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Abstract. Models of random sets and of point processes are introduced to simulate some
specific clustering of points, namely on random lines in R

2 and R
3 and on random planes

in R3. The corresponding point processes are special cases of Cox processes. The generating
distribution function of the probability distribution of the number of points in a convex set
K and the Choquet capacity T (K) are given. A possible application is to model point
defects in materials with some degree of alignment. Theoretical results on the probability
of fracture of convex specimens in the framework of the weakest link assumption are derived,
and used to compare geometrical effects on the sensitivity of materials to fracture.
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1. Introduction

Point processes showing clustering effects are interesting models to simulate non-

homogeneous location of points in space, as seen for instance for some defects in

materials: for polycrystals modelled by random tessellations, defects can be located

on the grain boundaries; in composite materials, they can appear on fibers of a net-

work. The aim of this paper is to introduce some random sets models based on point

processes reproducing these kinds of situation, and to study some of their theroretical

probabilistic properties.

After a reminder on random sets obtained from Boolean random varieties in R
n,

two-steps varieties in R
n are introduced and characterized. The cases of point pro-

cesses in R2 and in R3 are detailed to generate random points on lines and on planes.

A three-steps Poisson points process in R3 enables us to take into account alignments

in Poisson planes. All these point processes are particular cases of Cox point pro-
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cesses, for which the generating function of the probability distribution of the number

of points in a convex set K and the Choquet capacity T (K) are calculated.

In the last section, we make use of iterated Boolean varieties to propose new

probabilistic models of fracture based on the weakest link assumption, which can be

applied to model the intergranular fracture of polycrystals or the fiber fracture of

composites.

2. Reminder on Boolean random varieties

In this section we give the construction of Boolean random sets based on ran-

dom varieties in R
n, and establish their main probabilistic properties, namely their

Choquet capacity.

2.1. Construction and properties of the linear Poisson varieties model

in R
n. A geometrical introduction of the Poisson linear varieties is as follows (see

[12]). Consider in R
n any linear variety with dimension n− k containing the origin

O, and with orientation ω. A Poisson point process {xi(ω)} with intensity θk(dω) is
generated on the variety with orientation ω. On every point xi(ω) a variety Vk(ω)xi

with dimension k, is located orthogonal to the direction ω. By construction, we have

Vk =
⋃

xi(ω)

Vk(ω)xi
. For instance in R3 we can build a network of Poisson hyperplanes

Πα (orthogonal to the lines Dω containing the origin) or a network of Poisson lines

in every plane Πω containing the origin.

Definition 1. In R
n, n Poisson linear varieties Vk of dimension k (k =

0, 1, . . . , n − 1) can be built: the Poisson point process for k = 0, and the Pois-

son hyperplanes for k = n − 1. For k > 1, a network of Poisson linear varieties of

dimension k can be considered as a Poisson point process in the space Sk × R
n−k,

the cross product of orientations Sk of linear varieties of dimension n − k and of

the Euclidean space Rn−k, with intensity θk(dω)µn−k(dx); θk is a positive Radon

measure for the set of subspaces Sk of dimension k, and µn−k is the Lebesgue

measure of Rn−k. For instance, Poisson lines in R
2 can be considered as a Poisson

point process on the space [0, π]× R.

If θk(dω) is any Radon measure, the varieties obtained are anisotropic. When

θk(dω) = θk dω, the varieties are isotropic. If the Lebesgue measure µn−k(dx) is

replaced by a measure θn−k(dx), non stationary random varieties are obtained.

The probabilistic properties of the Poisson varieties are easily derived from their

definition as a Poisson point process.
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Theorem 1. The number of varieties of dimension k hit by a compact set K is

a Poisson variable, with parameter θ(K):

(2.1) θ(K) =

∫

θk(dω)

∫

K(ω)

θn−k(dx) =

∫

θk(dω)θn−k(K(ω)),

where K(ω) is the orthogonal projection of K on the orthogonal space to Vk(ω),

Vk⊥(ω). For the stationary case,

(2.2) θ(K) =

∫

θk(dω)µn−k(K(ω)).

The Choquet capacity T (K) = P{K ∩ Vk 6= ∅} of the varieties of dimension k is
given by

(2.3) T (K) = 1− exp

(

−
∫

θk(dω)

∫

K(ω)

θn−k(dx)

)

.

In the stationary case, the Choquet capacity is

(2.4) T (K) = 1− exp

(

−
∫

θk(dω)µn−k(K(ω))

)

.

P r o o f. By construction, the random varieties Vk(ω) induce by intersection on

every orthogonal variety of dimension n − k, Vk⊥ (ω), a Poisson point process with

dimension n− k and with intensity θk(dω)θn−k(dx). Therefore, the contribution of

the direction ω to N(K) is the Poisson variable N(K,ω) with intensity θn−k(K(ω)).

Since the contributions of the various directions are independent, Equation (2.1)

results immediately. �

Proposition 2. Consider now the isotropic (θk being constant) and stationary

case, and a convex set K. Due to the symmetry of the isotropic version, we can

consider θk(dω) = θk dω as defined on the half unit sphere (in R
k+1) of the directions

of the varieties Vk(ω). The number of varieties of dimension k hit by a compact setK

is a Poisson variable, with parameter θ(K) given by:

(2.5) θ(K) = θk

∫

µn−k(K(ω)) dω = θk
bn−kbk+1

bn

k + 1

2
Wk(K),

where bk is the volume of the unit ball in R
k (bk = π

k/2/Γ(1 + k/2), b1 = 2, b2 = π,

b3 = 4
3π), and Wk(K) is Minkowski’s functional of K, homogeneous and of degree

n− k (see [12]).

365



The following examples are useful for applications:

⊲ When k = n − 1, the varieties are Poisson planes in R
n; in that case, θ(K) =

θn−1nWn−1(K) = θn−1A(K), where A(K) is the norm of K (average projected

length over orientations).

⊲ In the plane R2 the Poisson lines are obtained, with θ(K) = θL(K), L being the

perimeter.

⊲ In the three-dimensional space R3, Poisson lines for k = 1 and Poisson planes for

k = 2 are obtained. For Poisson lines, θ(K) = 1
4πθS(K) and for Poisson planes,

θ(K) = θM(K), where S andM are the surface area and the integral of the mean

curvature, respectively.

2.2. Boolean random varieties. Boolean random sets can be built starting

from Poisson varieties and a random primary grain [4], [5], [9].

Definition 2. A Boolean model with primary grain A′ is built on Poisson linear

varieties in two steps: i) we start from a network Vk; ii) every variety Vkα is dilated

by an independent realization of the primary grain A′. The Boolean RACS A is

given by

A =
⋃

α

Vkα ⊕A′.

By construction, this model induces on every variety Vk⊥ (ω) orthogonal to Vk(ω)

a standard Boolean model with dimension n− k, with random primary grain A′(ω)

and with intensity θ(ω) dω. The Choquet capacity of this model immediately follows,

after averaging over the directions ω; it can also be deduced from Equation (2.4),

after replacing K by A′ ⊕ Ǩ and averaging.

Theorem 3. The Choquet capacity of the Boolean model built on Poisson linear

varieties of dimension k is given by

(2.6) T (K) = 1− exp

(

−
∫

θk(dω)µn−k(A
′(ω)⊕ Ǩ(ω))

)

.

For isotropic varieties, the Choquet capacity of Boolean varieties is given by

(2.7) T (K) = 1− exp
(

−θk
bn−kbk+1

bn

k + 1

2
W k(A

′ ⊕ Ǩ)
)

.

Particular cases of Equation (2.6) are obtained when K = {x} (giving the prob-
ability q = P{x ∈ Ac} = exp(−

∫

θk(dω)µn−k(A
′(ω))) and when K = {x, x + h},

giving the covariance of Ac, Q(h) :

(2.8) Q(h) = q2 exp

(
∫

θk(dω)Kn−k(ω,~h · ~u(ω))
)
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where Kn−k(ω, h) = µn−k(A
′(ω) ∩ A′

−h(ω)) and ~u(ω) is the unit vector with the

direction ω. For a compact primary grain A′, there exists for any h an angular

sector where Kn−k(ω, h) 6= 0, so that the covariance generally does not reach its sill,

at least in the isotropic case, and the integral range, obtained by integration of the

correlation function, is infinite. Consider now some examples in R
2 and in R

3.

2.2.1. Fibers in 2D. In the plane a Boolean model on Poisson lines can be built.

For an isotropic lines network (Figure 1), and if A′ ⊕ Ǩ is a convex set, we have,

from equation (2.7):

(2.9) T (K) = 1− exp(−θL(A′ ⊕ Ǩ)).

If A′ ⊕ Ǩ is not a convex set, the integral of projected lengths over a line with the

orientation varying between 0 and π must be taken. If A′ and K are convex sets,

we have L(A′ ⊕ Ǩ) = L(A′) + L(K). Consider now the isotropic case. Using for A′

a random disc with a random radius R (with expectation R) and for K a disc with

radius r, equation (2.9) becomes

T (r) = 1− exp(−2πθ(R + r)),

T (0) = P{x ∈ A} = 1− exp(−2πθR),

which can be used to estimate θ and R, and to validate the model.

In R
3, a Boolean model on Poisson planes or on Poisson lines can be built.

Figure 1. Example of Boolean model built on Poisson lines (1024 × 1024 image), using as
primary grains discs with radius 5 (with probability 0.75) and 15 (with probabil-
ity 0.25).
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2.2.2. Boolean model on Poisson planes in R
3. A Boolean model built on

Poisson planes generates a structure with strata. On isotropic Poisson planes, we

have for a convex set A′ ⊕ Ǩ by application of equation (2.7):

(2.10) T (K) = 1− exp(−θM(A′ ⊕ Ǩ)).

When A′ and K are convex sets, we have M(A′ ⊕ Ǩ) =M(A′) +M(K). If A′ ⊕ Ǩ

is not convex, T (K) is expressed as a function of the length l of the projection over

the lines Dω by T (K) = 1 − exp(−θ
∫

2π ster
l(A′(ω) ⊕ Ǩ(ω)) dω). For instance if A′

is a random sphere with a random radius R (with expectation R) and K is a sphere

with radius r, equation (2.10) becomes:

T (r) = 1− exp(−4πθ(R + r)),

T (0) = P{x ∈ A} = 1− exp(−4πθR),

which can be used to estimate θ and R, and to validate the model.

2.2.3. Boolean model on Poisson lines in R
3. A Boolean model built on

Poisson lines generates a fiber network, with possible overlaps of fibers, as illustrated

in Figure 2. On isotropic Poisson lines, we have for a convex set A′ ⊕ Ǩ

(2.11) T (K) = 1− exp
(

−θπ

4
S(A′ ⊕ Ǩ)

)

.

If A′ ⊕ Ǩ is not a convex set, T (K) is expressed as a function of the area A of the

projection over the planes Πω by

(2.12) T (K) = 1− exp

(

−1

2
θ

∫

2π ster

A(A′(ω)⊕ Ǩ(ω)) dω

)

.

If A′ is a random sphere with a random radius R (with expectation R and second

moment E(R2)) and K is a sphere with radius r, equation (2.11) becomes

T (r) = 1− exp(−π
2θ(E(R2) + 2rR+ r2)),

T (0) = P{x ∈ A} = 1− exp(−π
2θE(R2)),

which can be used to estimate θ, E(R2) and R, and to validate the model. A model

of Poisson fibers parallel to a plane, and with a uniform distribution of orientations in

the plane, was used to model cellulosic fiber materials (see [1]). In [14], non isotropic

dilated Poisson lines were used to model and to optimize the acoustic absorption of

nonwoven materials. In [2], elastic properties of isotropic fiber networks were studied

by numerical simulations.
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Figure 2. Simulation of Poisson fibers with a single radius in 3D (see [3]).

3. Two steps Boolean varieties

It is possible to generate further Boolean models by iteration of Poisson varieties.

For instance in R
2, we first consider Poisson lines, and in the second step Poisson

points on every line. These points are germs to locate primary grains A′ to gen-

erate a Boolean model. Compared to the standard Boolean model, this one shows

alignments of grains. Similarly in R
3 we can start from Poisson planes V2α and use

Poisson lines V1β in every plane to generate a Boolean model with fibers. In con-

trast to Poisson fibers in R
3, this model generates a random set with some coplanar

fibers. Such long range random sets could mimic specific microstructures with an

order in a lower dimension subspace of Rn, such as preferred germination of objects

on specific planes or lines.

These models are based on doubly stochastic Poisson random variables for which

the Choquet capacity can be obtained. In other contexts, iterations of random

tessellations were proposed as models of a random set, like the STIT tessellations

related to the fracture process of materials (see [13]), or iterated division of cells to

simulate telecommunication networks (see [11]).

Definition 3. Two steps random varieties are defined as follows: starting from

Poisson linear varieties Vk of dimension k and with intensity θk(dω) in R
n, Poisson

linear varieties Vk′β with dimension 0 6 k′ < k and with intensity θk′(dω) are located

on each Vkα. Then each Vk′β is dilated by independent realizations of a random

compact primary grain A′ ⊂ R
n to generate the Boolean RACS A:

A =
⋃

β

Vk′β ⊕A′.
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R em a r k 1. By construction, when k′ = 0 the varieties Vk′β are a particular

case of a Cox process driven by the random set Vk, and the derived random set A is

a Cox Boolean model (see [8]).

In what follows the purpose is restricted to the stationary and isotropic case, with

two intensities θk and θk′ .

Theorem 4. The number N(K) of varieties of dimension k′ < k hit by the

compact set K is a random variable with the generating function

(3.1) Gk′(s,K) = E{sN(K)} = exp[θkakWk(K)[ϕk′ (θk′ak′ (1− s),K)− 1]],

where ak′ = 1
2 (k

′ + 1)bn−k′bk′+1/bn and ϕk′(λ,K) is the Laplace transform of the

random variable Wk′ (K ∩ Vkα), Wk′ being the Minkowski functional homogeneous

with degree k − k′ in R
k:

(3.2) ϕk′(λ,K) = E{exp[−λWk′(K ∩ Vk)]},

the mathematical expectation being taken over the realizations Vkα. As a conse-

quence, the Choquet capacity of the Boolean RACS A built on the Poisson linear

varieties Vk′ using a deterministic primary grain A′ is derived from Gk′ (0, A′ ⊕ Ǩ),

E{} being the expectation with respect to the random variety Vkα:

(3.3) 1− T (K) = exp[−θkakWk(A
′ ⊕ Ǩ)[1 − E{exp[−θk′ak′Wk′ (A′ ⊕ Ǩ ∩ Vk)]}]].

P r o o f. The random number Nk of varieties Vkα hit by K is a Poisson variable

with expectation θkakWk(K). On each Vkα, Nk′ varieties Vk′β are generated, Nk′

being a Poisson variable with expectation θk′ak′Wk′ (K ∩ Vk). For a random section
K ∩ Vkα, the generating function of Nk′ is

(3.4) Γ(s) = exp[−θk′ak′Wk′ (K ∩ Vkα)(1 − s)].

Taking the expectation of (3.4) with respect to Wk′(K ∩ Vkα) and then of Γ(s)
Nk

gives (3.1). �

The Choquet capacity requires the use of the Laplace transform ϕk′(λ,A′ ⊕ Ǩ).

It is not easy to express them in a closed form for specific compact sets K and A′.

However, the required distribution functions and their Laplace transforms can be

estimated by simulation of the random variables obtained from random variables

Wk′ (A′ ⊕ Ǩ ∩Vkα) obtained from random sections. Examples of closed form expres-
sions are given now for two-steps Poisson points in R

2 and in R
3.
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3.1. Poisson points on Poisson lines in the plane. Starting from Poisson

lines in the plane, a 1D Poisson point process is independently generated on each

line.

Proposition 5. The generating function GK(s) of the random number of points

NP (K) contained in a convex set K in R
2 with perimeter L(K), random intercept

length L(K) (with Laplace transform ϕL(λ,K)), is given by

(3.5) GK(s) = exp(−θ1L(K)(1 − ϕL(θ(1 − s),K))).

We have

(3.6) 1− T (K) = Q(K) = exp(−θ1L(K)(1− ϕL(θ,K))).

The Choquet capacity of the corresponding Boolean model for convex sets K and

A′ is obtained by replacing K by (A′ ⊕ Ǩ) in equation (3.6).

P r o o f. The set K hits a Poisson random number of lines ND with parameter

θ1L(K). Each chord with random length L(K) contains a Poisson number of points

with parameter θL(K) and generating function

Γ(s, L(K)) = exp(−θL(K)(1− s)).

After deconditioning with respect to L(K), with Laplace transform ϕL(λ,K), we

obtain the generating function Γ(s,K) = EL{Γ(s, L(K))} = ϕL(θ(1 − s),K). Then

we consider the sum of ND realizations of the random variable L(K) to obtain

equation (3.5) by expectation with respect to ND:

GK(s) = END
{ϕL(θ(1 − s),K)ND} = exp(θ1L(K)(ϕL(θ(1 − s),K)− 1)).

�

When K is the disc C(r) with radius r, the generating function of the random

number of points NP (r) in C(r) is obtained by

G(s, r) = exp[−2πrθ1(1− ϕL(θ(1 − s), r))]

with ϕL(λ, r) given by equation (7.1) or 7.2. We have

Q(r) = exp[−2πrθ1(1− ϕL(θ, r))].

3.2. Poisson points on Poisson planes in R
3. This point process is obtained

in two steps:

(1) We start with Poisson planes in R
3 (consider here the isotropic case), with

intensity θ2.

(2) On each Poisson plane, a 2D Poisson point process is generated, with intensity θ.
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Proposition 6. The generating function GK(s) of the random number of points

NP (K) contained in a convex set K is given by

(3.7) GK(s) = exp[−θ2M(K)(1− ψA(θ(1 − s),K ∩ π))]

and we get

(3.8) 1− T (K) = Q(K) = exp[−θ2M(K)(1− ψA(θ,K ∩ π))]

with M(K): integral of mean curvature of K; A(K ∩ π): area of sections of K by
a random plane π, with Laplace transform ψA(λ,K ∩ π).

The Choquet capacity of the corresponding Boolean model for convex sets K

and A′ is obtained by replacing K by (A′ ⊕ Ǩ) in equation (3.8).

P r o o f. The random number of planes Nπ(K) hit by K is a Poisson variable

with parameter θ2M(K). Each plane π cuts K along a convex random set with

area A(K ∩ π), containing a Poisson number of points, with parameter θA(K) and

generating function

Γ(s, A(K)) = exp(−θA(K)(1 − s)).

After deconditioning with respect to A(K), with Laplace transform ψA(λ,K ∩ π),
we obtain the generating function Γ(s,K) = EA{Γ(s, A(K))} = ψA(θ(1− s),K ∩π).
Then we consider the sum of Nπ realizations of the random variable A(K) to obtain

equation (3.7) by expectation with respect to Nπ:

GK(s) = ENπ
{ψA(θ(1 − s),K ∩ π)Nπ}

= exp[θ2M(K)(ψA(θ(1− s),K ∩ π)− 1)].

�

The generating function G(s, r) of the random number of points NP (r) in the

sphere with radius r is given by

G(s, r) = exp[−4πrθ2(1− ψ(θπ(1 − s), r))]

and

1− T (r) = Q(r) = exp[−4πrθ2(1 − ψ(θπ, r))]

with (see equation (7.4))

ψ(λ, r) =
exp(−λr2)

∫ r
√
λ

0
exp(y2) dy

r
√
λ

.
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3.3. Poisson points on Poisson lines in R
3. This point process is obtained in

two steps:

(1) We start from isotropic Poisson lines in R
3, with intensity θ1.

(2) On each Poisson line, a 1D Poisson point process with intensity θ is generated.

Proposition 7. The generating function GK(s) of the random number of points

ND(K) contained in a convex set K is given by

(3.9) GK(s) = exp
[

−π

4
θ1S(K)(1− ϕL(θ(1 − s),K))

]

so that

(3.10) 1− T (K) = Q(K) = exp
[

−π

4
θ1S(K)(1− ϕL(θ,K))

]

,

where S(K) is the surface area of K, and ϕL(λ,K) is the Laplace transform of

a random chord L(K) in K.

The Choquet capacity of the corresponding Boolean model for convex sets K

and A′ is obtained by replacing K by (A′ ⊕ Ǩ) in equation (3.10).

P r o o f. The random number of lines ND(K) hit by K is a Poisson variable with

parameter 1
4πθ1S(K). Each line cuts K along a random chord with length L(K),

containing a Poisson number of points with parameter θL(K) and with generating

function

Γ(s, L(K)) = exp(θL(K)(s− 1)).

After deconditioning with respect to L(K), with Laplace transform ϕL(λ,K), we

obtain the generating function Γ(s,K) = EL{Γ(s, L(K))} = ϕL(θ(1 − s),K). Then

we consider the sum of ND realizations of the random variable L(K) to obtain

equation (3.9) by expectation with respect to ND:

GK(s) = END
{ϕL(θ(1 − s),K)ND} = exp

[

−π

4
θ1S(K)(1− ϕL(θ(1− s),K))

]

.

�

The generating function G(s, r) of the random number of points NP (r) in the

sphere with radius r is expressed by

log(G(s, r)) = −π
2θ1r

2
(

1− 2

(2rθ(1 − s))2
[1− (1 + 2rθ(1 − s)) exp(−2rθ(1 − s))]

)

and

1− T (r) = Q(r) = exp
[

−π
2θ1r

2
(

1− 2

(2rθ)2
[1− (1 + 2rθ) exp(−2rθ)]

)]

.
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4. Three-steps Poisson points in R
3

A new point process is obtained by a three steps iteration: Poisson points on 2D

Poisson lines contained in Poisson planes.

(1) We start from Poisson planes in R
3 (isotropic case), with intensity θ2.

(2) On each Poisson plane, a 2D Poisson lines process with intensity θ1 is generated.

(3) On each line, a 1D Poisson point process with intensity θ is given.

Proposition 8. Consider a convex compact set K, with random planar sections

K ∩ π. The generating function GK(s) of the random number of points ND(K)

contained in the convex set K is given by

(4.1) log(GK(s)) = −θ2M(K)(Eπ{exp[θ1L(K ∩ π)(ϕL(θ(1− s),K ∩ π)− 1)]}− 1),

where Eπ is the mathematical expectation over random sections. We get

(4.2) log(1 − T (K)) = log(Q(K))

= −θ2M(K)(Eπ{exp[θ1L(K ∩ π)(ϕL(θ,K ∩ π)− 1)]} − 1)

with perimeter L(K ∩ π) of sections of K, with Laplace transform ψL(λ,K ∩ π),

random chord of each planar section L(K∩π), with Laplace transform ϕL(λ,K∩π).

The Choquet capacity of the corresponding Boolean model for convex sets K and

A′ is obtained by replacing K by (A′ ⊕ Ǩ) in equation (4.2).

P r o o f. The random number of planesNπ(K) hit byK is a Poisson variable with

parameter θ2M(K). Each plane π cuts K along to a convex random set with random

perimeter L(K ∩ π) hitting a Poisson number of lines, with parameter θ1L(K ∩ π).
Each line cuts K ∩ π along a random chord L(K ∩ π) containing a Poisson number
of points with parameter θL(K) and generating function

Γ(s, L(K ∩ π)) = exp(−θL(K ∩ π)(1− s)).

For a given section K ∩ π, the generating function of the number of points on a line
is obtained by deconditioning over L(K ∩ π), so that

Γ(s,K ∩ π) = ϕL(θ(1 − s),K ∩ π).

The generating function of the random number of points on K ∩ π is given by the
expectation of Γ(s,K∩π)N , N being the Poisson variable with parameter θ1L(K∩π),
and therefore,

E{Γ(s,K ∩ π)N} = exp[θ1L(K ∩ π)(ϕL(θ(1 − s),K ∩ π)− 1)].
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Deconditioning with respect to the random section K ∩ π gives

Γ(s,K) = Eπ{exp[θ1L(K ∩ π)(ϕL(θ(1 − s),K ∩ π)− 1)]}.

Deconditioning now with respect to the Poisson number of planes Nπ(K), we take

the expectation of Γ(s,K)Nπ(K) to get equation (4.1). �

The generating function of the number of points of the process inside a sphere

with radius r is given by

log(G(s, r)) = −4πθ2r(1 − ER{exp[2πθ1R(ϕL(θ(1 − s), R)− 1)]})

with

ER{exp[2πθ1R(ϕL(θ(1 − s), R)− 1)]}

=

∫ r

0

exp[2πθ1u(ϕL(θ(1 − s), u)− 1)]f(u, r) du,

where

⊲ f(u, r) is the distribution function of the radius R of random sections of a sphere.

⊲ ϕL(λ,R) is the Laplace transform of random chords of the disc with radius R.

The Choquet capacity for a sphere with radius r is given by

log(1− T (r)) = log(Q(r))

= −4πθ2r

(

1−
∫ r

0

exp[2πθ1u(ϕL(θ, u)− 1)]f(u, r) du

)

.

5. Use of iterated Boolean varieties for probabilistic models of

fracture based on the weakest link assumption

The standard weakest link model is based on the assumption that fracture in

a brittle material is initiated on the most critical defect which controls the full frac-

ture process. For this model, it means that when there is at least one point x in

a specimen, where the applied principal stress component σ(x) is larger than the

local critical stress σc(x) (i.e. the level of stress for which a fracture is initiated), the

specimen is broken. Usually it is assumed that the occurrence or absence of critical

defects (generating fracture) of any volume elements generate a set of independent

events. After a decomposition of the volume V into links vi and assuming that there
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is a fracture of the volume V when a single link vi is broken, a classical computation

for independent events gives

P{Non fracture} =
∏

i

P{Non fracture of vi}.

For vi → 0, P{fracture} ≃ Φ((σ(x)) dx, with Φ increasing with the loading σ and

P{Non fracture of dx} ≃ 1− Φ((σ(x)) dx. Therefore with these assumptions,

P{Non fracture of V } = exp

(

−
∫

V

Φ(σ(x)) dx

)

= exp(−V Φ(σeq)),

where the equivalent stress is defined by

Φ(σeq) =
1

V

∫

V

Φ((σ(x)) dx.

This assumption is equivalent to a distribution of point defects in a matrix with

σc = ∞, according to a Poisson point process in space (see [6]), with intensity Φ(σ),
where Φ(σ) is the average number per unit volume of defects with a critical stress σc

lower than σ.

For a homogeneous applied stress field σ(x) = σ,

P{Non fracture of V } = exp(−V Φ(σ)).

For the Weibull model, the function Φ(σ) is a power law in σ: Φ(σ) = θ(σ − σ0)
m

and P{Non fracture of V } follows a 3 parameters Weibull distribution.
The weakest link model corresponds to an “Infimum” Boolean random function

with point support primary random functions (PRF), and is immediately extended to

any PRF with a support having almost surely compact sections (see [4], [7], [8], [10]).

In what follows the weakest link model is extended to the case of the various point

processes introduced in the preceding parts of this paper. It allows for clustering of

defects on Poisson varieties. A comparison is made with the standard Poisson-based

model and between the various models, when using the same function Φ(σ) for point

defects.

5.1. Fracture statistics for Poisson point defects on Poisson lines in R
2.

As seen before, a two steps point process can be used to locate random defects:

(1) Poisson lines in R
2 (isotropic case), with intensity θ1.

(2) On each Poisson plane, a 1D Poisson point process of point defects acting in

fracture, with intensity θ replaced by Φ(σ) in equation (3.6).

376



We get

(5.1) P{σR > σ}L = exp(−θ1L(K)(1− ϕL(Φ(σ),K))).

When K is the disc with radius r,

(5.2) P{σR > σ}L = Q(r, σ) = exp[2πrθ1(ϕL(Φ(σ), r) − 1)].

5.2. Comparison of fracture statistics for Poisson points and for points

on lines in R
2. In the plane, the average number of Poisson points contained in the

disc of radius r is

E{NP (r)} = πr2θ2.

The average number of Poisson lines hit by the disc is 2πrθ1. Therefore, the average

number of points of the two-step process on lines is 2πrθ1θE{L}, E{L} being the
average chord of the disc. We have −πK ′(0) = 2πr and then −K ′(0) = 2r, so that

E{L} = πr2/2r = πr/2. The average number of points on lines is given by

E{NP (r)} = 2πrθ1θπ

r

2
= π

2r2θ1θ.

To compare the two fracture statistics, we consider the same average number of

defects in the disc, so that we have to use

θ2 = πθ1θ.

We have
log (P{σR > σ}P )− log(P{σR > σ}L)

= 2πrθ1

(

1− ϕL(θ, r) −
πθ1θ

2πrθ1
πr2

)

= 2πrθ1

(

1− ϕL(θ, r) − θ
π

2
r
)

.

Using the parameter α = 2θr, we have to compute

2πrθ1

(

1− π

2
(StruveL(−1, α)− BesselI(1, α)) − π

4
α
)

.

From numerical calculation, it turns out that this expression remains negative for

any α and then

(P{σR > σ}P ) < P{σR > σ}L.

This result is satisfied for any intensity Φ(σ). In 2D, it is easier to break a specimen

with Poisson point defects than with point defects on Poisson lines.
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5.3. Fracture statistics for Poisson point defects on Poisson planes in R
3.

As earlier, we locate point defects according to a two steps point process:

(1) Poisson planes in R
3 (isotropic case), with intensity θ2.

(2) On each Poisson plane, 2D Poisson point process of point defects, with inten-

sity θ replaced by Φ(σ) in equation (3.8).

Considering the Poisson tessellation generated by Poisson planes, this model fig-

ures out point defects located on grain boundaries, generating intergranular fracture.

We get

(5.3) P{σR > σ}π = exp[−θ2M(K)(1− ψA(Φ(σ),K ∩ π))].

In the case of a spherical specimen with radius r,

(5.4) P{σR > σ}π = exp[−4πrθ2(1 − ψ(πΦ(σ), r))]

with ψ(λ, r) given by equation (7.4).

5.4. Fracture statistics for Poisson point defects on Poisson lines in R
3.

A model of long fiber network with point defects is obtained from Poisson lines,

where we replace θ by Φ(σ) in equation (3.10):

(5.5) P{σR > σ}D = exp
[

−π

4
θ1S(K)(1− ϕL(Φ(σ),K))

]

.

In the case of a spherical specimen with radius r,

(5.6) P{σR > σ}D = exp
[

−π
2θ1r

2
(

1− 2

(2rΦ(σ))2

)

× [1− (1 + 2rΦ(σ)) exp(−2rΦ(σ))]
]

.

5.5. Comparison of fracture statistics for Poisson points and for points

on planes. We consider the fracture of a sphere of radius r containing a random

number of points NP (r) with a given average.

For the standard Poisson point process,

E{NP (r)} =
4

3
πr3θ3.

For Poisson points on Poisson planes,

E{NP (r)} =
8

3
π
2r3θ2θ.
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For a fixed average number of defects in the sphere of radius r, we get

θ3 = 2πθ2θ.

Using the same intensity Φ(σ) = θ for the two processes, we obtain

log(P{σR > σ}P )− log(P{σR > σ}π) = 4πrθ2

(

1− ψ(θπ, r)− θr2

2

)

and

P{σR > σ}π < P{σR > σ}P for r2Φ(σ) < 1.8.

Given the same statistics of defects Φ(σ), for low applied stresses, or at a small

scale, the “intergranular” fracture probability is higher than the standard proba-

bility of fracture. For high applied stresses the reverse is true, and the material

is less sensitive to “intergranular” fracture. The two probability curves cross for

r2Φ(σ) ≃ 1.8.

5.6. Comparison of fracture statistics for Poisson points and for points

on lines. We consider again the fracture of a sphere of radius r containing a random

number of points NP (r) with a given average.

For the standard Poisson point process,

E{NP (r)} =
4

3
πr3θ3.

For Poisson points on Poisson lines,

E{NP (r)} =
4

3
π
2r3θ1θ.

Given the average number of defects in the sphere of radius r, we have

θ3 = πθ1θ.

Using the same intensity Φ(σ) = θ for the two processes, and the auxiliary variable

α = 2rθ, we have

log(P{σR > σ}D)− log(P{σR > σ}P )

= π
2θ1r

2
( 2

α2
(1 − (1 + α) exp(−α)) − 1 +

2

3
α
)

and

P{σR > σ}D < P{σR > σ}P .
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Therefore, given the same statistics of defects Φ(σ), the “fiber” fracture probability

is higher than the standard probability of fracture. The material is more sensitive

to point defects on fibers.

5.7. Comparison of fracture statistics for Poisson points on planes and

for points on lines. For a given average number of defects in the sphere of radius r,

we have

θ2θπ =
1

2
θ1θD.

Taking 2rθD = πr2θπ = α, we get π
2θ1r

2 = 4πrθ2. Using the same intensity

Φ(σ) = θ = θπ = θD for the two processes, we get

log(P{σR > σ}π)− log(P{σR > σ}D)

= π
2θ1r

2
(

ψ(θπ, r) − 2

α2
(1 − (1 + α) exp(−α))

)

> 0,

therefore P{σR > σ}π > P{σR > σ}D for any distribution Φ(σ) of defects and it is

easier to break a specimen with defects on fibers than with defects on planes.

5.8. Fracture statistics for defects obtained in the three steps iteration.

We consider now a model of long fibers in random planes, with point defects located

on the fibers, where θ is replaced by Φ(σ) in equation (4.2). We have

log(P{σR > σ}3 iterations) = θ2M(K)(Eπ{exp[θ1L(K∩π)(ϕL(Φ(σ),K∩π)−1)]}−1).

For fracture statistics of the sphere with radius r,

log(P{σR > σ}3 iterations) = 4πθ2r

(
∫ r

0

exp[2πθ1u(ϕL(Φ(σ), u)− 1)]f(u, r) du− 1

)

.

5.9. Comparison of fracture statistics for Poisson points and for the

three steps iteration. We study the fracture statistics of a sphere of radius r

containing a random number of points NP (r) with a given average.

For the standard Poisson point process,

E{NP (r)} =
4

3
πr3θ3.

For Poisson points on Poisson lines on Poisson planes,

E{NP (r)} =
4

3
πr3(θ2θ1θ2π

2).
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Given an average number of defects in the sphere of radius r, we have

θ3 = 2π
2θ2θ1θ.

To compare fracture statistics of Poisson points and of the three iterations case, we

use the ratio
4

3

θ3r
3

4θ2r
=

4

3

2π
2θ2θ1θ

4θ2
r2 =

2

3
π
2θ1θr

2.

With auxilliary variables 2θr = α and θ1r = β, we have to compare 1
3π

2θ1αr =
1
3π

2αβ to

1−
∫ r

0

exp[−2πθ1u(1− ϕL(ϕL(θ, u))]f(u, r) dr.

Using u/r = y and du = r dy, we get

1−
∫ 1

0

exp [−2πθ1ry(1− ϕL(θ, ry))]
y

√

1− y2
dy

= 1−
∫ 1

0

exp[−2πβy(1− ϕL(θ, ry))]
y

√

1− y2
dy.

We make a comparison by numerical calculation of the integral over α, for a given β.

For β = 0.01, 0.1, 1, and 10,

P{σR > σ}3 iterations > P{σR > σ}P .

5.10. Comparison of fracture statistics for Poisson points on Poisson

planes and for the three steps iteration. We fix the average number of points

in the sphere with radius r. For Poisson points on Poisson planes

E{Nπ(r)} =
8

3
π
2r3θ2πθπ

and for 3 iterations

E{NP (r)}3 iterations =
4

3
πr3(θ2θ1θ2π

2).

To keep the same average values, we fix

2θ2πθπ = 2πθ2θ1θ.

Taking θπ = θ to get the same statistics over points, and θ2 identical for the two

models in order to keep the same scale for the Poisson polyedra, we get πθ1 = 1 and

θ1 = 1/π.
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With auxilliary variables 2θr = α and θ1r = β, we have to compare

1− ψ(θπ, r)

and

1−
∫ 1

0

exp[−2πβy(1− ϕL(θ, ry))]
y

√

1− y2
dy.

For β = 0.01, 0.1, 0.5, and 0.75, numerical calculations give

P{σR > σ}3 iterations > P{σR > σ}π .

For β = 1,

P{σR > σ}3 iterations < P{σR > σ}π when α < 1.99,

P{σR > σ}3 iterations > P{σR > σ}π when α > 1.99.

For β = 2, 10,

P{σR > σ}3 iterations < P{σR > σ}π .

6. Conclusion

The models of random sets and point processes studied in this paper were designed

to simulate some specific clustering of points, namely on random lines in R
2 and

R
3 and on random planes in R

3. A possible application is to model point defects

in materials with some degree of alignment. We derived general theoretical results,

useful to compare geometrical effects on the sensitivity of materials to fracture. Based

on the presented theoretical results, applications can be looked for from statistical

experimental data.

7. Appendix: Laplace transforms for sections

of discs and of spheres

7.1. Random chords in a disc of radius r. Let L be the random length of

a chord obtained by random sections of the disc with radius r (this means chords

given by intersections of the disc by lines with a uniform location along its diameter).
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Proposition 9. The cumulative distribution of the random variable L is given

by

P{L < l} = 1−
√

1−
( l

2r

)2

for l < 2r.

P r o o f. For any convex set A with geometrical covariogram K(h), the distri-

bution P{L < l} is given by the expression 1 − K ′(h)/K ′(0), where K ′(h) is the

projection of A ∩ Ah in the direction of vector h. For a disc with radius r in R
2 we

get
(h

2

)2

+
(K ′(h)

2

)2

= r2

and then

(1− P{L < l})2 =
(K ′(l)

K ′(0)

)2

= 1−
( l

2r

)2

.

�

The Laplace transform of the distribution of random chords L in a disc with

radius r is given by

ϕL(λ, r) =
1

4r2

∫ 2r

0

l exp(−λl)
√

1− (l/2r)2
dl.

Using y = l/2r so that dl = 2r dy, ϕL(λ, r) can be derived using the formal

computation software Mathematica:

(7.1) ϕL(λ, r) =
1

4r2

∫ 1

0

exp(−λ2ry) 2ry 2r
√

1− y2
dy

=

∫ 1

0

exp(−λ2ry) y dy
√

1− y2

= 1
2π[−BesselI(1, 2λr) + StruveL(−1, 2λr)].

Using the power series for exp(−λ2ry) = 1 +
∞
∑

n=1
(−1)n(2λr)n/n!, we get

∫ 1

0

yn dy
√

1− y2
=

√
π

2

Γ(12 (1 + n))

Γ(1 + 1
2n)

and therefore,

(7.2) ϕL(λ, r) = 1 +

√
π

2

∞
∑

n=1

(−1)n
(2λr)n

n!

Γ(12 (1 + n+ 1))

Γ(1 + 1
2 (n+ 1))

= 1 +

√
π

2

∞
∑

n=1

(−1)n
(2λr)n

n!

Γ(12 (n+ 2))

Γ(12 (n+ 3))
.
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7.2. Random radius of sections of a sphere with radius R3. The cumulative

distribution function of the radius R of a random section of the sphere with radius

R3 is given by

P{R < r} = 1−
√

1−
( r

R3

)2

.

The probability density function is given by

(7.3) f(r, R3) =
r

R2
3

1
√

1− (r/R3)2
.

By using y = r/R3 we have R3 dy = dr. The Laplace transform of the distribution

of R is given by

ϕR(λ,R3) =

∫ R3

0

r

R2
3

1
√

1− (r/R3)2
exp(−λr) dr

=

∫ 1

0

R3y

R2
3

1
√

1− y2
R3 exp(−λR3y) dy

=

∫ 1

0

y
√

1− y2
exp(−λR3y) dy

= 1
2π[−BesselI(1, λR3) + StruveL(−1, λR3)].

From ϕR(λ,R3) we obtain the Laplace transform of the perimeter of sections,

ψL(λ,B(R3) ∩ π), by replacing λ by 2πλ.

From the distribution of the radius R the Laplace transform of R2 can be com-

puted:

ER{exp(−λR2(R3))} = ψ(λ,R3)

=

∫ R3

0

exp(−λu2) u

r2
√

1− (u/R3)2
du.

Using u/R3 = y and du = R3 dy, we conclude

(7.4) ER{exp(−λR2(R3))}

=

∫ 1

0

exp(−λR2
3y

2)
R3yR3 dy

r2
√

1− y2
=

∫ 1

0

exp(−λR2
3y

2)
y dy

√

1− y2

=
exp(−λR2

3)
∫ R3

√
λ

0 exp(y2) dy

R3

√
λ

.
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7.3. Random chords in a sphere with radius R3. We start with the geomet-

rical covariogram of the sphere with diameter a = 2R3. For h < a,

K(h) = V
(

1− 3

2

h

a
+

1

2

(h

a

)3)

,

K ′(h) = V
(

−3

2

1

a
+

3

2

h2

a3

)

.

The cumulative distribution function is obtained by

1− F (l) =
K ′(l)

K ′(0)
= 1− l2

a2
for l < a

and

F (l) =
l2

a2
for l < a

with density

f(l) =
2l

a2
for l < a.

For a sphere with radius R3

f(l) =
l

2R2
3

for l < 2R3.

The Laplace transform of f(l) is obtained from

ϕSL(λ,R3) =
1

2R2
3

∫ 2R3

0

l exp(−λl) dl.

Using y = l/2R3 with dy = dl/2R3 yields

ϕSL(λ,R3) =
1

2R2
3

∫ 2R3

0

exp(−λl)2R3y(2R3) dy

= 2

∫ 1

0

exp(−λ2R3y)y dy.

Since
∫ 1

0

y exp(−αy) dy =
1− (1 + α) exp(−α)

α2
,

we get

ϕL(λ,R3) =
2

(2R3λ)2
[1 − (1 + 2R3λ) exp(−2R3λ)].
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Using the power series expansion of ψ(λ, r), exp(−λr2y2) = 1+
∞
∑

1
(−1)n(λr2y2)/n!

n
.

We get
∫ 1

0

y2n+1 dy
√

1− y2
=

√
π

2

Γ(12 (2n+ 2))

Γ(1 + 1
2 (2n+ 1))

=

√
π

2

n!

Γ(n+ 1 + 1
2 )

and

ψ(λ, r) =

∫ 1

0

exp(−λr2y2) y dy
√

1− y2
= 1 +

√
π

2

∞
∑

1

(−1)n
(λr2)n

Γ(n+ 1 + 1
2 )
.
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d’Echelle. Thèse de Doctorat d’Etat ès Sciences Physiques, Université de Caen (1991).
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