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KYBER NET IKA — VOLUM E 5 2 ( 2 0 1 6 ) , NUMBE R 3 , P AGES 3 2 9 – 3 4 7

ON THE MINKOWSKI-HÖLDER TYPE INEQUALITIES
FOR GENERALIZED SUGENO INTEGRALS
WITH AN APPLICATION

Micha l Boczek and Marek Kaluszka

In this paper, we use a new method to obtain the necessary and sufficient condition guar-
anteeing the validity of the Minkowski-Hölder type inequality for the generalized upper Sugeno
integral in the case of functions belonging to a wider class than the comonotone functions.
As a by-product, we show that the Minkowski type inequality for seminormed fuzzy integral
presented by Daraby and Ghadimi [11] is not true. Next, we study the Minkowski-Hölder in-
equality for the lower Sugeno integral and the class of µ-subadditive functions introduced in
[20]. The results are applied to derive new metrics on the space of measurable functions in the
setting of nonadditive measure theory. We also give a partial answer to the open problem 2.22
posed in [5].

Keywords: seminormed fuzzy integral, semicopula, monotone measure, Minkowski’s in-
equality, Hölder’s inequality, convergence in mean

Classification: 26E50, 28E10

1. INTRODUCTION

The concepts of fuzzy measures and the Sugeno integral were introduced by Sugeno
in [34] as a tool for modelling nondeterministic problems. The study of inequalities
for the Sugeno integral was initiated by Román-Flores et al. [30]. Since then, the fuzzy
integral counterparts of several classical inequalities, including Chebyshev’s, Minkowski’s
and Hölder’s inequalities have been given by Agahi et al. [1], Klement et al. [23],
Ouyang et al. [27, 28], Wu et al. [37] and many other researchers. Most of them deal
with comonotone functions which highly limit the range of potential applications in
probability, statistics, decision theory, risk theory and others.

Since many classical inequalities are free of the comonotonicity assumption, Agahi
and Mesiar [2] asked whether one could omit it. They gave a version of the Cauchy-
Schwarz inequality without the comonotonicity condition for two classes of Choquet-like
integrals. In [20] the Chebyshev type inequalities were provided for positively dependent
functions which form a wider class than the comonotone functions. The aim of this paper
is to present another inequalities for nonadditive integrals without the comonotonicity
condition.
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The paper is organized as follows. In Section 2, we introduce a new concept, called
?-associativity, which extends the notion of comonotonicity. Next, we obtain the neces-
sary and sufficient conditions ensuring that the Minkowski-Hölder type inequality holds
for the generalized upper Sugeno integral and ?-associative functions. We give a coun-
terexample showing that the Minkowski type inequality for seminormed fuzzy integral
presented in [11, Theorem 3.1] is false. The sufficient conditions for subadditivity of some
functionals based on the upper Sugeno integral are also provided. Section 3 presents
the Minkowski-Hölder type inequality for the generalized lower Sugeno integral and µ-
subadditive functions. The necessary and sufficient condition for subadditivity of the
Sugeno integral with respect to a subadditive measure is given. Finally, in Section 4 we
propose new metrics on the space of measurable functions when the involved measure
is monotone. We also give a partial answer to the open problem posed by Borzová-
Molnárová et al. [5].

2. INEQUALITIES FOR GENERALIZED UPPER SUGENO INTEGRAL

First, we introduce some basic definitions and properties. Let (X,A) be a measurable
space, where A is a σ-algebra of subsets of a nonempty set X. A monotone measure
on A is a nondecreasing set function µ : A → [0,∞] with µ(∅) = 0. We say that µ is
finite if µ(X) <∞. A monotone measure µ is continuous from below if limn→∞ µ(An) =
µ
(

limn→∞An
)

for all An ∈ A such that An ⊂ An+1, n ∈ N.
Let Y = [0,m) or Y = [0,m], where 0 < m 6 ∞; usually Y = [0, 1], Y = [0,∞) or

Y = [0,∞]. The operator ◦ : Y 2 → Y is said to be nondecreasing if a ◦ b 6 x ◦ y for
a 6 x, b 6 y. We say that ◦ : Y 2 → Y is right-continuous if limn→∞(an ◦ bn) = a ◦ b
for all an, bn, a, b ∈ Y such that bn ↘ b and an ↘ a. Hereafter, cn ↘ c means that
limn→∞ cn = c and cn > cn+1 for all n.

Recall that f, g : X → Y are comonotone on D if
(
f(x)− f(y)

)(
g(x)− g(y)

)
> 0 for

all x, y ∈ D. If f and g are comonotone on D, then for any t ∈ Y either (D∩{f > t}) ⊂
(D ∩ {g > t}) or (D ∩ {g > t}) ⊂ (D ∩ {f > t}), where {f > t} = {x ∈ X : f(x) > t}.

Now we will generalize the concept of comonotonicity.

Definition 2.1. Given an operator ? : Y 2 → Y, we say that f, g : X → Y are ?-
associated on D if for any nonempty and measurable subset A ⊂ D,

inf
x∈A
{f(x) ? g(x)} = inf

x∈A
f(x) ? inf

x∈A
g(x). (1)

From now on, a ∧ b = min{a, b}, a ∨ b = max{a, b} and a+ = a ∨ 0.

Example 2.2. Any functions f, g : X → Y are ∧-associated on X.

Example 2.3. Any comonotone functions f, g : X → Y are ?-associated on X if the
operator ? is nondecreasing and right-continuous. Indeed, infx∈A{f(x) ? g(x)} > s ? t
for all A ⊂ X, where s = infx∈A f(x) and t = infx∈A g(x). Let ε > 0, A ⊂ X and
B = {x ∈ A : f(x) < s+ε} and C = {x ∈ A : g(x) < t+ε}. From the comonotonicity we
obtain that B ∩C 6= ∅ as B ⊂ C or C ⊂ B. Thus infx∈A{f(x) ? g(x)} 6 (s+ ε) ? (t+ ε).
Because of the right-continuity of ?, we get the assertion.
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Example 2.4. Let f, g : X → Y be measurable functions and g = b1lB for b ∈ Y, where
1lB denotes the indicator of B ⊂ X, B ∩ {f > b} 6= B and B ∩ {f > b} 6= {f > b}. Let
? : Y 2 → Y be a nondecreasing and right-continuous operator. If x? 0 = 0 for all x ∈ X,
then f, g are ?-associated on X, but not comonotone. Indeed, if A\B = ∅, then A ⊂ B
and

inf
x∈A
{f(x) ? g(x)} = inf

x∈A
{f(x) ? b} = inf

x∈A
f(x) ? inf

x∈A
g(x).

If A\B 6= ∅, then

inf
x∈A
{f(x) ? g(x)} = inf

x∈A∩B
{f(x) ? b} ∧ inf

x∈A\B
{f(x) ? 0} = 0

= inf
x∈A

f(x) ? inf
x∈A

g(x).

Example 2.5. Suppose ? is a nondecreasing operator such that 0 ? y = y ? 0 = 0 for
all y ∈ Y. Let f = b1lB + c1lC and g = b1lB + c1lD, where b, c ∈ Y, 0 < b ∧ c, and B, C
are nonempty sets such that B ∩ C = ∅ and D = X\(B ∪ C) 6= ∅. Clearly, f and g are
?-associated on X, but not comonotone.

Example 2.6. Functions f, g are +-associated if and only if they are comonotone. In
fact, the condition (1) for ? = + and A = {x, y} is equivalent to (a+b)∧0 = (a∧0)+(b∧0)
with a = f(x)− f(y) and b = g(x)− g(y), and this implies that ab > 0.

Open problem 1. Does there exist an operator ◦ 6= + such that the ◦-associativity
property is equivalent to the comonotonicity property?

Now we are ready to present the Minkowski-Hölder type inequality for the generalized
upper Sugeno integral of the form∫

◦,D
f dµ := sup

t∈Y

{
t ◦ µ

(
D ∩ {f > t}

)}
, (2)

where f : X → Y is a measurable function, µ is a monotone measure on A and ◦ : Y ×
µ(A) → [0,∞] is a nondecreasing operator. Hereafter µ(A) = {µ(A) : A ∈ A}. The
functional in (2) is the universal integral in the sense of Definition 2.5 in [23] if ◦ is the
pseudomultiplication function (see [23, Definition 2.3]). Put µ(A∩D) = {µ(A∩D) : A ∈
A}. The following theorem gives an answer to open problems from [1, 20] and [28].

Theorem 2.7. Let Y = [0, ȳ], where 0 < ȳ 6 ∞. Assume the operators ?,♦ : Y 2 → Y
and ◦i : Y ×µ(A)→ Y are nondecreasing and 0 ◦i x = y ◦i 0 = 0 for all x ∈ µ(A), y ∈ Y,
and i = 1, 2, 3. Suppose φi : Y → Y are increasing and φi

(
Y
)

= Y for all i. Suppose also
that f and g are ?-associated on D ⊂ X. Then the Minkowski-Hölder type inequality

φ−1
1

(∫
◦1,D

φ1(f ? g) dµ
)
6 φ−1

2

(∫
◦2,D

φ2(f) dµ
)
♦φ−1

3

(∫
◦3,D

φ3(g) dµ
)

(3)

is satisfied if and only if for all a, b ∈ Y and c ∈ µ(A ∩D)

φ−1
1

(
φ1(a ? b) ◦1 c

)
6 φ−1

2

(
φ2(a) ◦2 c

)
♦φ−1

3

(
φ3(b) ◦3 c

)
. (4)
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P r o o f . Arguing as in the proof of Lemma 3.8 in [33], we can show that∫
◦i,D

f dµ = sup
A⊂D,A∈A

{
inf
x∈A

f(x) ◦i µ(A)
}

(5)

for all i (see also [4, Theorem 2.2]). To shorten the notation, we write supA instead of
supA⊂D,A∈A . From the continuity of φ1 and (5) we get

L := φ−1
1

(∫
◦1,D

φ1(f ? g) dµ
)

= sup
A
φ−1

1

(
φ1

(
inf
x∈A
{f(x) ? g(x)}

)
◦1 µ(A)

)
.

Since f and g are ?-associated, we have

L = sup
A
φ−1

1

(
φ1

(
inf
x∈A

f(x) ? inf
x∈A

g(x)
)
◦1 µ(A)

)
.

Combining (4) with the monotonicity of ♦ and φ−1
i yields

L 6 sup
A

{
φ−1

2

(
φ2

(
inf
x∈A

f(x)
)
◦2 µ(A)

)
♦φ−1

3

(
φ3

(
inf
x∈A

g(x)
)
◦3 µ(A)

)}
6

(
sup
A
φ−1

2

(
φ2

(
inf
x∈A

f(x)
)
◦2 µ(A)

))
♦

(
sup
A
φ−1

3

(
φ3

(
inf
x∈A

g(x)
)
◦3 µ(A)

))
= φ−1

2

(∫
◦2,D

φ2(f) dµ
)
♦φ−1

3

(∫
◦3,D

φ3(g) dµ
)
.

To obtain the necessary condition (4), put f = a1lA and g = b1lA in (3), where c =
µ(A) 6 µ(D) and a, b ∈ Y. �

Observe that the assumption 0 ◦i x = y ◦i 0 = 0 is used only in the proof of the
necessity of condition (4). Moreover, the condition (4) is sufficient for inequality (3) to
hold if we set Y = R in (2) and both f and g are bounded from below.

Example 2.8. Let a ? b = a♦ b = a + b− ab, where a, b ∈ Y = [0, 1] and let ◦i = · for
all i. Put φi(x) = xpi and ci = c1/pi , where pi > 0 for all i. The condition (4) takes the
form

0 6 a(c2 − c1) + b(c3 − c1) + ab(c1 − c2c3) (6)

and holds if and only if p1 6 pj for j = 2, 3; in order to see this, put a = 1, b = 0 as well
as a = 0, b = 1 in (6) and observe that

a(c2 − c1) + b(c3 − c1
)

+ ab(c1 − c2c3) > ab
(
c2 − c1 + c3(1− c2)

)
> 0.

Example 2.9. Let φi(x) = x for all i and let ? and ♦ be the drastic t-norm and the
drastic t-conorm, respectively, i. e. a ? b = (a ∧ b)1l{a∨b=1} and a♦ b = (a ∨ b)1l{a∧b=0} +
1l{a∧b>0} for a, b ∈ Y = [0, 1] (see [22]). Assume that ◦i = ◦ for all i, where ◦ is
a nondecreasing operator such that 0 ◦i x = y ◦i 0 = 0 for all x, y ∈ [0, 1]. Clearly, any
comonotone functions f, g : X → [0, 1] are ?-associated (see Example 2). To prove that
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the Minkowski-Hölder type inequality (3) holds for all comonotone functions, it is enough
to show that for all a, b, c ∈ [0, 1]

(a ? b) ◦ c 6 (a ◦ c)♦ (b ◦ c). (7)

If a ◦ c > 0 and b ◦ c > 0, then (7) holds. If a ◦ c = 0 or b ◦ c = 0, then

(a ? b) ◦ c 6 (a ◦ c) ∨ (b ◦ c) = (a ◦ c)♦ (b ◦ c)

as a ? b 6 a and a ? b 6 b.

We recall that the Sugeno integral and the Shilkret integral are given by

(S)
∫
D

f dµ := sup
y∈Y

{
y ∧ µ

(
D ∩ {f > y}

)}
, (8)

(N)
∫
D

f dµ := sup
y∈Y

{
y · µ

(
D ∩ {f > y}

)}
, (9)

respectively, where Y = [0,m] or Y = [0,m) with 0 < m 6 ∞ and the convention that
0 · ∞ =∞ · 0 = 0, see [32, 34, 35].

Corollary 2.10. Assume ? : Y 2 → Y is nondecreasing, f, g : X → Y are ?-associated
on D and φi : Y → Y are increasing functions such that φi

(
Y
)

= Y for i = 1, 2, 3. The
following Minkowski-Hölder type inequality

φ−1
1

(
(S)

∫
D

φ1(f ? g) dµ
)
6 φ−1

2

(
(S)

∫
D

φ2(f) dµ
)
? φ−1

3

(
(S)

∫
D

φ3(g) dµ
)

holds true if and only if for a, b ∈ Y and c ∈ µ(A ∩D)

(a ? b) ∧ φ−1
1 (c) 6

(
a ∧ φ−1

2 (c)
)
? (b ∧ φ−1

3 (c)
)
. (10)

The above result generalizes Theorem 3.1 from [1] and Theorem 3.1 from [37]. In fact,
since a ∨ b 6 a ? b, we have c 6 a ∨ c 6 a ? c, c 6 c ? b and c 6 c ? c, so

(a ? b) ∧ c 6 (a ? b) ∧ (a ? c) ∧ (c ? b) ∧ (c ? c) = (a ∧ c) ? (b ∧ c).

It follows from the assumption φ1 > φj for j = 2, 3 that

(a ? b) ∧ φ−1
1 (c) 6

(
a ∧ φ−1

1 (c)
)
?
(
b ∧ φ−1

1 (c)
)
6
(
a ∧ φ−1

2 (c)
)
?
(
b ∧ φ−1

3 (c)
)
.

Thus, the condition (10) holds.

Suppose that S: [0, 1]2 → [0, 1] is a semicopula (also called a t-seminorm), i. e., a non-
decreasing function with the neutral element equal to 1. It is clear that S(x, y) 6 x ∧ y
and S(x, 0) = 0 = S(0, x) for all x, y ∈ [0, 1] (see [3, 13, 22]). We denote the class of
all semicopulas by S. There are three important examples of semicopulas: M, Π and
W, where M(a, b) = a ∧ b, Π(a, b) = ab and W(a, b) = (a + b − 1)+, usually called the
 Lukasiewicz t-norm [22].
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Given S ∈ S, the seminormed fuzzy integral is defined by∫
S,D

f dµ := sup
t∈[0,1]

S
(
t, µ(D ∩ {f > t})

)
,

see [27, 33]. Replacing semicopula S with M, we get the Sugeno integral (8) for Y = [0, 1].
Moreover, if S = Π, then we get the Shilkret integral (9) for Y = [0, 1].

Corollary 2.11. Let S ∈ S and f, g : X → [0, 1] be ?-associated, where ? : [0, 1]2 →
[0, 1] is a nondecreasing operator. Let 0 < p < ∞ and µ(X) = 1. The following
inequality holds(∫

S,D

(f ? g)p dµ
)1/p

6
(∫

S,D

fp dµ
)1/p

?
(∫

S,D

gp dµ
)1/p

(11)

if and only if

S
(
(a ? b)p, c

)1/p
6 S

(
ap, c

)1/p
? S
(
bp, c

)1/p
for a, b ∈ [0, 1] and c ∈ µ(A ∩D).

Daraby and Ghadimi [11] claim that the inequality (11) is satisfied for all comonotone
functions if

S(a ? b, c) 6
(
S(a, c) ? b

)
∧
(
a ? S(b, c)

)
, a, b, c ∈ [0, 1], (12)

under the assumption of continuity of monotone measure µ (see [11, Theorem 3.1]). We
present a counterexample showing that this result is not true.

Counterexample 2.12. Put A = X = [0, 1], s = 1, T = W, a ? b = (a + b) ∧ 1
and f(x) = g(x) = 0.5

√
x, x ∈ [0, 1], in Theorem 3.1 from [11]. Clearly, f and g are

comonotone. Let µ be the Lebesgue measure. Due to the property a ? b = b ? a, the
condition (12) is satisfied if and only if

W
(
(a+ b) ∧ 1, c

)
6
(
W(a, c) + b

)
∧ 1

for all a, b, c ∈ [0, 1]. Since W 6 1, it suffices to show that W
(
(a+b)∧1, c

)
6W(a, c)+b.

In fact, if a + b 6 1, then W(a + b, c) 6 W(a, c) + b (see also [22, Remark 5.13 (iii)]).
Otherwise,

c 6 (a+ c− 1)+ + (1− a)+ = (a+ c− 1)+ − (a+ b− 1) + b 6W(a, c) + b.

Easy computations show that∫
W,X

f dµ = sup
t∈[0,1]

(
t+ µ

(
{f > t}

)
− 1
)
+

= sup
t∈[0,1]

(
t− 4t2

)
+

= 0.0625,∫
W,X

(f ? g) dµ = sup
t∈[0,1]

(
t+ µ

(
{f ? g > t}

)
− 1
)
+

= sup
t∈[0,1]

(
t− t2

)
+

= 0.25.

Hence, 0.25 =
∫
W,X

(f ? g) dµ >
∫
W,X

f dµ ?
∫
W,X

g dµ = 0.125.
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Now we focus on the subadditivity property of the generalized upper Sugeno integral
(2), that is, ∫

◦,X
(f + g) dµ 6

∫
◦,X

f dµ+
∫
◦,X

g dµ, (13)

as this property is very important for applications. Let us recall that +-associativity is
equivalent to comonotonicity, see Example 2.6.

Corollary 2.13. Let Y = [0,m] or Y = [0,m) for 0 < m 6 ∞ and let ◦ : Y 2 → Y
be a nondecreasing operator such that 0 ◦ y = y ◦ 0 = 0 for all y. The functional (2) is
subadditive for comonotone functions f, g : X → Y such that f + g ∈ Y if and only if
(a+ b) ◦ c 6 (a ◦ c) + (b ◦ c) for a, b ∈ Y, a+ b ∈ Y and c ∈ µ(A) = Y.

It follows from Corollary 2.13 that both the Sugeno integral (8) and the Shilkret
integral (9) are subadditive for comonotone functions while the opposite-Sugeno integral∫
W,D

f dµ [18] is not.

Corollary 2.14. Let ◦ = S ∈ S. Then the subadditivity property (13) is fulfilled for
any monotone measure µ such that µ(X) 6 1 and comonotone functions f, g : X → [0, 1]
such that f + g ∈ [0, 1] if and only if

S
(
a+ b, c

)
6 S(a, c) + S(b, c) (14)

for all a, b, c ∈ [0, 1], a+ b ∈ [0, 1].

Borzová-Molnárová et al. [4] showed that the inequality (14) is satisfied for each
semicopula with concave horizontal sections x 7→ S(x, y). An example is the Marshall-
Olkin semicopula Sα,β(x, y) = (x1−αy) ∧ (xy1−β), where α, β ∈ [0, 1]. Observe that if
f = 1lA and g = 1lB for A ∪ B = X and A ∩ B = ∅, then the inequality (13) is of the
form µ(X) 6 µ(A) + µ(B) for any semicopula S. Thus, the seminormed fuzzy integral
is not subadditive if µ(A) + µ(B) < µ(X).

We say that µ : A → Y is subadditive if it is a monotone measure and µ(A ∪ B) 6
µ(A)+µ(B) for all A,B ∈ A. The class of subaditive measures is quite wide and includes
the following monotone measures: λ-measure of Sugeno for λ ∈

(
− 1/µ(X), 0

)
(see [35,

Definition 4.3]); the plausibility measure [35]; the coherent measure µ(A) = supP∈P P(A),
where P is a set of probability measures [15]; the possibility measure µ(A) = supx∈A ψ(x),
where ψ : X → Y [35], the distortion measure µ(A) = g

(
P(A)

)
, where P is probability

measure and g : [0, 1]→ Y is such that g(x+y) 6 g(x)+g(y) [31] and uncertain measure
[25], among others.

Theorem 2.15. Suppose Y = [0,m] or Y = [0,m) with 0 < m 6 ∞ and suppose
◦ : Y 2 → Y is a nondecreasing operator such that x ◦ (y + z) 6 (x ◦ y) + (x ◦ z) for all
x, y, z ∈ Y such that y+ z ∈ Y. Suppose also that (ax) ◦ y 6 aq(x ◦ y)r for some q, r > 0
and for all x, y, z ∈ Y, a > 1 such that ax ∈ Y. Then for any p > 0, any subadditive
measure µ and any measurable functions f, g : X → R such that |f + g|p, |f |p, |g|p ∈ Y,
we have(∫

◦,X
|f + g|p dµ

)1/(pq+1)

6
(∫
◦,X
|f |p dµ

)r/(pq+1)

+
(∫
◦,X
|g|p dµ

)r/(pq+1)

. (15)
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P r o o f . Without loss of generality, assume that
∫
◦,X |f |

p dµ+
∫
◦,X |g|

p dµ <∞. Clearly,
{|f + g| > t1/p} ⊂ {|f | > λt1/p} ∪ {|g| > (1− λ)t1/p} for t ∈ Y and λ ∈ (0, 1). Thus, by
the subadditivity of µ and monotonicity of ◦, we have

t ◦ µ
(
{|f + g|p > t}

)
6 t ◦

(
µ
(
{|f |p > λpt}

)
+ µ

(
{|g|p > (1− λ)pt}

))
.

From the assumptions on ◦, we get∫
◦,X
|f + g|p dµ 6 sup

t∈Y

{
t ◦ µ

(
{|f |p > λpt}

)}
+ sup
t∈Y

{
t ◦ µ

(
{|g|p > (1− λ)pt}

)}
6 sup
y∈λpY

{
y
λp ◦ µ

(
{|f |p > y}

)}
+ sup
y∈(1−λ)pY

{
y

(1−λ)p ◦ µ
(
{|g|p > y}

)}
6 λ−pq

(∫
◦,X
|f |p dµ

)r
+ (1− λ)−pq

(∫
◦,X
|g|p dµ

)r
,

where λpY = {λpy : y ∈ Y } ⊂ Y. If
∫
◦,X |f |

p dµ = 0 or
∫
◦,X |g|

p dµ = 0, we take the
limit as λ approaches 0 or 1, respectively. Otherwise, we obtain (15) by minimizing the
right-hand side with respect to λ. �

Corollary 2.16. Let Y = [0, 1], Y = [0,∞) or Y = [0,∞]. If µ is subadditive, then for
all measurable functions f, g : X → R and p > 0 we have(

(S)
∫
X

|f + g|p dµ
)1/(p+1)

6

(
(S)

∫
X

|f |p dµ
)1/(p+1)

+
(

(S)
∫
X

|g|p dµ
)1/(p+1)

,(
(N)

∫
X

|f + g|p dµ
)1/(p+1)

6

(
(N)

∫
X

|f |p dµ
)1/(p+1)

+
(

(N)
∫
X

|g|p dµ
)1/(p+1)

,

where |f + g|p, |f |p, |g|p ∈ Y and the integrals are defined, respectively, by (8) and (9).

The next result deals with a modified Shilkret integral and follows from Theorem
2.15 and the inequality (x+ y)s 6 xs + ys for x, y > 0 and 0 < s < 1.

Corollary 2.17. Let a ◦q b = (ab)q with 0 < q < 1 and let Y = [0, 1] or Y = [0,∞).
For any subadditive measure µ and any measurable functions f, g : X → R, we get(∫

◦q,X

|f + g|p dµ
)1/p

6
(∫
◦q,X

|f |p dµ
)1/p

+
(∫
◦q,X

|g|p dµ
)1/p

,

where p = 1/(1− q), and |f + g|p, |f |p, |g|p ∈ Y.

Simple calculations show that(∫
◦q,X

|f |p dµ
)1/p

= sup
t∈Y

{
tqµ
(
{|f | > t}

)q/p}
,

so this functional is similar to a quasi-norm in the Lorentz type capacity spaces [9].
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Now, we analyze the subadditivity of the Shilkret integral. Recall that a monotone
measure µ is maxitive if for all disjoint sets A,B ∈ A we have

µ(A ∪B) = µ(A) ∨ µ(B). (16)

Observe that µ is maxitive if and only if (16) holds for all A,B ∈ A. In fact, if µ is
maxitive and A ∩ B 6= ∅, then µ(A ∪ B) = µ(A) ∨ µ(C) and µ(A ∪ B) = µ(D) ∨ µ(B),
where C = B\A andD = A\B. This implies that µ(A∪B) = µ(A)∨µ(B)∨µ(C)∨µ(D) =
µ(A) ∨ µ(B), so (16) is satisfied. Clearly, any maxitive measure is subadditive.

The following result can be found in [8] (see also [32, pp. 112 – 113] and [9, Theorem
4.2]).

Theorem 2.18. Let Y = [0, 1], Y = [0,∞) or Y = [0,∞]. The Shilkret inegral (9)
is subadditive for all measurable functions f, g : X → Y if and only if the monotone
measure µ is maxitive.

P r o o f . Denote the Shilkret integral for short by I(f).

,,⇐” We follow the proof of [8, 32]. If I(f) = I(g) = 0, then I(f + g) = 0 as
µ
(
{f + g > t}

)
6 µ

(
{f > t/2}

)
+ µ

(
{g > t/2}

)
= 0 for all t > 0. Therefore, we

assume that 0 < I(f) + I(g) < ∞, without loss of generality. By maxitivity of µ, we
have

tµ({f + g > t}) 6 tµ
(
{f > λt} ∪ {g > (1− λ)t}

)
= tµ

(
{f > λt}

)
∨ tµ

(
{g > (1− λ)t}

)
with λ = I(f)/(I(f) + I(g)). Hence,

I(f + g) 6
(
(I(f)/λ

)
∨
(
I(g)/(1− λ)

)
= I(f) + I(g).

,,⇒” Suppose µ is not maxitive, i. e. µ(A ∪ B) > µ(A) ∨ µ(B) for some disjoint sets
A,B ∈ A. Thus, there exists λ ∈ (0, 1) such that λµ(A ∪ B) > µ(A) ∨ µ(B). Putting
f = 1lA + λ1lB , g = (1− λ)1lB , we get

I(f) + I(g) =
(
(λµ(A ∪B)) ∨ µ(A)

)
+ (1− λ)µ(B)

< λµ(A ∪B) + (1− λ)µ(A ∪B) = I(f + g),

so the Shilkret integral is not subadditive. �

Subadditivity of the Sugeno integral will be examined in the next section.

3. RESULTS FOR GENERALIZED LOWER SUGENO INTEGRAL

The generalized lower Sugeno integral of a measurable function f : X → Y on a setD ∈ A
with respect to a monotone measure µ and a nondecreasing operator ◦ : Y × µ(A) →
[0,∞] is defined as

−
∫
◦,D

f dµ := inf
t∈Y

{
t ◦ µ

(
D ∩ {f > t}

)}
. (17)
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Observe that the functional (17) is the universal integral in the sense of Definition 2.5
in [23] if a ◦ 0 = a and 0 ◦ b = b for all a ∈ Y and b ∈ µ(A). Putting ◦ = ∨ in (17) we
obtain the lower Sugeno integral [26]

(S)−
∫
D

f dµ := inf
t∈Y

{
t ∨ µ

(
D ∩ {f > t}

)}
. (18)

Mimicking the proof of Theorem 5 in [21] and Theorem 9.1 in [35] one can show that
for any Y = [0,m] ⊂ [0,∞] the integral (18) is equal to the Sugeno integral (8)

(S)−
∫
D

f dµ = (S)
∫
D

f dµ. (19)

Open problem 2. Does there exist a pair of operators (O , 4 ) 6= (∨,∧) such that
for all f : X → Y

−
∫

O ,D
f dµ =

∫
4 ,D

f dµ ?

We say that measurable functions f, g : X → Y are µ-subadditive for an operator
O : µ(A)2 → µ(A) and a set D ∈ A if for all a, b ∈ Y

µ
(
D ∩

(
{f > a} ∪ {g > b}

))
6 µ

(
D ∩ {f > a}

)
Oµ
(
D ∩ {g > b}

)
.

Observe that µ-subadditivity implies that x ∨ y 6 xO y for all x, y ∈ µ(A ∩D).
Now, we present several examples of µ-subadditive functions.

Example 3.1. Any comonotone functions f, g are µ-subadditive with respect to an op-
erator O such that x∨y 6 xO y for all x, y ∈ Y. For instance, any t-semiconorm O = S∗

on Y = [0, 1] has this property (see [22]).

Example 3.2. Recall that µ is submodular if µ(A ∪B) 6 µ(A) + µ(B)− µ(A ∩B) for
all A,B ∈ A. Let D = X, xO y = 1 − (1 − x)(1 − y) for x, y ∈ Y = [0, 1] and let µ
be a submodular and monotone measure. Functions f, g are µ-subadditive if f, g are
positive quadrant dependent [20], that is, µ

(
{f > t}∩{g > s}

)
> µ

(
{f > t}

)
µ
(
{g > s}

)
for all t, s ∈ Y.

Example 3.3. Put xO y = x + y for x, y ∈ Y = [0,∞]. Then any functions f, g are
µ-subadditive for a subadditive measure µ on X.

Suppose ?,♦ : Y 2 → Y, and ◦i : Y ×µ(A)→ Y, i = 1, 2, 3, are nondecreasing and ♦ is
right-continuous. Suppose also that φi : Y → Y is an increasing function and φi(Y ) = Y
for i = 1, 2, 3.

Theorem 3.4. Assume that for a, b ∈ Y and c, d 6 µ(D), we have

φ−1
1

(
φ1(a ? b) ◦1 (cO d)

)
6 φ−1

2

(
φ2(a) ◦2 c

)
♦ φ−1

3

(
φ3(b) ◦3 d

)
. (20)

If f, g are µ-subadditive for O and D, then

φ−1
1

(
−
∫
◦1,D

φ1

(
f ? g

)
dµ
)
6 φ−1

2

(
−
∫
◦2,D

φ2(f) dµ
)
♦ φ−1

3

(
−
∫
◦3,D

φ3(g) dµ
)
. (21)



On the Minkowski-Hölder type inequalities for generalized Sugeno integrals 339

P r o o f . By the monotonicity of ? and µ, for any D ∈ A we obtain

µ
(
D ∩ {f ? g > a ? b}

)
6 µ

(
D ∩

(
{f > a} ∪ {g > b}

))
.

From µ-subadditivity of f, g and from the fact that b 7→ a◦1 b is a nondecreasing function
we get

φ1(a ? b) ◦1 µ
(
D ∩ {φ1(f ? g) > φ1(a ? b)}

)
6 φ1(a ? b) ◦1

(
µ
(
D ∩ {φ2(f) > φ2(a)}

)
Oµ
(
D ∩ {φ3(g) > φ3(b)}

))
. (22)

By (20) and (22)

φ−1
1

(
φ1(a ? b) ◦1 µ

(
D ∩ {φ1(f ? g) > φ1(a ? b)}

))
6φ−1

2

(
φ2(a) ◦2 µ

(
D ∩ {φ2(f) > φ2(a)}

))
♦φ−1

3

(
φ3(b) ◦3 µ

(
D ∩ {φ3(g) > φ3(b)}

))
.

Since φ−1
1 is increasing, we have

φ−1
1

(
−
∫
◦1,D

φ1(f ? g) dµ
)

6 φ−1
2

(
φ2(a) ◦2 µ

(
D ∩ {φ2(f) > φ2(a)}

))
♦φ−1

3

(
φ3(b) ◦3 µ

(
D ∩ {φ3(g) > φ3(b)}

))
for all a, b ∈ Y. Taking the infimum over a ∈ Y, we get

φ−1
1

(
−
∫
◦1,D

φ1

(
f ? g

)
dµ
)

6 φ−1
2

(
−
∫
◦2,D

φ2(f) dµ
)
♦ φ−1

3

(
φ3(b) ◦3 µ

(
D ∩ {φ3(g) > φ3(b)}

))
.

Proceeding similary with the infimum in b ∈ Y, we obtain (21). �

Example 3.5. We know from Example 3.1 that any comonotone functions f, g : X → Y
are µ-subadditive with O = ∨. Put Y = [0,∞]. If

(a ? b) ∨
(
φ−1

1 (c) ∨ φ−1
1 (d)

)
6
(
a ∨ φ−1

2 (c)
)
?
(
b ∨ φ−1

3 (d)
)
, (23)

then for all D ∈ A we get

φ−1
1

(
(S)−
∫
D

φ1(f ? g) dµ
)
6 φ−1

2

(
(S)−
∫
D

φ2(f) dµ
)
? φ−1

3

(
(S)−
∫
D

φ3(g) dµ
)
. (24)

The inequality (23) is satisfied for any operator ? such that a ? b > a ∨ b and functions
φ1 > φi, i = 2, 3. Indeed, combining a1 ? a2 6

(
a1 ∨ φ−1

2 (b1)
)
?
(
a2 ∨ φ−1

3 (b2)
)

with

φ−1
1 (b1) ∨ φ−1

1 (b2) 6 φ−1
1 (b1) ? φ−1

1 (b2) 6
(
a1 ∨ φ−1

2 (b1)
)
?
(
a2 ∨ φ−1

3 (b2)
)

yields (23). From (19) and (24) we can get a generalization of Theorem 3.1 in [37].
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Example 3.6. Let Y = [0, 1], D = X and µ(X) = 1. Put xO y = x + y − xy and
x ? y = x♦ y = (x+ y) ∧ 1, where x, y ∈ Y. If ◦i = ∨ and φi(x) = x, i = 1, 2, 3, then the
condition (20) takes the form(

(a+ b) ∧ 1
)
∨ (c+ d− cd) 6 (a ∨ c+ b ∨ d) ∧ 1, (25)

a, b, c, d ∈ Y. Since (a+b)∧1 6 a+b 6 (a∨c)+(b∨d) and c+d−cd 6 (a∨c+b∨d), the
inequality (25) is true for all a, b, c, d. Hence, if f, g : X → [0, 1] are positive quadrant
dependent functions with respect to a submodular and monotone measure µ on X (see
Example 3.2), then

(S)−
∫
X

(f + g) ∧ 1 dµ 6 (S)−
∫
X

f dµ+ (S)−
∫
X

g dµ.

Example 3.7. Suppose Y = [0, 1] and µ is a subadditive measure such that µ(A) ⊂ Y.
From Theorem 3.4 with a ? b = a♦ b = aO b = (a+ b) ∧ 1, ◦i = ∨ and φi(x) = x for all
i, it follows that

(S)−
∫
X

(f + g) dµ 6 (S)−
∫
X

f dµ+ (S)−
∫
X

g dµ

for all f, g : X → Y such that f + g 6 1.

Example 3.8. Set Y = [0,∞] and O = ? = ♦ = +. Let µ be a subadditive measure,
◦i = ∨ and φi(x) = x for all i. Then

(S)−
∫
X

(f + g) dµ 6 (S)−
∫
X

f dµ+ (S)−
∫
X

g dµ

for all f, g : X → Y.

Next, we prove that the subadditivity property of the Sugeno integral (8) with Y =
[0, 1] or Y = [0,∞] is equivalent to the subadditivity of µ.

Theorem 3.9. Let µ(A) ⊂ Y. Then µ is subadditive if and only if

(S)−
∫
X

(f + g) dµ 6 (S)−
∫
X

f dµ+ (S)−
∫
X

g dµ (26)

holds for all functions f, g : X → Y such that f + g ∈ Y.

P r o o f . If µ is subadditive, inequality (26) follows immediately from Examples 3.7 and
3.8. To see the converse, take f = a1lA and g = a1lB , where a ∈ Y and A∩B = ∅. From
the assumption µ(A) ⊂ Y and (26), we have that there exists a > µ(A ∪B) such that

µ(A ∪B) = a ∧ µ(A ∪B) 6
(
a ∧ µ(A)

)
+
(
a ∧ µ(B)

)
6 µ(A) + µ(B).

If A and B are not disjoint sets, then

µ(A ∪B) = µ(A ∪ (B\A)) 6 µ(A) + µ(B\A) 6 µ(A) + µ(B),
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which completes the proof. �

Note that the subadditivity of the Sugeno integral from the viewpoint of subadditive
transformations of aggregation functions is also investigated in [17].

Now, we show that from the Minkowski-Hölder type inequality for integral (2) one
can obtain an inequality of the same type for integral (17) and vice versa. Suppose
Y = [0,m], 0 < m 6 ∞. Let h : Y → Y be a decreasing function such that h(Y ) = Y,
h(0) > 0 and h

(
m) = 0. For instance, h(x) = 1 − x for Y = [0, 1] and h(x) = 1/x for

Y = [0,∞] under convention that 1/0 = ∞ and 1/∞ = 0. Suppose µh is a monotone
measure on (X,A) defined as µh(A) = h−1

(
µ(X\A)

)
. For a given operator ◦ : Y 2 → Y

let us define the operator

a ◦h b = h−1
(
h(a) ◦ h(b)

)
, a, b ∈ Y.

For any measurable function f : X → Y, we have

h−1

(
−
∫
◦,X

h(f) dµ
)

= h−1
(

inf
y∈Y

{
h(y) ◦ µ({h(f) > h(y)}

)})
= inf
y∈Y

{
h−1

(
h(y) ◦ µ({f 6 y}

))}
=
∫
◦h,X

f dµ. (27)

Applying the formula (27) and Theorem 2.7 with ? = ♦ and φi(x) = x for all i gives the
following Corollary.

Corollary 3.10. Assume ◦ : Y 2 → Y is nondecreasing, m ◦ y = y ◦ m = m for all
y ∈ Y = [0,m] and f, g : X → Y are ?-associated. The following inequality is satisfied

h−1

(
−
∫
◦,X

h(f ? g) dµ
)
6 h−1

(
−
∫
◦,X

h(f) dµ
)
? h−1

(
−
∫
◦,X

h(g) dµ
)

if and only if (a ? b) ◦h c 6 (a ◦h c) ? (b ◦h c) for all a, b, c ∈ Y.

Example 3.11. From the well-known inequality (x + y)/(1 + x + y) 6
(
x/(1 + x)

)
+(

y/(1 + y)
)

for x, y > 0, it follows that for all a, b, c > 0(
(a+ b)−1 + c−1

)−1
6
(
a−1 + c−1

)−1 +
(
b−1 + c−1

)−1

with 1/0 = ∞ and 1/∞ = 0. This implies that the necessary and sufficient condition
of Corollary 3.10 is satisfied for Y = [0,∞], h(x) = x−1 and ? = ◦ = +. Thus, for any
comonotone functions f, g : X → Y, we have(

−
∫

+,X

1/(f + g) dµ
)−1

6

(
−
∫

+,X

1/f dµ
)−1

+
(
−
∫

+,X

1/g dµ
)−1

.

The next result is an immediate consequence of Theorem 3.4 with φi(x) = x for all i
and the formula

−
∫
◦h,X

f dµh = h−1

(∫
◦,X

h(f) dµ
)
.
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Corollary 3.12. Assume that f, g : X → Y are µh-subadditive for O , operator ? is
nondecreasing and right-continuous and ◦ is nondecreasing. Assume also that (a ? b) ◦h
(cO d) 6 (a ◦h c) ? (b ◦h d) for all a, b, c, d ∈ Y. Then

h−1
(∫
◦,X

h(f ? g) dµ
)
6 h−1

(∫
◦,X

h(f) dµ
)
? h−1

(∫
◦,X

h(g) dµ
)
.

Example 3.13. Suppose µ(A) = 1/µh(X\A) for A ∈ A. From Example 3.8, formula
(19) and Corollary 3.12 for h(x) = 1/x, ◦h = ∨ and ? = +, it follows that for any
measurable functions f, g : X → [0,∞], we have(

(S)
∫
X

1/(f + g) dµ
)−1

6

(
(S)

∫
X

1/f dµ
)−1

+
(

(S)
∫
X

1/g dµ
)−1

,

with (S)
∫
X

being the Sugeno integral (8) for Y = [0,∞] under the convention 1/∞ = 0
and 1/0 =∞.

4. APPLICATION

As an application of the results of this paper, we provide new metrics in the space of
A-measurable functions f : X → R defined on a fuzzy space (X,A, µ). First, let us recall
some facts. Taking ◦ = + and Y = [0,∞] in (17), we get the functional

dF (X,Y) = inf
ε>0

{
ε+ µ

(
{|X− Y| > ε}

)}
on the space L0(X) of all random variables defined on a probability space (X,A, µ).
This functional was proposed by Fréchet [16] in order to metrize the convergence in
measure µ (see also [7, p. 356] and [12, pp. 101-104]). The integral (17) with ◦ = ∨ was
introduced by Ky Fan [14]. He proved that L0(X) with the metric

dKF (X,Y) = inf
{
ε > 0: µ

(
{|X− Y| > ε}

)
6 ε
}

is a complete space. By (19) we have

dKF (X,Y) = (S)−
∫
X

|X− Y|dµ = (S)
∫
X

|X− Y|dµ.

Li [24] extended Ky Fan’s result to cover the case of any continuous from below, fi-
nite, order continuous and subadditive measure µ. Some other results related to metrics
determined by the Sugeno integral are presented in Borzová-Molnárová et al. [6].

Now we are ready to introduced new metrics. Given p > 0, let Y = [0,∞] and
◦ : Y 2 → Y be a non-decreasing operator such that x ◦ (y + z) 6 (x ◦ y) + (x ◦ z) and
(ax) ◦ y 6 ap(x ◦ y) for x, y, z ∈ Y and a > 1. We also assume that if 1 ◦ x 6 y for
0 < y < 1, then x 6 y. For instance, x ◦ y = xp ∧ yu or x ◦ y = xpyu, where 0 < u 6 1.
Suppose µ is a subadditive measure and put

D◦,p(f, g) =
(∫
◦,X
|f − g|p dµ

)1/(p2+1)

.
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As special cases we get

D∧,1(f, g) =
(

(S)
∫
X

|f − g|dµ
)1/2

, D·,1(f, g) =
(

(N)
∫
X

|f − g|dµ
)1/2

. (28)

Denote by Lp◦ the class of measurable functions f : X → R such that D◦,p(f, 0) < ∞.
Let f ∼ g mean that µ({|f − g| > 0}) = 0 and let Lp◦ be the set of the equivalence
classes in Lp◦ determined by the equivalence relation ∼ . If [f ] is the equivalence class
containing f, define d◦,p

(
[f ], [g]

)
= D◦,p(f, g).

Theorem 4.1. Suppose ◦ : Y 2 → Y is left-continuous in the second argument. If µ is
subadditive and continuous from below, then

(
Lp◦, d◦,p

)
is a complete metric space.

To prove Theorem 4.1 we need the monotone convergence theorem and Fatou’s lemma
for the integral (2). We recall that µ is null-additive if µ(A) = 0 implies µ(A∪B) = µ(B)
for every B ∈ A. Observe that if µ is subadditive, then it is also null-additive.

Lemma 4.2. (Monotone convergence) Let ◦ : Y 2 → Y be left-continuous in the
second argument. If µ is a continuous from below, null-additive and monotone measure
and if (fn) is a sequence of functions fn : X → Y which is nondecreasing and converges
to f on Ac = X\A with µ(A) = 0, then limn→∞

∫
◦,X fn dµ =

∫
◦,X f dµ.

P r o o f . Measure µ is null-additive, so
∫
◦,X g dµ =

∫
◦,Ac g dµ for any g. The rest of the

proof is similar to that of Lemma 14 in [10]. �

Lemma 4.3. (Fatou) Suppose ◦ : Y 2 → Y is left-continuous in the second argument,
fn : X → Y for all n. If µ is a continuous from below, null-additive and monotone
measure and f(x) = limn→∞ fn(x) for all x ∈ Ac with µ(A) = 0, then

∫
◦,X f dµ 6

lim infn→∞
∫
◦,X fn dµ.

P r o o f . The proof follows from Lemma 4.2 and standard arguments (see [19, Lemma
1.20]). �

P r o o f . [Proof of Theorem 4.1] Assume c◦d > 0 for some c, d > 0; otherwise the result
is trivial. We will show that x ◦ y > 0 for all x, y > 0. In fact, suppose that x ◦ y = 0
for some x, y > 0. Then x ◦ t 6 x ◦ y = 0 for all 0 6 t 6 y, so from the subadditivity of
t 7→ x ◦ t it easily follows that x ◦ t = 0 for all t ∈ Y. Next, by the monotonicity of ◦, we
have s ◦ t 6 x ◦ t = 0 for all 0 6 s 6 x and (ax) ◦ t 6 ap(x ◦ t) = 0 for any a > 1. Hence
so s ◦ t = 0 for all s, t ∈ Y, a contradiction.

Next, suppose d◦,p
(
[f ], [g]

)
= 0. Hence, µ

(
{|f − g| > t}

)
= 0 for all t > 0. Since

µ is continuous from below, we have µ
(
{|f − g| > 0}

)
= 0, so f ∼ g. Clearly d◦,p is

symmetric and it follows from Theorem 2.15 for r = 1 and q = p that d◦,p satisfies the
triangle inequality. The proof of the completeness is a modified version of that of Lemma
1.31 in [19]. Given a Cauchy sequence

(
[fn]

)
, let

(
[fn(k)]

)
be a subsequence such that(

d◦,p
(
[fn(k+1)], [fn(k)]

))p2+1
6 4−kp. Put Ak = {x ∈ X : |fn(k+1)(x)−fn(k)(x)|p > 2−k}.
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Then 2−k ◦µ(Ak) 6 4−kp by the definition of d◦,p. From the property (2x)◦y 6 2p(x◦y)
we get

1 ◦ µ(Ak) 6 (2p)k
(
2−k ◦ µ(Ak)

)
6 2−kp.

By the assumption on ◦, µ(Ak) 6 2−kp for all k. Set A =
⋂∞
i=1

⋃∞
k=iAk. Since µ is

subadditive, we have

µ(A) 6 µ
( ∞⋃
k=i

Ak

)
6
∞∑
k=i

µ(Ak)→ 0 as i→∞,

so µ(A) = 0. Let x ∈ Ac = X\A. Since |fn(k+1)(x) − fn(k)(x)| < 2−k/p for all large
enough k, we have

sup
r>k

∣∣fn(r)(x)− fn(k)(x)
∣∣ 6 ∞∑

r=k

∣∣fn(r+1)(x)− fn(r)(x)
∣∣ 6 2−k/p

1− 2−1/p
.

Thus,
(
fn(k)(x)

)∞
k=1

is a Cauchy sequence and fn(k)(x) → f(x) for all x ∈ Ac, where f
is some measurable function (if A 6= ∅, define f on A arbitrarily). We recall that any
subadditive measure µ is also null-additive. By Lemma 4.3, we get

d◦,p
(
[f ], [fn]

)
6 lim inf

k→∞
d◦,p

(
[fn(k)], [fn]

)
6 sup
m>n

d◦,p
(
[fm], [fn]

)
→ 0, n→∞,

as
(
[fn]

)
is a Cauchy sequence. This shows that [fn]→ [f ] in metric d◦,p. �

Denote by L1
N the set of all equivalence classes in L1

· determined by the equivalence
relation ∼ . Put ‖[f ]‖ = (N)

∫
X
|f |dµ.

Corollary 4.4. If µ is maxitive, then L1
N is a Banach space with the norm ‖ · ‖.

P r o o f . Any maxitive measure is subadditive and continuous from below [32]. Observe
that ‖[f ]− [g]‖ = D·,1(f, g)2 (see (28)) and ‖[cf ]‖ = |c|‖[f ]‖ for c ∈ R. The result follows
immediately from Theorems 2.18 and 4.1. �

The next theorem is a counterpart of Theorem 2.21 in [5]

Theorem 4.5. Adopt the assumptions of Theorem 2.15 with Y = [0,∞] and some p >
0. If [fn], [f ] ∈ Lp◦ for all n and limn→∞ d◦,p

(
[fn], [f ]

)
= 0, then

∫
◦,X f

p
n dµ→

∫
◦,X f

p dµ
as n→∞.

P r o o f . From Theorem 2.15 we get d◦,p
(
[fn], [0]

)
6 d◦,p

(
[fn], [f ]

)
+ d◦,p

(
[f ], [0]

)
and

d◦,p
(
[f ], [0]

)
6 d◦,p

(
[fn], [f ]

)
+ d◦,p

(
[fn], [0]

)
. This implies∣∣∣∣( ∫

◦,X
fpn dµ

)1/(p2+1)

−
(∫
◦,X

fp dµ
)1/(p2+1)

∣∣∣∣ 6 d◦,p([fn], [f ]
)
,

which completes the proof. �

Theorem 4.5 gives a partial answer to the open problem 2.22 in [5] as there exist
discontinuous and subadditive measures (see [32]).
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[6] J. Borzová-Molnárová, L. Halc̆inová, and O. Hutńık: The smallest semicopula-based
universal integrals III: Topology determined by the integral. Fuzzy Sets and Systems
(2016).

[7] N. L. Carothers: Real Analysis. University Press, Cambridge 2000.
DOI:10.1017/cbo9780511814228

[8] M. E. Cattaneo: On maxitive integration. Department of Statistics University of Munich
2013, http://www.stat.uni-muenchen.de.
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