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KYBER NET IKA — VOLUM E 5 2 ( 2 0 1 6 ) , NUMBE R 2 , P AGES 3 0 7 – 3 2 8

MAXIMAL INEQUALITIES AND SOME CONVERGENCE
THEOREMS FOR FUZZY RANDOM VARIABLES

Hamed Ahmadzade, Mohammad Amini, Seyed Mahmoud Taheri and
Abolghasem Bozorgnia

Some maximal inequalities for quadratic forms of independent and linearly negative quadrant
dependent fuzzy random variables are established. Strong convergence of such quadratic forms
are proved based on the martingale theory. A weak law of large numbers for linearly negative
quadrant dependent fuzzy random variables is stated and proved.

Keywords: fuzzy random variable, quadratic form, linearly negative quadrant dependence,
law of large numbers, almost surely convergence
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1. INTRODUCTION

In recent years, the theory of fuzzy random variables have been extensively studied in
various area. A fuzzy random variable has been extended as a vague perception of a
real valued random variable and subsequently redefined as a particular random set, see
e. g. [23, 24, 30], and [32]. Since, in this article, we focus on convergence properties
of fuzzy random variables and maximal inequalities for such random variables, let us
breifly review some works related to these topics. For the first time, a strong law of large
numbers for fuzzy random variables was given by Miyakoshi and Shimbo [25]. Klement
et al. [20] established a strong law of large numbers for fuzzy random variables, based
on embedding theorem as well as certain probability techniques in the Banach spaces.
Taylor et al. [36] proved a weak law of large numbers for fuzzy random variables in
separable Banach spaces. Joo et al. [19] obtained Chung’s type strong law of large
numbers for fuzzy random variables based on isomorphic isometric embedding theorem.
Hong [17] derived a strong law of large number for level-wise independent and level-wise
identically distributed fuzzy random variables. Hong and Kim [18] established a weak
law of large number of independent and identically distributed fuzzy random variables.
Fu and Zhang [13] obtained some strong limit theorems for fuzzy random variables with
slowly varying weight. It should be mentioned that, although the concept of variance
has been found very convenient in studying limit theorems, but, as the authors know,
it has not been developed the limit theorems for fuzzy random variables based on the
concept of variance, except the works by Korner [22] and Feng [10]. Korner [22] proved
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strong and weak laws of large numbers for fuzzy random variables. Based on a nat-
ural extension of the concept of variance, he extended the Kolmogorov’s inequality to
independent fuzzy random variables and obtained some limit theorems. His method
is a direct application of classical methods in probability theory to fuzzy random vari-
ables. Based on this method, Ahmadzade et al. [1] established some limit theorems for
independent fuzzy random variables. As everyone knows, selecting of suitable metric
spaces plays important role in studying of convergence theorems. Thus, Ahmadzade et
al. [2] derived several convergence theorems for fuzzy martingales based on Dp,q-metric.
Furthermore, Parchami et al. [29] obtained a consistent confidence interval for fuzzy
capability index. On the other hand, there are many authors who have devoted their
studies to maximal inequalities and almost sure (a.s.) convergence of quadratic forms of
random variables. For instance, Cuzich et al. [4] and Zhang [41] provided the sufficient
and necessary conditions for the strong law of large numbers of sequence of quadratic
forms. Gadidov [14] proved two Rosenthal-type inequalities of sums of products for
independent and identically distributed random variables. Shanchao [34] improved the
corresponding ones in Gadidov [14]. Eghbal et al. [5, 6] obtained some maximal in-
equalities for quadratic forms of negative superadditive dependence random variables
and investigated Kolmogorov inequalities for quadratic forms of dependent uniformly
bounded random variables. Quadratic forms of fuzzy random variables and their appli-
cations to linear model and regression analysis are studied by Viertl [37]. The concept
of linearly negative quadrant dependent sequence was introduced and investigated by
Newman [27]. Some applications for linearly negative quadrant dependent sequence have
been found; see, for example, the work by Newman who established the central limit
theorem for a strictly stationary process. Wang and Zhang [39] provided uniform rates
of convergence in the central limit theorem for linearly negative quadrant dependent
sequence. Ko et al. [21] obtained the Hoeffding-type inequality for linearly negative
quadrant dependent sequence. They studied the strong convergence for weighted sums
of linearly negative quadrant dependent arrays. Fu and Wu [12] studied the almost sure
central limit theorem for linearly negative quadrant dependent sequences. In this arti-
cle, for the first time, we investigate some well known maximal inequalities for quadratic
form of independent fuzzy random variables. Moreover, we introduce the concept of
linearly negative quadrant dependence for fuzzy random variables, and study some limit
theorems for such random variables.

The structure of this paper is as follows. In Section 2, we recall some preliminaries of
fuzzy arithmetic and fuzzy random variables. Section 3 provides the maximal inequali-
ties for quadratic form T̃n = ⊕1≤i<j≤nX̃i ⊗ X̃j and randomly weighted quadratic form
W̃n = ⊕1≤i<j≤nYijX̃i ⊗ X̃j , where {X̃i, i ≥ 1} is a sequence of independent fuzzy ran-
dom variables and {Yi,j ; 1 ≤ i < j ≤ n} is an array of non-negative real-valued random
variables such that the sequences {Yi,j ; 1 ≤ i < j ≤ n} and {X̃n;n ≥ 1} are independent.
In Section 4, we introduce the concepts of negative dependence and linearly negative
quadrant dependence and obtain some maximal inequalities for fuzzy random variables.
In Section 5, a weak law of large numbers for linearly negative quadrant dependent fuzzy
random variables is stated and proved. In last section, some conclusions are provided.
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2. PRELIMINARIES

In this section, we provide some definitions and elementary concepts of fuzzy set theory
that will be used in the next sections. For more details, the reader is referred to [11, 26,
37].

Define E = {ũ : R → [0, 1]|ũ satisfies (i) – (iii)}; where (i) ũ is normal, (ii) ũ is fuzzy
convex, and (iii) ũ is upper semi-continuous. Any ũ ∈ E is called a fuzzy number. A
fuzzy number u is called non-negative if ũ(x) = 0, ∀x < 0. The set of all non-negative
fuzzy numbers is denoted by E+. For ũ ∈ E, [ũ]r = {x ∈ R|ũ(x) ≥ r}, 0 < r ≤ 1 is
r-level set of u. Let ũ, ṽ ∈ E, and set

d∞(ũ, ṽ) = sup
0<r≤1

h([ũ]r, [ṽ]r),

where h is Hausdorff metric i. e.

h([ũ]r, [ṽ]r) = max{|ũ−(r)− ṽ−(r)|, |ũ+(r)− ṽ+(r)|}.

The norm of u is defined by ||ũ||∞ = d∞(ũ, 0̃) where 0̃ is the fuzzy number in E whose
membership function equals 1 at 0 and zero otherwise. In fact, d∞ is a metric in E i. e.
for x, y, z in E, d∞ satisfies the following conditions [30]

i) d∞(x, y) ≥ 0,

ii) d∞(x, y) = 0 iff x = y,

iii) d∞(x, z) ≤ d∞(x, y) + d∞(y, z).

Definition 2.1. (Sadeghpour-Gildeh and Gien [33]) Let ũ and ṽ be two fuzzy random
numbers, for all r ∈ [0, 1] we use the Minkowski sum of two set and we have ([ũ⊕ ṽ]r =
[ũ−(r)+ ṽ−(r), ũ+(r)+ ṽ+(r)]; and [ũ	 ṽ]r = [ũ−(r)− ṽ+(r), ũ+(r)− ṽ−(r)] : If λ ∈ R+,
we have [λ� ũ]r = [λũ−(r), λũ+(r)]; and [λ� ũ]r = [λũ+(r), λũ−(r)]; if λ < 0. If ũ and
ṽ be non-negative ( ũ; ṽ ∈ E+), then [ũ⊗ ṽ] = [ũ−(r).ṽ−(r), ũ+(r).ṽ+(r)].

The operation 〈·, ·〉 : E × E → [−∞,∞] is defined by

〈ũ, ṽ〉 =
∫ 1

0

(ũ−(r)ṽ−(r) + ũ+(r)ṽ+(r)) dr.

If the indeterminacy of the form∞−∞ arises in the Lebesgue integral, then we say that
〈ũ, ṽ〉 does not exist. It is easy to see that the operation 〈·, ·〉 has following properties:

(i) 〈ũ, ũ〉 ≥ 0 and 〈ũ, ũ〉 = 0⇔ u = 0̃,
(ii) 〈ũ, ṽ〉 = 〈ṽ, ũ〉,
(iii) 〈ũ+ ṽ, w̃〉 = 〈ũ, w̃〉+ 〈ṽ, w̃〉,
(iv) 〈λũ, ṽ〉 = λ〈ũ, ṽ〉,
(v) |〈ũ, ṽ〉| <

√
〈ũ, ũ〉〈ṽ, ṽ〉.
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For all ũ, ṽ ∈ E, if 〈ũ, ũ〉 < ∞ and 〈ṽ, ṽ〉 < ∞ then the property (v) implies that
〈ũ, ṽ〉 <∞. So, we can define

d∗(ũ, ṽ) =
√
〈ũ, ũ〉 − 2〈ũ, ṽ〉+ 〈ṽ, ṽ〉.

In fact, d∗ is a metric in {ũ ∈ E|〈ũ, ũ〉 <∞} i. e. for x̃, ỹ, z̃ in E, the metric d∗ satisfies
the following conditions.

i) d∗(x̃, ỹ) ≥ 0

ii) d∗(x̃, ỹ) = 0 iff x̃ = ỹ,

iii) d∗(x̃, z̃) ≤ d∗(x̃, ỹ) + d∗(ỹ, z̃) (subadditivity or triangle inequality).

Moreover, the norm ||ũ||∗ of fuzzy number ũ ∈ E is defined by ||ũ||∗ = d∗(ũ, 0̃).

Definition 2.2. (Sadeghpour-Gildeh and Gien [33]) The Dp,q distance, indexed by
parameters 1 ≤ p ≤ ∞, 0 ≤ q ≤ 1, between two fuzzy numbers ũ and ṽ is a nonnegative
function on E × E given as follows

Dp,q(ũ, ṽ) =
[
(1− q)

∫ 1

0

|ũ−(r)− ṽ−(r)|p dr + q

∫ 1

0

|ũ+(r)− ṽ+(r)|p dr
] 1
p

.

To prove main results we need to apply an order relation. Thus, we use notations ≺,
�, � and � which mean [37]

ã ≺ b̃ if and only if ã−(r) < b̃−(r) and ã+(r) < b̃+(r) ∀r ∈ [0, 1],

ã � b̃ if and only if ã−(r) > b̃−(r) and ã+(r) > b̃+(r) ∀r ∈ [0, 1],

ã � b̃ if and only if ã−(r) ≤ b̃−(r) and ã+(r) ≤ b̃+(r) ∀r ∈ [0, 1],

ã � b̃ if and only if ã−(r) ≥ b̃−(r) and ã+(r) ≥ b̃+(r) ∀r ∈ [0, 1].

Let (Ω,A, P ) be a complete probability space. A fuzzy random variable (briefly:
f.r.v.) is a Borel measurable function X̃ : (Ω,A) → (E, d∞) [11]. Let X̃ be a f.r.v. is
defined on (Ω,A, P ) then [X̃]r = [X̃−(r), X̃+(r)], r ∈ (0, 1], is a random closed interval,
and X̃−(r) and X̃+(r) are real valued random variables. A f.r.v. X̃ is called integrably
bounded if E||X̃||∞ <∞ and the expectation value EX̃ is defined as the unique fuzzy
number which satisfies the property [EX̃]r = E[X̃]r, 0 < r ≤ 1 [30].

Definition 2.3. (Feng et al. [11]) Let X̃ and Ỹ be two f.r.v.’s in L2 (L2 = {X̃|X̃ is
f.r.v. and E||X̃||22 <∞}). The covariance of X̃ and Ỹ is defined as

Cov(X̃, Ỹ ) =
1
2

∫ 1

0

(Cov(X̃−(r), Ỹ −(r)) + Cov(X̃+(r), Ỹ +(r))) dr.

Specially, the variance of X̃ is defined by V ar(X̃) = Cov(X̃, X̃).
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Theorem 2.4. (Feng et al. [11]) Let X̃ and Ỹ be f.r.v.’s in L2 and ũ, ṽ ∈ E and λ ∈ R,
then

(i) Cov(X̃, Ỹ ) =
1
2

(E〈X̃, Ỹ 〉 − 〈EX̃,EỸ 〉)

(ii) V ar(X̃) =
1
2
Ed2
∗(X̃, EX̃)

(iii) Cov(λX̃ ⊕ ũ, kỸ ⊕ ṽ) = λkCov(X̃, Ỹ )
(iv) V ar(λX̃ ⊕ ũ) = λ2V ar(X̃);
(v) V ar(X̃ ⊕ Ỹ ) = V ar(X̃) + V ar(Ỹ ) + 2Cov(X̃, Ỹ ).

The following Lemma which is due to Hoeffding shows the relationship between quadrant
dependent and correlated real valued random variables.

Lemma 2.5. (Hoeffding [16]) Let X and Y be real valued random variables with joint
distribution F and margins F1 and F2, respectively, then

Cov(X,Y ) =
∫ ∞
−∞

∫ ∞
−∞
{F (x, y)− F1(x)F2(y)}dxdy

=
∫ ∞
−∞

∫ ∞
−∞
{P (X > x, Y > y)− P (X > x)P (Y > y)}dxdy.

Definition 2.6. (Wu [40]) Two fuzzy random variables X̃ and Ỹ are called independent
if two σ-fields σ(X̃) = σ({X̃−(r), X̃+(r)|r ∈ [0, 1]}) and σ(Ỹ ) = σ({Ỹ −(r), Ỹ +(r)|r ∈
[0, 1]}) are independent.

Definition 2.7. (Feng [9]) A fuzzy conditional expectation of X̃ with respect to the
sub-σ field B of A, denoted as E(X̃|B), is defined as a f.r.v. which satisfies in the
following conditions

i) E(X̃|B) is B- measurable.

ii)
∫
B
E(X̃|B) dP =

∫
B
X̃ dP for every B ∈ B.

Note that
∫
B
X̃ dP is a Aumann integral of the f.r.v. X̃ [3].

Proposition 2.8. (Feng [9]) The fuzzy conditional expectation has the following prop-
erties

1) E(a� X̃ ⊕ b� Ỹ |B) = a� E(X̃|B)⊕ b� E(Ỹ |B) a.s.

2) X̃ is B-measurable, then E(X̃|B) = X̃ a.s.

3) EE(X̃|B) = EX̃

4) If X̃ � Ỹ a.s. then E(X̃|B) � E(Ỹ |B) a.s.

5) d∞(E(X̃|B), E(Ỹ |B)) ≤ E(d∞(X̃, Ỹ )|B) a.s., and consequently

||E(X̃|B)||∞ ≤ E(||X̃||∞|B) a.s. (1)



312 H. AHMADZADE ET AL.

Definition 2.9. (Feng [9]) The sequence {X̃n,Bn} of fuzzy random variables and σ-
algebras is called a fuzzy martingale if we have, for each n ≥ 1:

a) X̃n is Bn-measurable and E||X̃n||∞ <∞

b) E(X̃n+1|Bn) = X̃n.

The sequence {X̃n,Bn} is called a fuzzy sub-martingale, if property (b) is replaced by

b’) E(X̃n+1|Bn) � X̃n.

For more on fuzzy martingale and related topics, see e. g. [7, 8, 9].

Definition 2.10. (Wu [40]) Let X̃ and X̃n be f.r.v.’s defined on the same probability
space (Ω,A, P ). i) We say that {X̃n} converges to X̃ in probability with respect to the
metric d if

lim
n→∞

P (ω : d(X̃n(ω), X̃(ω)) > ε) = 0, ∀ε > 0.

ii) We say that {X̃n} converges to X̃ almost surely (briefly: a.s.) with respect to the
metric d, if

P
(
ω : lim

n→∞
d(X̃n(ω), X̃(ω)) = 0

)
= 1.

3. MAXIMAL INEQUALITY OF QUADRATIC FORMS

In this section, we prove some maximal inequalities for T̃n = ⊕1≤i<j≤nX̃i ⊗ X̃j and
W̃n = ⊕1≤i<j≤nYij{X̃i ⊗ X̃j}, where {X̃i, i ≥ 1} is a sequence of independent fuzzy
random variables and {Yi,j ; 1 ≤ i < j ≤ n} be an array of non-negative real valued
random variables such that the sequences {Yi,j ; 1 ≤ i < j ≤ n} and {X̃n;n ≥ 1} are
independent. First, we extend the Doob’s maximal inequality to f.r.v.’s.

Lemma 3.1. (Doob’s maximal inequality for fuzzy random variables)

i) If {X̃n,Fn} is a fuzzy martingale, then

E
(

max
1≤k≤n

||X̃k||∞
)r
≤
( r

r − 1

)r
E||X̃n||r∞, r > 1.

ii) If {X̃n,Fn|X̃n ∈ E+} is a fuzzy submartingale, then

E
(

max
1≤k≤n

||X̃k||∞
)r
≤
( r

r − 1

)r
E||X̃n||r∞, r > 1.

P r o o f . i) Definition of fuzzy martingale implies that E(X̃n+1|Fn) = X̃n. By tak-
ing norm and invoking (1), we have E(||X̃n+1||∞|Fn) ≥ ||X̃n||∞. This shows that
{||X̃n||∞,Fn} is a real valued submartingale, thus we can use the ordinary Doob’s max-
imal inequality to prove the claim.

ii) By definition of fuzzy submartingale, we have E(X̃n+1|Fn) � X̃n. Since X̃i ∈ E+),
taking norm and using (1) imply that E(||X̃n+1||∞|Fn) ≥ ||X̃n||∞. Now, using the
Doob’s maximal inequality, the proof is complete. �
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Corollary 3.2. If {X̃n, n ≥ 1} is a sequence of non-negative f.r.v.’s, then

E
(

max
1≤k≤n

||S̃k||∞
)r
≤
( r

r − 1

)r
E||S̃n||r∞, r > 1,

where S̃n = ⊕ni=1X̃i.

Theorem 3.3. Let {X̃i|X̃i ∈ E+; i ≥ 1} be a sequence of independent f.r.v.’s with
E||X̃i||∞ <∞, for all i ≥ 1 and some 1 < r ≤ 2. Then for every ε > 0

P
(

max
2≤k≤n

||T̃k||∞ > ε
)
≤ C

( r

ε(r − 1)

)r( n∑
j=2

E||X̃j ||r∞
j−1∑
i=1

E||X̃i||r∞
)
,

where T̃k = ⊕1≤i<j≤kX̃i ⊗ X̃j , and C is a positive constant depends only on r.

P r o o f . Since X̃i belongs to E+ for each i, and T̃n+1 = T̃n⊕ X̃n+1⊗ (⊕ni=1X̃i), so, by
Definition 2.10, {T̃n,Fn} is a fuzzy sub-martingale, i. e. E(T̃n+1|Fn) � T̃n. By invoking
part(ii) of Lemma 3.1, we obtain

E
(

max
1≤k≤n

||T̃k||∞
)r
≤
( r

r − 1

)r
E(||T̃n||∞)r, 1 < r ≤ 2. (2)

So, by using the Markov inequality and relation (2) , we have

P
(

max
1≤k≤n

||T̃k||∞ > ε
)
≤ 1

εr
E
(

max
1≤k≤n

||T̃k||∞
)r

≤ 1
εr

( r

r − 1

)r
E(||T̃n||∞)r, 1 < r ≤ 2.

But

E||T̃n||r∞ ≤ E
( n∑
j=2

||X̃j ||∞||S̃j−1||∞
)r

≤ Dr

n∑
j=2

E||X̃j ||r∞E||S̃j−1||r∞

≤ D2
r

n∑
j=2

E||X̃j ||r∞
j−1∑
i=1

E||X̃i||r∞, 1 < r ≤ 2.

This completes the proof. �

Theorem 3.4. Let {X̃i|X̃i ∈ E+; i ≥ 1} be a sequence of non-negative independent
fuzzy random variables with E||X̃i||r∞ < ∞ for all i and some 1 < r ≤ 2. If for some
1 < r ≤ 2,

∑∞
j=2E||X̃j ||r∞

∑j−1
i=1 E||X̃i||r∞ < ∞, then ⊕i<j≤n{X̃i ⊗ X̃j} converges a.s.

with respect to the metric d∞.
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P r o o f . By using Theorem 3.3, for any ε > 0, we obtain

P
(

max
1≤k≤m

d∞(T̃n+k, T̃n) > ε
)

= P
(

max
1≤k≤m

|| ⊕n<i<j≤k X̃i ⊗ X̃j ||∞
)

≤ C
( r

ε(r − 1)

)r( n+m∑
j=n+1

E||X̃j ||r∞
j−1∑
i=1

E||X̃i||r∞
)
,

where C is a non-negative constant depends only on r. Letting m → ∞ and n → ∞,
we have

lim
n→∞

lim
m→∞

P
(

max
1≤k≤m

d∞(T̃n+k, T̃n) > ε)

≤ lim
n→∞

lim
m→∞

C
( r

ε(r − 1)

)r( n+m∑
j=n+1

E||X̃j ||r∞
j−1∑
i=1

E||X̃i||r∞
)
,

But, by the assumption, the right side is equal to zero, and this completes the proof.
�

Example 3.5. Let ũ be a fuzzy number with ||ũ||∞ = 1, and X̃n be a sequence of
independent f.r.v.’s such that P (X̃n = nũ) = 1

nα , P (X̃n = 0̃) = 1− 1
nα for α > 3. Then

∞∑
j=2

E||X̃j ||2∞
j−1∑
i=1

E||X̃i||2∞ =
∞∑
j=2

1
jα−2

j−1∑
i=1

1
iα−2

≤
∞∑
j=1

1
jα−2

1
jα−3

< ∞.

So, we can use the above theorem to conclude that ⊕i<j≤n{X̃i⊗X̃j} converges a.s. with
respect to the metric d∞.

In the following, we extend Theorem 3.4, to randomly weighted quadratic form of
f.r.v.’s.

Theorem 3.6. Let {X̃n|n ≥ 1} be a sequence of non-negative independent f.r.v.’s with
E||X̃n||r∞ < ∞ for all n and some 1 < r ≤ 2. Suppose that {Yi,j ; 1 ≤ i < j ≤
n} is an array of non-negative real valued random variables such that the sequences
{Yi,j ; 1 ≤ i < j ≤ n} and {X̃n;n ≥ 1} are independent. If for some 1 < r ≤ 2,∑∞
j=2E||X̃j ||r∞

∑j−1
i=1 EY

r
i,jE||X̃i||r∞ < ∞, then W̃n = ⊕i<j≤nYi,j{X̃i ⊗ X̃j} converges

a.s. with respect to metric d∞.

P r o o f . It is easy to show that {W̃n,Fn;n ≥ 1} is a non-negative fuzzy submartingale.
Similar to the proof of Theorem 3.3, we can obtain the maximal inequality, as follows.

E
(

max
1≤k≤n

||W̃k||∞
)r
≤
( r

r − 1

)r
E||W̃n||∞.

On the other hand, we have

E||W̃n||r∞ ≤ E
( n∑
j=2

||X̃j ||∞
j−1∑
i=1

Yij ||X̃i||∞
)r
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≤ Dr

n∑
j=1

E||X̃j ||r∞E
( j−1∑
i=1

Yij ||X̃i||∞
)r

≤ D2
r

n∑
j=2

E||X̃j ||r∞
j−1∑
i=1

EY rijE||X̃i||r∞.

Now, by applying similar the proof of Theorem 3.4, it can be shown that
⊕i<j≤nYi,j{X̃i ⊗ X̃j} converges a.s. with respect to metric d∞. �

Corollary 3.7. Under the assumptions of Theorem 3.6, let we have an array of non-
negative real numbers {ai,j ; 1 ≤ i < j ≤ n} instead of the array {Yi,j ; 1 ≤ i < j ≤ n}. If∑∞
j=2E||X̃j ||r∞

∑j−1
i=1 a

r
i,jE||X̃i||r∞ <∞, then ⊕i<j≤nai,j{X̃i ⊗ X̃j} converges a.s. with

respect to the metric d∞.

Corollary 3.8. Let {X̃n, n ≥ 1} be a sequence of independent f.r.v.’s with E||X̃n||∞ <

∞ for all n ≥ 1 and some 1 < r ≤ 2. If
∑∞
j=2

1
brj
E||X̃j ||r∞

∑j−1
i=1 E||X̃i||∞ < ∞. Then

1
bn
⊕i<j≤n {X̃i ⊗ X̃j} converges to 0̃ with respect to the metric d∞, where {bn;n ≥ 1}

is a sequence of positive increasing real numbers such that bn →∞ as n→∞.

Corollary 3.9. If for some 1 < r ≤ 2, E||X̃i||r∞ = O(i−α) for any 0 < α ≤ 1, b−1
n =

O(n−
β
r ) such that β > 2(1− α), then 1

bn
⊕i<j≤n {X̃i ⊗ X̃j} converges to 0̃ with respect

to the metric d∞.

4. MAXIMAL INEQUALITY AND LNQD F.R.V.’S

In this section, we introduce the concept of linearly negative quadrant dependence
(LNQD, for short) for f.r.v.’s. Then by invoking a maximal inequality, we obtain some
convergence theorems based on the metric Dp,q. In order to introduce the LNQD f.r.v.’s,
we need to introduce the concept of negatively dependent (ND, for short) for f.r.v.’s.

Definition 4.1. Two f.r.v.’s X̃ and Ỹ are said negatively dependent if for any Borel
sets B1 and B2 and all r ∈ (0, 1],

P ([X̃]r ⊂ B1, [Ỹ ]r ⊂ B2) ≤ P ([X̃]r ⊂ B1)P ([Ỹ ]r ⊂ B2),

where, P ([X̃]r ⊂ B) = P (ω : [X̃]r(ω) ⊂ B).

Remark 4.2. If X̃ and Ỹ reduce to real valued random variables and B1 = (−∞, x1] or
(x2,∞) and B2 = (−∞, y1] or (y2,+∞), definition 4.1 conclude the concept of negative
dependence in the case of real valued random variables. Note that, in the ordinary case,
two real valued random variables X and Y are said to be negatively dependent random
variables if

P (X ≤ x, Y ≤ y) ≤ P (X ≤ x)P (Y ≤ y) ∀ x and y ∈ R,

and consequently

P (X > x, Y > y) ≤ P (X > x)P (Y > y) ∀ x and y ∈ R.
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The following examples explain in the above definition.

Example 4.3. Suppose that two f.r.v.s X̃ and Ỹ have following probability functions,

P (X̃ = ṽ, Ỹ = ũ) =
3
10
, P (X̃ = ṽ, Ỹ = ṽ) =

2
10
,

P (X̃ = ũ, Ỹ = ṽ) =
3
10
, P (X̃ = ũ, Ỹ = ũ) =

2
10
,

where ũ and ṽ are fuzzy numbers with the following membership function respectively

µũ(x) =


x, 0 ≤ x < 1,
1, 1 ≤ x ≤ 2,
3− x, 2 < x < 3,
0, otherwise,

and

µṽ(x) =


2x− 2, 1 ≤ x < 3

2 ,

4− 2x, 3
2 ≤ x ≤ 2,

0, otherwise.

The membership functions of ũ and ṽ are presented in Figure 1. Then, X and Y are

Fig. 1. The membership functions of ũ and ṽ.

ND f.r.v.s. Since, for B1 = [x, y], (x, y], [x, y), (x, y), (x,+∞), [x,+∞), (−∞, y), (−∞, y]
where 1 ≤ x ≤ 3

2 and 3
2 ≤ y ≤ 2 also B2 = [z, w], (z, w], [z, w), (z, w), (z,+∞), [z,+∞),

(−∞, w), (−∞, w] where 1 ≤ z ≤ 3
2 and 3

2 ≤ w ≤ 2, we obtain

P ([X̃]r ⊂ B1, [Ỹ ]r ⊂ B2) = P (X̃ = ṽ, Ỹ = ṽ) =
2
10

< P ([X̃]r ⊂ B1)P ([Ỹ ]r ⊂ B2) = P (X̃ = ṽ)P (Ỹ = ṽ)

=
5
10
× 5

10
=

25
100

.
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For B3 = [x, y], (x, y], [x, y), (x, y), (x,+∞), [x,+∞), (−∞, y), (−∞, y]
where 0 ≤ x ≤ 1 and 2 ≤ y ≤ 3 also
B4 = [z, w], (z, w], [z, w), (z, w), (z,+∞), [z,+∞), (−∞, w), (−∞, w] where 0 ≤ z ≤ 1
and 2 ≤ w ≤ 3, we obtain

P ([X̃]r ⊂ B1, [Ỹ ]r ⊂ B3) = P (X̃ = ṽ, Ỹ = ṽ) + P (X̃ = ṽ, Ỹ = ũ) =
2
10

+
3
10

=
5
10

= P ([X̃]r ⊂ B1)P ([Ỹ ]r ⊂ B3)
= P (X̃ = ṽ){P (Ỹ = ũ) + P (Ỹ = ṽ)}

=
5
10
× 1.

Also,

P ([X̃]r ⊂ B3, [Ỹ ]r ⊂ B1)

= P (X̃ = ṽ, Ỹ = ṽ) + P (X̃ = ũ, Ỹ = ṽ)

=
2
10

+
3
10

=
5
10

= P ([X̃]r ⊂ B3)P ([Ỹ ]r ⊂ B1) = P (Ỹ = ṽ){P (X̃ = ũ) + P (X̃ = ṽ)}

=
5
10
× 1.

Furthermore,

P ([X̃]r ⊂ B3, [Ỹ ]r ⊂ B4) = P (X̃ = ṽ, Ỹ = ṽ) + P (X̃ = ũ, Ỹ = ṽ)
+P (X̃ = ṽ, Ỹ = ũ) + P (X̃ = ũ, Ỹ = ũ) = 1

= P ([X̃]r ⊂ B3)P ([Ỹ ]r ⊂ B4)
= {P (Ỹ = ṽ) + P (Ỹ = ũ)}{P (X̃ = ũ) + P (X̃ = ṽ)}
= 1× 1.

Example 4.4. If X̃ and Ỹ have following probability functions, then X̃ and Ỹ are ND
f.r.v.’s,

P (X̃ = ṽ, Ỹ = ṽ) = 0, P (X̃ = ṽ, Ỹ = ũ) =
1
9
,

P (X̃ = ṽ, Ỹ = w̃) =
2
9
, P (X̃ = ũ, Ỹ = ṽ) =

1
9
,

P (X̃ = ũ, Ỹ = ũ) =
1
9
, P (X̃ = ũ, Ỹ = w̃) = 0,

P (X̃ = w̃, Ỹ = ṽ) =
2
9
, P (X̃ = w̃, Ỹ = ũ) =

1
9

P (X̃ = w̃, Ỹ = w̃) =
1
9
.

where ũ and ṽ are fuzzy numbers with the following membership function respectively
(the membership functions of ũ, ṽ and w̃ are presented in Figure 2).
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Fig. 2. The membership functions of ũ, ṽ and w̃ in Example 2.

µũ(x) =


x, 0 ≤ x < 1,
1, 1 ≤ x ≤ 2,
3− x, 2 < x < 3,
0, otherwise,

and

µṽ(x) =


2x− 2, 1 ≤ x < 3

2 ,

4− 2x, 3
2 ≤ x ≤ 2,

0, otherwise.

And,

µw̃(x) =


2x, 0 ≤ x < 1

2 ,

1, 1
2 ≤ x ≤

5
2 ,

6− 2x, 5
2 < x < 3,

0, otherwise.

Since for B1 = [x, y], (x, y], [x, y), (x, y), (x,+∞), [x,+∞), (−∞, y), (−∞, y] where 1 ≤
x ≤ 3

2 and 3
2 ≤ y ≤ 2 also forB2 = [z, w], (z, w], [z, w), (z, w), (z,+∞), [z,+∞), (−∞, w),

(−∞, w] where 1 ≤ z ≤ 3
2 and 3

2 ≤ w ≤ 2, we obtain

P ([X̃]r ⊂ B1, [Ỹ ]r ⊂ B2) = P (X̃ = ṽ, Ỹ = ṽ) = 0

< P ([X̃]r ⊂ B1)P ([Ỹ ]r ⊂ B2) = P (X̃ = ṽ)P (Ỹ = ṽ) =
1
3
× 1

3
=

1
9
.

For B3 = [x, y], (x, y], [x, y), (x, y), (x,+∞), [x,+∞), (−∞, y), (−∞, y] where 1
2 ≤ x ≤

1 and 2 ≤ y ≤ 5
2 also for B4 = [z, w], (z, w], [z, w), (z, w), (z,+∞), [z,+∞), (−∞, w),

(−∞, w] where 1
2 ≤ z ≤ 1 and 2 ≤ w ≤ 5

2 , we obtain

P ([X̃]r ⊂ B1, [Ỹ ]r ⊂ B4) = P (X̃ = ṽ, Ỹ = ṽ) + P (X̃ = ṽ, Ỹ = ũ) = 0 +
1
9

=
1
9
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< P ([X̃]r ⊂ B1)P ([Ỹ ]r ⊂ B4)
= P (X̃ = ṽ){P (Ỹ = ũ) + P (Ỹ = ṽ)}

=
1
3
× 2

3
=

2
9
.

P ([X̃]r ⊂ B3, [Ỹ ]r ⊂ B4) = P (X̃ = ṽ, Ỹ = ṽ) + P (X̃ = ṽ, Ỹ = ũ)
+P (X̃ = ũ, Ỹ = ṽ) + P (X̃ = ũ, Ỹ = ũ)

= 0 +
1
9

+
1
9

+
1
9

=
9
27

< P ([X̃]r ⊂ B1)P ([Ỹ ]r ⊂ B3)
= {P (X̃ = ṽ) + P (X̃ = ũ)} × {P (Ỹ = ũ) + P (Ỹ = ṽ)}

=
5
9
× 2

3
=

10
27
.

For B5 = [x, y], (x, y], [x, y), (x, y), (x,+∞), [x,+∞), (−∞, y), (−∞, y] where 0 ≤ x ≤
1
2 and 5

2 ≤ y ≤ 3 also forB6 = [z, w], (z, w], [z, w), (z, w), (z,+∞), [z,+∞), (−∞, w), (−∞, w]
where 0 ≤ z ≤ 1

2 and 5
2 ≤ w ≤ 3, we obtain

P ([X̃]r ⊂ B1, [Ỹ ]r ⊂ B6) = P (X̃ = ṽ, Ỹ = ṽ) + P (X̃ = ṽ, Ỹ = ũ)
+P (X̃ = ṽ, Ỹ = w̃)

= 0 +
1
9

+
2
9

=
3
9

= P ([X̃]r ⊂ B1)P ([Ỹ ]r ⊂ B6)
= {P (X̃ = ṽ)} × {P (Ỹ = ũ) + P (Ỹ = ṽ) + P (Ỹ = w̃)}

=
1
3

=
3
9
.

P ([X̃]r ⊂ B3, [Ỹ ]r ⊂ B6) = P (X̃ = ṽ, Ỹ = ṽ) + P (X̃ = ṽ, Ỹ = ũ)
+P (X̃ = ṽ, Ỹ = w̃) + P (X̃ = ũ, Ỹ = ṽ)
+P (X̃ = ũ, Ỹ = ũ) + P (X̃ = ũ, Ỹ = w̃)

= 0 +
1
9

+
2
9

+
1
9

+
1
9

+ 0 =
5
9

< P ([X̃]r ⊂ B3)P ([Ỹ ]r ⊂ B6) = {P (X̃ = ṽ) + P (X̃ = ũ)}
×{P (Ỹ = ũ) + P (Ỹ = ṽ) + P (X̃ = w̃)}

=
2
3
× 1 =

6
9
.

P ([X̃]r ⊂ B5, [Ỹ ]r ⊂ B6) = 1
= P ([X̃]r ⊂ B5)P ([Ỹ ]r ⊂ B6) = 1× 1.

Proposition 4.5. Let (Ω,A, P ) be a complete probability space and X̃ and Ỹ be ND
f.r.v.’s. Then, X̃−(r) and Ỹ −(r) as well as X̃+(r) and Ỹ +(r) are ND real valued random
variables.
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P r o o f . For all x, y ∈ R and r ∈ (0, 1], we have

P (X̃−(r) > x, Ỹ −(r) > y) = P ([X̃]r ⊂ (x,∞), [Ỹ ]r ⊂ (y,∞))
≤ P ([X̃]r ⊂ (x,∞))P ([Ỹ ]r ⊂ (y,∞))
= P (X̃−(r) > x)P (Ỹ −(r) > y).

Also,

P (X̃−(r) ≤ x, Ỹ −(r) ≤ y) = P (X̃−(r) ≤ x)− P (X̃−(r) ≤ x, Ỹ −(r) > y)
= P (X̃−(r) ≤ x)− [P (Ỹ −(r) > y)− P (X̃−(r) > x, Ỹ −(r) > y)]
= 1− P (X̃−(r) > x)− P (Ỹ −(r) > y) + P (X̃−(r) > x, Ỹ −(r) > y)
≤ 1− P (X̃−(r) > x)− P (Ỹ −(r) > y) + P (X̃−(r) > x)P (Ỹ −(r) > y)
= 1− P (X̃−(r) > x)− P (Ỹ −(r) > y)[1− P (X̃−(r) > x)]
= [1− P (Ỹ −(r) > y)][1− P (X̃−(r) > x)]
= P (X̃−(r) ≤ x)P (Ỹ −(r) ≤ y).

A similar proof can be stated for X̃+(r) and Ỹ +(r). �

The converse of Proposition 4.5 is not necessarily correct.

Example 4.6. Let X̃ and Ỹ have the following probability mass

P (X̃ = −ũ, Ỹ = −ũ) = 0, P (X̃ = −ũ, Ỹ = ũ) =
1
2
,

P (X̃ = ũ, Ỹ = −ũ) =
1
2
, P (X̃ = ũ, Ỹ = ũ) = 0,

where,

µũ(x) =

 x, 0 < x ≤ 1,
2− x, 1 < x ≤ 2,
0, otherwise.

It is easy to see that X̃ and Ỹ are not ND f.r.v.’s, since

P
(

[X̃]r ⊂
[1

2
,

3
2

]
, [Ỹ ]r ⊂

[
− 3

2
,−1

2

])
=

1
2

> P
(

[Ỹ ]r ⊂
[
− 3

2
,−1

2

])
P
(

[X̃]r ⊂
[1

2
,

3
2

])
=

1
2
× 1

2
=

1
4
.

But, X̃+(r) and Ỹ +(r) are ND random variables also X̃−(r) and Ỹ −(r) are ND random
variables. Since, for x ∈ (−∞, 0) and y ∈ (−∞, 0)

P (X̃−(r) ≤ x, Ỹ −(r) ≤ y) = P (X̃ = −ũ, Ỹ = −ũ) = 0
< P (X̃−(r) ≤ x)P (Ỹ −(r) ≤ y)

= P (X̃ = −ũ)P (Ỹ = −ũ) =
1
2
× 1

2
=

1
4
.



Maximal inequalities and some convergence theorems for fuzzy random variables 321

Also, for x ∈ [0,∞) and y ∈ (−∞, 0)

P (X̃−(r) ≤ x, Ỹ −(r) ≤ y) = P (X̃ = −ũ, Ỹ = −ũ) + P (X̃ = ũ, Ỹ = −ũ)

= 0 +
1
2

= P (X̃−(r) ≤ x)P (Ỹ −(r) ≤ y)
= {P (X̃ = −ũ) + P (X̃ = ũ)} × P (Ỹ = −ũ)

=
(1

2
+

1
2

)
× 1

2
=

1
2
.

Also, for y ∈ [0,∞) and x ∈ (−∞, 0)

P (X̃−(r) ≤ x, Ỹ −(r) ≤ y) = P (X̃ = −ũ, Ỹ = −ũ) + P (X̃ = −ũ, Ỹ = ũ)

= 0 +
1
2

= P (X̃−(r) ≤ x)P (Ỹ −(r) ≤ y)
= {P (Ỹ = −ũ) + P (Ỹ = ũ)} × P (X̃ = −ũ)

=
(1

2
+

1
2

)
× 1

2
=

1
2
.

Finally, for y ∈ [0,∞) and x ∈ [0,∞)

P (X̃−(r) ≤ x, Ỹ −(r) ≤ y) = 1
= P (X̃−(r) ≤ x)P (Ỹ −(r) ≤ y) = 1× 1 = 1.

Proposition 4.7. Let X̃ and Ỹ be two f.r.v.’s, then

Cov(X̃, Ỹ ) =
1
2

∫ 1

0

∫ ∞
−∞

∫ ∞
−∞

P ([X̃]r ⊂ (x,∞), [Ỹ ]r ⊂ (y,∞))

− P ([X̃]r ⊂ (x,∞))P ([Ỹ ]r ⊂ (y,∞)) dxdydr

+
1
2

∫ 1

0

∫ ∞
−∞

∫ ∞
−∞

P ([X̃]r ⊂ (−∞, w), [Ỹ ]r ⊂ (−∞, z))

− P ([X̃]r ⊂ (−∞, w))P ([Ỹ ]r ⊂ (−∞, z)) dwdzdr.

P r o o f . By Definition 2.3, we have

Cov(X̃, Ỹ ) =
1
2

∫ 1

0

{Cov(X̃−(r), Ỹ −(r)) + Cov(X̃+(r), Ỹ +(r))} dr.

But, by Lemma 2.5,

Cov(X̃−(r), Ỹ −(r)) =
∫ ∞
−∞

∫ ∞
−∞

P (X̃−(r) > x, Ỹ −(r) > y) dxdy

−
∫ ∞
−∞

∫ ∞
−∞

P (X̃−(r) > x)P (Ỹ −(r) > y) dxdy
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=
∫ ∞
−∞

∫ ∞
−∞

P ([X̃]r ⊂ (x,∞), [Ỹ ]r ⊂ (y,∞)) dxdy

−
∫ ∞
−∞

∫ ∞
−∞

P ([X̃]r ⊂ (x,∞))P ([Ỹ ]r ⊂ (y,∞)) dxdy,

and

Cov(X̃+(r), Ỹ +(r)) =
∫ ∞
−∞

∫ ∞
−∞

P (X̃+(r) ≤ w, Ỹ +(r) ≤ z) dwdz

−
∫ ∞
−∞

∫ ∞
−∞

P (X̃+(r) ≤ w)P (Ỹ +(r) ≤ z) dwdz

=
∫ ∞
−∞

∫ ∞
−∞

P ([X̃]r ⊂ (−∞, w], [Ỹ ]r ⊂ (−∞, z]) dwdz

−
∫ ∞
−∞

∫ ∞
−∞

P ([X̃]r ⊂ (−∞, w])P ([Ỹ ]r ⊂ (−∞, z]) dwdz.

These complete the proof. �

Corollary 4.8. Let X̃ and Ỹ be two negatively dependent fuzzy random variables, then

i) Cov(X̃, Ỹ ) ≤ 0, ii) V ar(X̃ ⊕ Ỹ ) ≤ V ar(X̃) + V ar(Ỹ ), iii) E〈X̃, Ỹ 〉 ≤ 〈EX̃,EỸ 〉.

P r o o f . The proofs are straightforward. �

Example 4.9. If X̃ and Ỹ have following probability mass, then Cov(X̃, Ỹ ) ≤ 0,

P (X̃ = ṽ, Ỹ = ũ) =
1
2
, P (X̃ = ṽ, Ỹ = ṽ) = 0,

P (X̃ = ũ, Ỹ = ṽ) =
1
2
, P (X̃ = ũ, Ỹ = ũ) = 0,

where ũ and ṽ are fuzzy numbers with the following membership function respectively

µũ(x) =


x, 0 ≤ x < 1,
1, 1 ≤ x ≤ 2,
3− x, 2 < x < 3,
0, otherwise,

and

µṽ(x) =

 2x− 2, 1 ≤ x < 3
2 ,

4− 2x, 3
2 ≤ x ≤ 2,

0, otherwise.

By using a similar method of Example 4.3, it can be seen that X̃ and Ỹ are ND. Now,
we want to show that Cov(X̃, Ỹ ) ≤ 0. By invoking Definition , we must calculate
Cov(X̃+(r), Ỹ +(r)) and Cov(X̃−(r), Ỹ −(r)). It is easy to see that

ũ−(r) = r, ũ+(r) = 3− r, ṽ−(r) =
r

2
+ 1, ṽ+(r) = 2− r

2
.
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Thus,

Cov(X̃−(r), Ỹ −(r)) = r × r + 2
2
−
(r

2
+
r + 2

4

)2

,

Cov(X̃+(r), Ỹ +(r)) = (3− r)
(r + 2

2

)
−
(r

2
+
r + 2

4

)2

.

By using Proposition 4.7, we obtain

Cov(X̃, Ỹ ) =
1
2

∫ 1

0

{Cov(X̃−(r), Ỹ −(r)) + Cov(X̃+(r), Ỹ +(r))} dr = −7.34.

Definition 4.10. A sequence {X̃n, n ≥ 1} of f.r.v.’s is said to be LNQD if for any
disjoint subsets A,B ∈ Z+ and positive r′js, ⊕k∈ArkX̃k and ⊕j∈BrjX̃j are ND f.r.v.’s.

Lemma 4.11. Let (Ω,A, P ) be a complete probability space and {X̃n, n ≥ 1} be a se-
quence of LNQD f.r.v.’s. Then

∑
j∈B rjX̃

−
j (r) and

∑
k∈A rkX̃

−
k (r) as well as

∑
j∈B rjX̃

+
j (r)

and
∑
k∈A rkX̃

+
k (r) are ND real valued random variables and consequently the sequences

{X̃−n (r), n ≥ 1} and {X̃+
n (r), n ≥ 1} are sequences of LNQD real valued random vari-

ables, for all r ∈ (0, 1].

P r o o f . The proof can be done similar to that of Proposition 4.5. �

Theorem 4.12. Let {X̃n, n ≥ 1} be a LNQD f.r.v.’s sequence. Then for 1 < p < 2,
there exists a positive constant c such that

E[ max
1≤i≤n

Dp
p,q(S̃i, ES̃i)] ≤ cnp−1

n∑
i=1

E[Dp
p,q(X̃i, EX̃i)].

P r o o f . By using Fubini’s theorem [15, p.65], Lemma 4.11, Lemma 2.8. of [38], and

lp standard inequality (
(

1
n

∑n
i=1 xi

)p
≤ 1

n

∑n
i=1 x

p
i , ∀xi ∈ R), we obtain

E[ max
1≤i≤n

Dp
p,q(S̃i, ES̃i)]

= E[ max
1≤i≤n

(
∫ 1

0

(1− q)(S̃−i (r)− ES̃−i (r))p dr

+
∫ 1

0

q(S̃+
i (r)− ES̃+

i (r))p dr)]

≤ E[
∫ 1

0

(1− q) max
1≤i≤n

(S̃−i (r)− ES̃−i (r))p dr]

+E[
∫ 1

0

q max
1≤i≤n

(S̃+
i (r)− ES̃+

i (r))p dr]

=
∫ 1

0

(1− q)E[ max
1≤i≤n

(S̃−i (r)− ES̃−i (r))p] dr
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+
∫ 1

0

qE[ max
1≤i≤n

(S̃+
i (r)− ES̃+

i (r))p] dr

≤
∫ 1

0

c(1− q)
( n∑
i=1

(E[|X̃−i (r)− EX̃−i (r)|p])
1
p

)p
dr

+
∫ 1

0

cq
( n∑
i=1

(E[|X̃+
i (r)− EX̃+

i (r)|p]
) 1
p

)p dr

≤ cnp−1
n∑
i=1

∫ 1

0

qE[|X̃+
i (r)− EX̃+

i (r)|p]dr

+cnp−1
n∑
i=1

∫ 1

0

(1− q)E[|X̃−i (r)− EX̃−i (r)|p] dr

= cnp−1
n∑
i=1

E[
∫ 1

0

q|X̃+
i (r)− EX̃+

i (r)|p dr]

+cnp−1
n∑
i=1

E[
∫ 1

0

(1− q)|X̃−i (r)− EX̃−i (r)|p dr]

= cnp−1
n∑
i=1

E[Dp
p,q(X̃i, EX̃i)].

This completes the proof. �

Theorem 4.13. Let {X̃n, n ≥ 1} be LNQD f.r.v.’s sequences. Then for p ≥ 2, there
exists a positive constant c such that

E[ max
1≤i≤n

Dp
p,q(S̃i, ES̃i)] ≤ cn

p
2−1

n∑
i=1

E[Dp
p,q(X̃i, EX̃i)].

P r o o f . By invoking Fubini’s theorem, Lemma 4.11, Lemma 2.7. of [38], and lp
standard inequality, we have

E[ max
1≤i≤n

Dp
p,q(S̃i, ES̃i)]

= E max
1≤i≤n

[
∫ 1

0

(1− q)(S̃−i (r)− ES̃−i (r))p dr +
∫ 1

0

q(S̃+
i (r)− ES̃+

i (r))p dr]

≤ E[
∫ 1

0

max
1≤i≤n

(S̃−i (r)− ES̃−i (r))p dr]

+E[
∫ 1

0

q max
1≤i≤n

(S̃+
i (r)− ES̃+

i (r))p dr]

=
∫ 1

0

(1− q)E[ max
1≤i≤n

(S̃−i (r)− ES̃−i (r))p]dr +
∫ 1

0

qE[ max
1≤i≤n

(S̃+
i (r)− ES̃+

i (r))p] dr

≤
∫ 1

0

c(1− q)
( n∑
i=1

(E[|X̃−i (r)− EX̃−i (r)|p])
2
p

) p
2

dr
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+
∫ 1

0

cq
( n∑
i=1

(E[|X̃+
i (r)− EX̃+

i (r)|p])
2
p

) p
2

dr

≤ cn
p
2−1

n∑
i=1

∫ 1

0

qE[|X̃+
i (r)− EX̃+

i (r)|p] dr

+cn
p
2−1

n∑
i=1

∫ 1

0

(1− q)E[|X̃−i (r)− EX̃−i (r)|p] dr

= cn
p
2−1

n∑
i=1

E[
∫ 1

0

q|X̃+
i (r)− EX̃+

i (r)|p dr]

+cn
p
2−1

n∑
i=1

E[
∫ 1

0

(1− q)|X̃−i (r)− EX̃−i (r)|p dr]

= cn
p
2−1

n∑
i=1

E[Dp
p,q(X̃i, EX̃i)].

And the proof is complete. �

5. WEAK LAW OF LARGE NUMBERS FOR LNQD F.R.V.’S

In this section, by invoking theorems of previous section, we established weak law of
large numbers for LNQD f.r.v.’s.

Theorem 5.1. Let {X̃n, n ≥ 1} be a sequence of LNQD f.r.v.’s.

i) If
∑n
i=1ED

p
p,q(X̃i, EX̃i) = o(n) for 1 < p < 2, then

n−1Dp,q(S̃i, ES̃i)→ 0 in probability,

i. e. with respect to the metric Dp,q, {X̃n, n ≥ 1} obeys the weak law of large numbers.

ii)
∑n
i=1ED

p
p,q(X̃i, EX̃i) = o(n

p
2 +1) for p ≥ 2, then

n−1Dp,q(S̃i, ES̃i)→ 0 in probability,

i. e. with respect to the metric Dp,q, {X̃n, n ≥ 1} obeys the weak law of large numbers.

P r o o f . i) It is obvious that max1≤i≤nDp,q(S̃i, ES̃i) dominate Dp,q(S̃i, ES̃i). By
using Theorem 4.12 and the assumption

∑n
i=1ED

p
p,q(X̃i, EX̃i) = o(n) for 1 < p < 2,

we obtain

n−1 max
1≤i≤n

Dp,q(S̃i, ES̃i)→ 0 in lp,

lp convergence of n−1 max1≤i≤nDp,q(S̃i, ES̃i) implies lp convergence of n−1Dp,q(S̃n, ES̃n).
We know that lp convergence concludes convergence in probability, thus

n−1Dp,q(S̃n, ES̃n)→ 0 in probability.
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ii) It is clear that Dp,q(S̃n, ES̃n) is dominated by max1≤i≤nDp,q(S̃i, ES̃i). By invoking
Theorem 4.13 and the assumption

∑n
i=1ED

p
p,q(X̃i, EX̃i) = o(n

p
2 +1) for p ≥ 2, we obtain

n−1 max
1≤i≤n

Dp,q(S̃i, ES̃i)→ 0 in lp,

lp convergence of n−1 max1≤i≤nDp,q(S̃i, ES̃i) implies lp convergence of n−1Dp,q(S̃n, ES̃n).
We know that lp convergence concludes convergence in probability, thus

n−1Dp,q(S̃n, ES̃n)→ 0 in probability.

�

6. CONCLUSION

The study of quadratic form of dependent f.r.v.’s, specially weak and strong laws of large
numbers, for such random variables is a potential work for future research. Moreover,
investigation of the almost surely convergence theorems and strong law of large numbers
of LNQD f.r.v.’s may be some more topics for research.

(Received June 10, 2015)
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