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Abstract

In this paper we prove that the maximum dimension of the Lie group of
automorphisms of the Riemann–Cartan 4-dimensional manifold does not
exceed 8, and if the Cartan connection is skew-symmetric or semisym-
metric, the maximum dimension is equal to 7. In addition, in the case of
the Riemann–Cartan n-dimensional manifolds with semisymmetric con-
nection the maximum dimension of the Lie group of automorphisms is
equal to n(n− 1)/2 + 1 for any n > 2.
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As is known, the development of the general theory of relativity has led to
the first geometrization of the gravitational field. The geometry of space-time in
the general theory of relativity is that of a four-dimensional pseudo-Riemannian
manifold of Lorentz signature. Then, the problem of geometrizing the unified
theory of gravitation and electromagnetism was posed. It was from solving this
problem 1 that the new non-Riemannian geometry arose. The first such ge-
ometry was proposed by Weyl in 1918. Another version of geometrization of
gravitation and electromagnetism was proposed by E. Cartan in 1922 (see, e.g.,
the survey [1]). In the geometry of Cartan, the Levi-Civita connection is re-
placed by a metric connection with torsion. As a result, the space-time manifold
is endowed with both curvature and torsion. In the sequel, this approach has
led to the development of Einstein–Cartan theory. In this theory, the Cartan
connection is assumed to be semisymmetric and the trace of its torsion tensor is
identified, up to a dimensional multiplier, with the vector potential of the elec-
tromagnetic field. Many versions of geometrization of physical theories unifying
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different forms of interactions inevitably lead to accounting torsion; multidimen-
sional spaces with positive-definite metric are also used as model spaces (e.g.,
in quantum field theory [2, 3]).
In papers [4, 5, 6, 7] it is determined that the dimension of the Lie group

of automorphisms of the Riemann-Cartan n-dimensional manifold is less than
n(n+1)

2 with n �= 3 and is equal to 6, if n = 3. If metric g is positively defined

and n > 4, maximum dimension is equal to n(n−1)
2 + 1. The case n = 4 is

exceptional, as the orthogonal group SO(n) when n = 4 is not simple (it is
semisimple) [8].
Next, we prove that in the case n = 4, the dimension of the Lie group

of automorphisms does not exceed 8, and if the connection is skew-symmetric
or semisymmetric or is exactly equal to 7. In addition, for semisymmetric
connection the dimension of the Lie group of automorphisms is exactly equal to
any n > 2. It being known that the metric tensor may have any signature

A smooth n-dimensional manifoldM with a semi-Riemannian metric g and a
linear metric connection ∇̃ with torsion is called a Riemann–Cartan manifold [1].
The connection ∇̃ can be represented as

∇̃ = ∇̂+
1

2
S̃,

where ∇̂ is an associated symmetric connection and S̃ is a torsion tensor of the
connection ∇̃. On the other hand, ∇̃ = ∇ + T̃ , where ∇ is the Levi-Civita
connection of the metric g and T̃ is the deformation tensor of the connection ∇.
The covariant deformation tensor T determined by the equality

T (X,Y, Z) = g(T̃ (X,Y ), Z)

is skew-symmetric with respect to the last two arguments because of the co-
variant constancy of the metric tensor g in the connection ∇̃, ∇̃g = 0. Thus,
the Riemann–Cartan structure (g, ∇̃) is unambiguously defined by setting a
pair of tensor fields (g, T ), namely, a metric tensor and a deformation tensor,
the first of which is symmetric with respect to its arguments, and the second
one is skew-symmetric in the last two arguments. We also note that the defor-
mation tensor is defined unambiguously by the torsion tensor and vice versa,
while the symmetric part ∇̂ of the connection ∇̃ coincides with the Levi–Civita
connection ∇ if and only if the tensor T is skew-symmetric with respect to its
arguments [8]. In this case, T = 1

2S, where S is a covariant tensor of torsion,
and the connection ∇̃ is called skew-symmetric. If

S(X,Y, Z) = g(X,Z)Θ(Y )− g(Y, Z)Θ(X),

where Θ = 1
n−1 trace S̃, then the connection ∇̃ is called semi-symmetric.

A diffeomorphism ϕ : M →M is said to be an automorphism of the Riemann–
Cartan manifold if g and ∇̃ remain invariant under ϕ. Since ∇̃ = ∇ + T̃ and
the invariance of ∇ follows from the invariance of g [3], then the connection ∇̃
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is invariant if and only if the deformation tensor T̃ is invariant, which is equiv-
alent to the invariance of the covariant deformation tensor T . Thus the set of
all automorphisms of the Riemann–Cartan manifold (M, g, ∇̃) either coincides
with the Lie group of isometrics of semi-Riemannian manifold (M, g) or is its
closed Lie subgroup which leaves the tensor field T invariant and, therefore, it
has the dimension r ≤ n(n+1)

2 .

Theorem 1 The dimension of the group of automorphisms of the Riemann–
Cartan four-dimensional manifolds does not exceed 8.

Proof Let G be a group of automorphisms of the Riemann–Cartan M . The
stationary subgroup of x0 ∈ M induces isotropy group G0 in tangent space
E = Tx0

M , which is a subgroup of (pseudo) orthogonal transformations of
(pseudo) Euclidean vector space E = E4

p,q. Since the strain tensor field T is
invariant as to G, then the value of this field at point x0 is a nonzero tensor on
E, invariant as to G0. Let us consider T as linear display E ·E ·E → R. Let ξ be
a Lie algebra element of the Lie group of (pseudo) orthogonal transformations
in space E and ϕt be a single parameter group of transformations, generated
by ξ. Then ξ, belongs to the Lie algebra g0 of the Lie group G0, if and only if
ϕt leaves tensor invariant, i.e.

T (ϕtu, ϕtv, ϕtw) = T (u, v, w), u, v, w ∈ E, t ∈ R

Differentiating this equation as to t, at t = 0, we obtain that ξ ∈ g0 when
and only when

T (ξu, v, w) + T (u, ξv, w) + T (u, v, ξw) = 0.

Let (e1, . . . , en) be orthonormal basis in E, Tijk and components T and ξ in
this basis. In coordinates this equation takes the form:

(Tpjkgis + Tipkgjs + Tijpgks)ξ
ps = 0,

where ξps = ξsqg
qp, gisgsj = δji , δ

j
i — Kronecker symbol.

The algebra of the Lie group of (pseudo) orthogonal transformations consists
of the matrix in the following form(

A B
C D

)
,

Where A is a skew-symmetric matrix of the size p × p, D is a skew-symmetric
matrix of the size q × q, C = BT—matrix transposed to B. Therefore ξ11 =
ξ22 = . . . = ξnn = 0, a ξji = ±ξps. Taking into account the Lie algebra structure,
it is not difficult to find out that the minimum number of linear independent
equations of the system for n = 4 is equal to 2. Indeed, let Tijk is one of non-
zero components of tensor T . Since Tijk is skew symmetric with respect to j
and k, then j �= k. Having renumbered the basis if necessary, we can assume
that either i = 1, j = 2, k = 3, or i = j = 1, k = 2, i.e. T123 �= 0 or T112 �= 0.
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Consider the first case. Then the equations of the system (2), numbered by
indices i = 1, j = 2, k = 4 and i = 1, j = 3, k = 4 have the form

. . . 0 · ξ24 ± T123ξ
24 �= 0

. . .± T123ξ
24 + 0 · ξ24 �= 0

and, consequently, they are linearly independent. If T112 �= 0, then we have
two linearly independent equations, numbered by indices i = j = 1, k = 3 and
i = j = 1, k = 4:

. . .± T112ξ
23 + 0 · ξ24 �= 0

. . . 0 · ξ23 ± T112ξ
24 �= 0.

Since the rank of the system is at least two, then the dimension of isotropy
group, G0 is not more than four, and the dimension of the whole automorphisms
group is not more than 8. �

Connection ∇̃ is called skew-symmetric if strain tensor T is skew symmetric
regarding its arguments. In this case, Tijk, components comprising two identical
indexes are equal to zero. Taking this fact into account and considering that,
for example, T123 �= 0, we can point to three linearly independent equations
of the system. Indeed, consider the subsystem of the system, the equations of
which are numbered by the following indices: i = 1, j = 2, k = 4; i = 1, j = 3,
k = 4; i = 2, j = 3, k = 4. The matrix consisting of columns of the subsystem
at unknown ξps with indices (1, 4), (2, 4) and (3, 4) has the form⎛⎝ 0 0 ±T123

0 ±T123 0
±T123 0 0

⎞⎠
And it is obviously non-degenerate. Thus we have

Theorem 2 The dimension of the Lie group of automorphisms of the Riemann–
Cartan four-dimensional manifolds with skew-symmetric connection does not
exceed 7.

Theorem 3 The dimension of the Lie group of automorphisms of an n-dimen-
sional Riemann–Cartan manifold with semi-symmetric connection is not larger
than n(n−1)

2 + 1.

Proof Let G be an r-dimensional Lie group of automorphisms of an n-dimen-
sional Riemann–Cartan manifold M . The stationary subgroup of a point x0 ∈
M induces the isotropy group G0 in the tangent space E = Tx0

M . The vector
space E = Enp,q is an n-dimensional Euclidean space (p = n, q = 0) or a
semi-Euclidean space with (p, g)-signature (+, . . . ,+,−, . . . ,−). The value of a
torsion tensor field S̃ at x0 ∈ M is a nonzero tensor in (E∗ ∧ E∗) ⊗ E. Let us
consider S̃ as a skew-symmetric mapping E × E → E. The isotropy group G0

is a subgroup of the group of orthogonal or pseudo-orthogonal transformations
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of E. Let ξ be an element of the Lie algebra of the Lie group of (pseudo)
orthogonal transformations of E, and ϕt = exp tξ, be a one-parameter subgroup
of transformations generated by ξ. Then ξ belongs to the Lie algebra go of the
Lie group G0 if and only if the tensor S remains invariant under ϕt, i.e.,

S̃(ϕtu, ϕtv) = ϕtS̃(u, v). (1)

Differentiating (1) with respect to t at t = 0, we get

S̃(ξu, v) + S̃(u, ξu) = ξS̃(u, v). (2)

Let (e1, . . . , en) be a (pseudo) orthonormal basis in E, and Skij and ξ
j
i be

components S̃ and ξ in this basis. Then (2) has the form

Sksjξ
s
i + Skisξ

s
j − Srijξ

k
r = 0 (3)

or
(Sksjδ

r
i + Skisδ

s
j − Srijδ

k
s )ξ

s
r = 0, (4)

where δji is the Kronecker symbol.
Let now the connection ∇̃ be semi-symmetric. Then

Skij =
1

n− 1
(δki ηj − δkj ηi). (5)

where ηj = S∗
∗j denote the components of a 1-form in E. Substituting (5) into

(4), we get

(δksηjδ
r
i − δkj ηsδ

r
i + δki ηsδ

r
i − δks ηiδ

r
j − δri ηjδ

k
s + δrjηiδ

k
s )ξ

s
r = 0

or
(δki δ

r
j − δkj δ

r
i )ηsξ

s
r = 0. (6)

Let us prove that this system contains at least n − 1 linearly independent
equations. Actually, (6) can be written as follows:

(δki δ
r
j − δkj δ

r
i )ηsξ

s
r + (δki δ

s
j − δkj δ

s
i )ηrξ

r
s = 0. (7)

As the 1-form η is nonzero, then at least one of its coordinates is not zero.
Let ηs �= 0 for some s. We consider the subsystem consisting of n− 1 equations
with the indices i = k = s, j = 1, . . . , n; j �= s. The subsystem takes the form

. . .+ (δssδ
r
j − δsj δ

r
s)ηsξ

s
r + (δssδ

s
j − δsj δ

s
s)ηrξ

r
s + . . . = 0

or
. . .+ δrj ηsξ

s
r + . . . = 0(r = 1, . . . , n; r �= s), (8)

and it is linearly independent because the matrix (δrjηs) is obviously nonde-
generate. Therefore the dimension of the isotropy group G0 is not larger than
n2−n

2 −(n−1) and the dimension of the group of all automorphisms is not larger

than n2−n
2 − (n− 1) + n = n(n−1)

2 + 1. �
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Theorem 4 The maximum dimension of the Lie group of automorphisms of
an n-dimensional Riemann–Cartan manifold with semi-symmetric, connection
is equal to n(n−1)

2 + 1.

Proof To prove the theorem, it is enough to give an example of an n-
dimensional Riemann–Cartan manifold with automorphism group of dimension
n(n−1)

2 + 1. Let us consider the semi-Riemannian space Mn, n > 3, with the
metric form

ds2 = dx1
2
+ e2Hx

1

(ε2dx
22 + . . .+ εndx

n2), (9)

where εα = ±1, α = 2, . . . , n, H = const. Calculating the curvature tensor of
this space, we verify the validity of the equality

Rijkl = −H2(gilgjk − gikgjl).

It follow then that Mn has a constant sectional curvature k = −H2. Conse-
quently, the isometry group of this space has the maximum dimension n(n+1)

2 .
Let us consider a closed subgroup of the group containing all isometries which
leave invariant a single vector field orthogonal to the semi-Euclidean subspace
En−1, x1 = const., with the metric form

dσ2 = ε2dx
22 + . . .+ εndx

n2. (10)

Basic operators of this subgroup are

∂α,−εαxβ∂α + εβx
α∂β ,−

1

H
∂1 + xα∂α, α < 0, α, β = 2, . . . , n. (11)

In (11), the first n(n−1)
2 vector fields are basic operators of the Lie group

of isometries of the space En−1 with metric (10), and the last vector field is
defined by the invariance of the metrics (9) and a single vector field orthogonal
to En−1 with respect to the last vector field. The condition of the invariance of
the deformation tensor Tijk with respect to the vector field X = ξp∂p takes the
form

ξp∂pTijk + ∂iξ
pTpjk + ∂jξ

pTipk + ∂kξ
pTijp = 0. (12)

To find the deformation tensor Tijk, which is invariant with respect to the
group of operators (11), it is necessary to write a corresponding differential
equation (12) for each vector field (11) and then integrate the obtained system
of partial differential equations. Fortunately, this task becomes much more sim-
plified if the connection is semi-symmetric. For the semi-symmetric connection
we have

Tijk =
1

n− 1
(gikηj − gijηk). (13)

Hence the invariance of Tijk leads to the invariance of ηj = T ∗
∗j and vice

versa. That is wiry, it is enough to integrate the equations of the invariance of η

ξp∂pηj + ∂jξ
pηp = 0 (14)
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and restore Tijk according to (13). As a result, we get η = c dx1, c = const.,
and

T = ae2Hx
1 ∑

α

εα dx
α ⊗ dxα ∧ dx1, a = const. (15)

Thus we have an example of the n-dimensional Riemann–Cartan manifold
(n > 3) with semi-symmetric connection whose automorphism group has di-
mension n(n−1)

2 + 1. The metric tensor and deformation tensor of the manifold
are defined by (9) and (15), respectively, and basic operators arc defined by
(11). �

In Einstein’s general theory of relativity (GTR) and its generalizations, the
basic subject is a four-dimensional semi-Riemannian manifold of signature (+−
−−) which we call a space-time manifold M4. The metric form for M4, given
in the proof of Theorem 2, can be rewritten in the following way:

ds2 = dx0
2 − e2Hx

0

(dx1
2
+ dx2

2
+ dx3

2
), x0 = ct. (16)

It is well known (see, e.g., [4]) that this metric is the solution of the Einstein
equation with Λ-term

Rij −
1

2
Rgij =

8πG

c4
Tij + Λgij ,

which defines the stationary model of the Universe. Contrary to Friedmann’s
solutions, this solution has no singularity. Nevertheless, the metrics of the sta-
tionary model describes an expansion of the Universe occurring without a bound
in time both in the past and in the future. The Hubble constant H (redshift of
spectral lines) is then unchanged during the Universe evolution, and the cosmo-
logical constant is Λ = 3H

c2 . A spatial section (x
0 = ct = const.) is a Euclidean

space, i.e., in this model the world is flat and without matter, therefore the
theory of the stationary Universe cannot he applied to the Universe with mat-
ter. But endowing a stationary model with additional structures, as is done,
for example, in the theory of compensations, may allow solving some problems
existing in the framework of the theory of a stationary Universe. Cartan was
the first to draw the physicists’ attention to the need that torsion be taken
into account for generalizations of GTR ((1922), see, e.g., [9]). In one of the
attempts to create the uniform gravitation and electromagnetic theory (1928),
Einstein used a connection with torsion but without curvature (connection of
absolute parallelism). Subsequently in the Einstein–Cartan theory, the torsion
is introduced to geometrize the matter spin density, the spin is represented by
a covector η defining the torsion. It means that the connection ∇̃ must be
semi-symmetric. Moreover, for this connection to have the maximum symmetry
number, the deformation tensor of the connection must have the following form
according to formula (15):

T = ae2Hx
0

3∑
α=1

dxα ⊗ dxα ∧ dx0, a = const. (17)
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By integrating the invariance equation of deformation tensor (12) with re-
spect to the isometry group (11), we obtain the general solution

T = ae2Hx
0

3∑
α=1

dxα ⊗ dxα ∧ dx0 + be3Hx
0

dx1 ∧ dx2 ∧ dx3, (18)

where a, b = const. Alongside with the “spin” part Tα, there is the skew-
symmetric part Ta, defining the torsion of the spatial section x0 = const. which
may not be a spin.
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