) 0.019 0.092 0.200 0.186 0.066
σ( le(ITd,n(Ṽn)) ) 0.003 0.020 0.024 0.032 0.016
P (Td ∈ ITd,n(V̂n) ) 0.993 0.938 0.941 0.947 0.982
E( le(ITd,n(V̂n)) ) 0.023 0.096 0.205 0.195 0.076
σ( le(ITd,n(V̂n)) ) 0.003 0.020 0.023 0.030 0.015

Tab. 1. Sampling from multivariate normal N7(0,Σ7(r))

distribution, n = 40.

r -0.16 0 0.40 0.80 0.99
P (τ ∈ In(Ṽn)) 0.949 0.946 0.953 0.962 0.956
E( le(In(Ṽn)) ) 0.788 0.795 0.756 0.583 0.212
σ( le(In(Ṽn)) ) 0.029 0.028 0.037 0.070 0.084
P ( τ ∈ In(V̂n) ) 0.957 0.955 0.960 0.970 0.979
E( le(In(V̂n)) ) 0.803 0.810 0.771 0.598 0.225
σ( le(In(V̂n)) ) 0.027 0.027 0.036 0.069 0.082
P (Td ∈ ITd,n(Ṽn) ) 0.905 0.895 0.927 0.932 0.886
E( le(ITd,n(Ṽn)) ) 0.033 0.114 0.241 0.250 0.097
σ( le(ITd,n(Ṽn)) ) 0.012 0.035 0.032 0.030 0.039
P (Td ∈ ITd,n(V̂n) ) 0.926 0.900 0.931 0.937 0.912
E( le(ITd,n(V̂n)) ) 0.035 0.116 0.244 0.255 0.103
σ( le(ITd,n(V̂n)) ) 0.011 0.034 0.031 0.029 0.037

Tab. 2. Sampling from multivariate Cauchy t7(0,Σ7(r), 1)

distribution, n = 40.

The simulation estimates suggest that for both methods (based either on Ṽn or on
V̂n) the probability of the coverage is approximately the same but the use of Ṽn yields
better length.
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n 30 40 50 60 80 100
P (τ ∈ In(Ṽn)) 0.960 0.954 0.956 0.951 0.947 0.948
E( le(In(Ṽn)) ) 0.708 0.601 0.531 0.480 0.412 0.366
σ( le(In(Ṽn)) ) 0.039 0.029 0.023 0.019 0.015 0.012
P ( τ ∈ In(V̂n) ) 0.974 0.966 0.967 0.961 0.954 0.955
E( le(In(V̂n)) ) 0.743 0.625 0.548 0.494 0.420 0.372
σ( le(In(V̂n)) ) 0.037 0.028 0.023 0.019 0.014 0.012
P (Td ∈ ITd,n(Ṽn) ) 0.932 0.937 0.937 0.938 0.940 0.940
E( le(ITd,n(Ṽn)) ) 0.234 0.202 0.180 0.164 0.142 0.127
σ( le(ITd,n(Ṽn)) ) 0.032 0.024 0.019 0.015 0.011 0.009
P (Td ∈ ITd,n(V̂n) ) 0.942 0.944 0.942 0.942 0.943 0.943
E( le(ITd,n(V̂n)) ) 0.243 0.207 0.184 0.167 0.144 0.128
σ( le(ITd,n(V̂n)) ) 0.030 0.023 0.018 0.015 0.011 0.009

Tab. 3. Sampling from the multivariate normal N7(0,W)

distribution.

n 30 40 50 60 80 100
P (τ ∈ In(Ṽn)) 0.948 0.948 0.949 0.947 0.945 0.953
E( le(In(Ṽn)) ) 0.879 0.759 0.680 0.620 0.537 0.480
σ( le(In(Ṽn)) ) 0.045 0.035 0.028 0.024 0.018 0.015
P ( τ ∈ In(V̂n) ) 0.958 0.957 0.955 0.954 0.950 0.957
E( le(In(V̂n)) ) 0.902 0.775 0.691 0.629 0.543 0.484
σ( le(In(V̂n)) ) 0.044 0.034 0.027 0.023 0.018 0.015
P (Td ∈ ITd,n(Ṽn) ) 0.919 0.929 0.929 0.939 0.941 0.938
E( le(ITd,n(Ṽn)) ) 0.280 0.244 0.219 0.201 0.174 0.156
σ( le(ITd,n(Ṽn)) ) 0.043 0.031 0.025 0.020 0.015 0.013
P (Td ∈ ITd,n(Ṽn) ) 0.924 0.934 0.934 0.940 0.943 0.940
E( le(ITd,n(Ṽn)) ) 0.286 0.248 0.221 0.203 0.175 0.157
σ( le(ITd,n(Ṽn)) ) 0.042 0.031 0.025 0.020 0.015 0.012

Tab. 4. Sampling from multivariate Cauchy t7(0,W, 1) distribution.
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