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Abstract. We consider inequalities between sums of monomials that hold for all p-Newton
sequences. This continues recent work in which inequalities between sums of two, two-term
monomials were combinatorially characterized (via the indices involved). Our focus is on
the case of sums of three, two-term monomials, but this is very much more complicated. We
develop and use a theory of exponential polynomial inequalities to give a sufficient condition
for general monomial sum inequalities, and use the sufficient condition in two ways. The
sufficient condition is necessary in the case of sums of two monomials but is not known if it
is for sums of more. A complete description of the desired inequalities is given for Newton
sequences of less than 5 terms.

Keywords: exponential polynomial; Newton inequality; Newton coefficients; p-Newton
sequence
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1. Introduction

An ordered (not necessarily numerically) sequence

c : c0, c1, c2, . . . , cn

of real numbers is called a Newton sequence if

ci−1ci+1 6 c2i

Partially supported by MTM2015-365764-C-1-P (MINECO-FEDER), MTM2010-19281-
C03-01 and NSF grant #DMS-0751964.
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for 1 6 i 6 n− 1. Each of these inequalities is called a Newton inequality, cf. [4]. See

[2], [3], [1] for general background on Newton sequences, how they arise, the rela-

tionship to matrices and prior results. A Newton sequence is called p-Newton if each

of the ci’s is positive. For these sequences, Newton inequalities can be generalized as

ci−kcj+k 6 cicj

for 0 6 i 6 j 6 n and 0 6 k 6 min{i, n − j}, see [2], Lemma 9. In fact, for p 6 q

and r 6 s nonnegative integers with p+ q = r + s we have

(1.1) crcs 6 cpcq ⇔ r 6 p 6 q 6 s.

A positive sequence is p-Newton if and only if its sequence of ratios of consecutive

terms ci+1/ci is nonincreasing.

For any p-Newton sequence

c0, c1, . . . , cn

and any r > 1, we may re-write the c’s as

ci = rxi ,

i = 0, . . . , n, to obtain the Newton exponent sequence (NES)

(1.2) x0, x1, . . . , xn.

Clearly, we have a NES if and only if

(1.3) xi−1 + xi+1 6 2xi,

i = 1, . . . , n− 1.

By a monomial in a p-Newton sequence, we mean an expression of the form

ca := ca0

0 ca1

1 . . . can

n .

The length of ca is the number a0 + a1 + . . . + an, and the weight of c
a is the sum

of the indices weighted by their exponents in the monomial. In [3], all inequalities

between pairs of monomials that hold for all p-Newton sequences were characterized.

Here we continue recent work [1] on inequalities between sums of simple monomials

(all exponents are nonnegative integers) in p-Newton sequences. Even in the most

elemental cases, there are inequalities in which term-wise domination of monomials

does not occur.
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We may write the h-th summand (of a sum of simple monomials) as

(1.4) ca(h) = cih1
cih2

. . . cihkh

in which repeated subscripts are allowed and, of course, some may not appear. Our

sum of monomials may then be written as

(1.5) ca,m =

m
∑

h=1

ca(h),

which is fully described by m index lists, the subscripts appearing in each monomial.

We are interested in inequalities between two such monomial sums, i.e., when we

have

(1.6) ca,m 6 cb,m

for all p-Newton sequences c. In [1], we characterized the case m = 2 and kh = 2,

h = 1, 2 in a combinatorial way. This is the case 22 versus 22, i.e., 2 monomials with

length 2 on each side. The case 222 versus 222 (m = 3, length 2 in each monomial)

is discussed here, but it proves dramatically more complicated. We are able to give

a complete account of all inequalities for p-Newton sequences of fewer than 5 terms,

and we have summarized them in a characterization theorem in Section 4.

We also develop a theory of inequalities between n-term exponential polynomials

(Section 2). By considering the exponents of a p-Newton sequence, relative to a pos-

itive base r, we are able to use this in Section 3 to give a general sufficient condition

for monomial sum inequalities in p-Newton sequences. This is used to verify some

monomial sum inequalities, and to show, by example, in Section 5, that for longer

p-Newton sequences (more than 4 terms) there are monomial sum inequalities in

the 222 versus 222 case that are rather different in character from the 4-term ones.

Finally, we include an Addendum completing the proof of Lemma 19 given in [1].

For reference, we re-write (1.6) in extended form

cj11cj12 . . . cj1l1 + . . .+ cjm1
cjm2

. . . cjmlm
(1.7)

> ci11ci12 . . . ci1k1 + . . .+ cim1
cim2

. . . cimkm
.

We may assume, for convenience, without loss of generality, that

i11 6 i12 6 . . . 6 i1k1
, . . . , im1 6 im2 6 . . . 6 imkm

,(1.8)

j11 6 j12 6 . . . 6 j1l1 , . . . , jm1 6 jm2 6 . . . 6 jmlm .
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Since the all 1’s sequence is p-Newton, the right hand side must have as many

monomials as the left hand side, and it is natural to assume the extreme case of the

same number. Several observations have been made [3], [1] about where the larger

and smaller indices can occur: the highest index is on the smaller side, the lowest

index is on the larger side, . . .

2. Exponential polynomial inequalities

An exponential polynomial is a function from R+ to R of the form

rp1 + rp2 + . . .+ rpn

in which r > 0 is a variable and p1, . . . , pn are given real exponents. If

rp1 + rp2 + . . .+ rpn > rq1 + rq2 + . . .+ rqn

for all r > 1, we say that the real n-list p r-dominates the real n-list q and write

p >r q.

The notion “>r” does not depend upon how the p’s and q’s are ordered, but we

usually write them in descending order. The list p is said to weakly majorize the

list q if
k

∑

i=1

p[i] >

k
∑

i=1

q[i]

for k = 1, . . . , n, in which p[i] (q[i]) denotes the i-th largest of the p’s (q’s), in case

they were not already in descending order. We write p ≻w q. In case there is equality

for k = n, the list p is said to majorize the list q, written p ≻ q.

We raise the question of exactly when p >r q. In general, this seems subtle, but

it is useful to us in understanding inequalities between monomial sums on p-Newton

sequences. In [1], it was noted that:

Theorem 2.1. For n = 2, p >r q if and only if p weakly majorizes q.

However, it was also noted that >r in a greater variety of ways for larger n.

Example 2.2. The polynomial

f(r) = r10 + r6 + r5 − r9 − r8 − r4

satisfies f(r) > 0 for r > 1, as

f(r) = (r − 1)3r4(r3 + 2r2 + 2r + 1).

But, as 10 + 6 < 9 + 8, (10, 6, 5) does not weakly majorize (9, 8, 4).
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Here, we record what we know about r-domination (for exponential polynomials).

Lemma 2.3. Let p and q be real n-lists. If

n
∑

i=1

pki >

n
∑

i=1

qki

for all integers k > 0, then p >r q.

P r o o f. Using the Maclaurin series for ez, we find that

n
∑

i=1

rxi =

n
∑

i=1

exi log r =

∞
∑

k=0

logk r

k!
(xk

1 + . . .+ xk
n)

for r > 1. Because log r > 0 for r > 1, we get

∞
∑

k=0

logk r

k!
(pk1 + . . .+ pkn) >

∞
∑

k=0

logk r

k!
(qk1 + . . .+ qkn)

for all r > 1, from which the result follows. �

It is not clear how many k’s are needed to verify the hypothesis of Lemma 2.3.

Example 2.4. Observe that pk1 + . . . + pkn > qk1 + . . . + qkn for 0 6 k 6 n does

not imply that pk1 + . . .+ pkn > qk1 + . . .+ qkn for all integers k > 0. A counterexample

is p = (10, 7.7, 3.5) and q = (9.99, 7.755, 1). In fact,
∑

pki >
∑

qki for 0 6 k 6 5, but
∑

p6i <
∑

q6i .

We can now see that majorization is sufficient for r-domination. As seen in Ex-

ample 2.2, it is not necessary for n > 3.

Theorem 2.5. For real n-sequences p and q, if p ≻w q, then p >r q.

P r o o f. Without loss of generality, we may assume that p and q are n-lists written

in descending order. Fix r > 1 and define g : R
n → R by g(x) = rx1 + . . . + rxn .

Because g is differentiable, by the Mean value theorem there exists a λ ∈ (0, 1) such

that

g(p)− g(q) = Dg((1− λ)p+ λq)(p − q)

= log r

n
∑

i=1

ri(pi − qi),(∗)
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where ri = r(1−λ)pi+λqi . Using the fact that log r > 0, ri > ri+1 > 0 for all i, p ≻w q,

and p and q are in descending order,

(∗) = log r

(n−1
∑

i=1

ri(pi − qi) + rn(pn − qn)

)

> log r

(n−1
∑

i=1

ri(pi − qi) +

n−1
∑

i=1

rn(qi − pi)

)

= log r

n−1
∑

i=1

(ri − rn)(pi − qi)

> log r

(n−2
∑

i=1

(ri − rn)(pi − qi) +

n−2
∑

i=1

(rn−1 − rn)(qi − pi)

)

= log r

n−2
∑

i=1

(ri − rn−1)(pi − qi)

> . . . > log r

1
∑

i=1

(ri − r2)(pi − qi)

= (log r)(r1 − r2)(p1 − q1) > 0.

But r > 1 was arbitrary, and the result follows. �

In spite of Example 2.2, we can characterize >r when n = 3, and the character-

ization is just majorization when n = 3 and p1 + p2 + p3 = q1 + q2 + q3, if we ask

that the inequality hold for r > 0.

Lemma 2.6. Let p, q ∈ R
3 and define f : R+ → R by

f(r) = rp1 + rp2 + rp3 − rq1 − rq2 − rq3 .

Then the following statements are equivalent:

(B) pn1+pn2+pn3 = qn1 +qn2 +qn3 for all integers n > 1 or pN1 +pN2 +pN3 > qN1 +qN2 +qN3 ,

where N = min{n ∈ N : pn1 + pn2 + pn3 6= qn1 + qn2 + qn3 }.
(B′) f (n)(1) = 0 for all integers n > 1 or f (N)(1) > 0, where N = min{n ∈ N :

f (n)(1) 6= 0}.

P r o o f. Let n ∈ N. An easy computation shows that

n−1
∏

i=0

(x− i) = xn + a
(n)
n−1x

n−1 + . . .+ a
(n)
1 x
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for some constants a
(n)
j . Therefore, f

(n)(1) has the form

(∗) f (n)(1) =

n
∑

j=1

a
(n)
j (pj1 + pj2 + pj3 − qj1 − qj2 − qj3), a(n)n = 1.

If pn1 + pn2 + pn3 = qn1 + qn2 + qn3 for all n, then it is clear from (∗) that f (n)(1) = 0

for all n. Now, assume that f (n)(1) = 0 for all n. When n = 1, this means that

p1 + p2 + p3 = q1 + q2 + q3. Suppose we know that p
n
1 + pn2 + pn3 = qn1 + qn2 + qn3 for

1 6 n 6 k. Then from (∗), 0 = f (k+1)(1) = pk+1
1 +pk+1

2 +pk+1
3 − qk+1

1 − qk+1
2 − qk+1

3 .

By induction, pn1 + pn2 + pn3 = qn1 + qn2 + qn3 for all n.

If pn1 + pn2 + pn3 6= qn1 + qn2 + qn3 for some n, let N = min{n ∈ N : pn1 + pn2 + pn3 6=
qn1 + qn2 + qn3 } and suppose that pN1 + pN2 + pN3 > qN1 + qN2 + qN3 . From (∗) and the
definition of N , we find that 0 < pN1 + pN2 + pN3 − qN1 − qN2 − qN3 = f (N)(1) and that

f (n)(1) = 0 for n < N , i.e. N = min{n ∈ N : f (n)(1) 6= 0} and f (N)(1) > 0. On the

other hand, if f (n)(1) 6= 0 for some n, let N = min{n ∈ N : f (n)(1) 6= 0} and suppose
that f (N)(1) > 0. IfN = 1, then p1+p2+p3 > q1+q2+q3 and we are done. Otherwise,

a finite induction argument shows that f (n)(1) = pn1 + pn2 + pn3 − qn1 − qn2 − qn3 for

n 6 N . Therefore, pN1 +pN2 +pN3 > qN1 +qN2 +qN3 andN = min{n ∈ N : pn1+pn2+pn3 6=
qn1 + qn2 + qn3 }. �

Now we can give our characterization for general real 3-sequences.

Theorem 2.7. Suppose that p1 > p2 > p3 and q1 > q2 > q3 are real 3-sequences

satisfying p1 + p2 + p3 = q1 + q2 + q3. Then p >r q if and only if

(A) p1 > q1 and

(B) pn1+pn2+pn3 = qn1 +qn2 +qn3 for all integers n > 1 or pN1 +pN2 +pN3 > qN1 +qN2 +qN3 ,

where N = min{n ∈ N : pn1 + pn2 + pn3 6= qn1 + qn2 + qn3 }.

P r o o f. To prove the theorem, we will show that f(r) > 0 for all r > 1 if and

only if (A) and (B′) hold, where f and (B′) are as in Lemma 2.6.

(⇒) If p1 < q1, then f(r) < 0 eventually. On the other hand, if f (n)(1) 6= 0 for

some n and f (N)(1) < 0, where N = min{n ∈ N : f (n)(1) 6= 0}, then f < 0 on

(1, 1 + ε) for some ε > 0.

(⇐) If f (n)(1) = 0 for all n, then since f is analytic, f ≡ 0 in a neighborhood

of 1. Recall that a nonzero analytic function on an open connected set has isolated

zeroes. Hence, f ≡ 0.

So, suppose that f (n)(1) 6= 0 for some n, and let N = min{n ∈ N : f (n)(1) 6= 0}.
Then f (N)(1) > 0, and f > 0 on (1, 1 + ε) for some ε > 0. In particular, we have

q 6≻ p.
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If p3 6 q3, then p1 + p2 > q1 + q2 and p ≻ q, which is sufficient by Theorem 2.5.

If p3 > q3, then p1 + p2 < q1 + q2, p2 < q2, and therefore

p1 > q1 > q2 > p2 > p3 > q3.

Note that p1 6= q1 since q 6≻ p. The function f has 3 sign changes, so Descartes’ rule

of signs, see [5], implies that f has 1 or 3 positive roots (counted with multiplicity).

There are 3 roots, z1 = z2 = 1 and z3. If z3 > 1, then (i) f > 0 on (1, 1 + ε) implies

that f > 0 on (1, z3), (ii) since z3 is a simple root, f < 0 on (z3, z3 + η) for some

η > 0, and (iii) because f is continuous and f > 0 eventually, f has another root

z4 > z3. This is a contradiction. Since f > 0 on (1, 1 + ε) and has no roots greater

than 1, f(r) > 0 for all r > 1. �

Note that in Example 2.2 we have p >r q, condition (A) from the previous theorem

is clear, and condition (B) from the previous theorem is satisfied for N = 3.

Since the derivative of rp1 + . . . + rpn with respect to r at r = 1 is
n
∑

i=1

pi, p >r q

implies that
n
∑

i=1

pi >
n
∑

i=1

qi. Also, p >r q implies that p1 > q1, because of large r

(and p2 > q2 if p1 = q1, etc). If we now ask that

rp1 + rp2 + rp3 > rq1 + rq2 + rq3

for all r > 0, there is a nice answer. Effectively, the interval r ∈ (0, 1) negates the

p’s and q’s.

Theorem 2.8. If p and q are real 3-sequences, then

rp1 + rp2 + rp3 > rq1 + rq2 + rq3

for all r > 0 if and only if p ≻ q.

P r o o f. Without loss of generality, we may assume that p and q are n-lists written

in descending order.

(⇒) Let f be the function of Lemma 2.6. Then certainly f(r) > 0 for all r > 1,

so it is necessary that p1 > q1 and p1 + p2 + p3 − q1 − q2 − q3 = f ′(1) > 0 (since

f(1) = 0). Let f̃ : R+ → R, f̃(s) = s−p1 + s−p2 + s−p3 − s−q1 − s−q2 − s−q3 so

that f̃(s) = f(1/s). Hence, f̃(s) > 0 for all s > 1, and as above, it is necessary

that −p3 > −q3 (since we now have −p3 > −p2 > −p1 and −q3 > −q2 > −q1) and

−p3 − p2 − p1 > −q1 − q2 − q3. Together, these imply that p ≻ q.

(⇐) From Theorem 2.5, f(r) > 0 for all r > 1. It is an easy fact that p ≻ q if

and only if −p ≻ −q, so f̃(s) > 0 for all s > 1. But this immediately implies that

f(r) > 0 for all 0 < r 6 1. Hence, f(r) > 0 for all r > 0. �
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It is not difficult to extend the proof of sufficiency to see that p ≻ q for real

n-sequences implies that

rp1 + rp2 + . . .+ rpn > rq1 + rq2 + . . .+ rqn

for all r > 0. But, the converse is not true for n > 4.

Example 2.9. Let p be 7, 4, 4, 1 and let q be 6, 6, 2, 2. Then r7 + 2r4 + r >

2r6 + 2r2 for all r > 0, but p does not majorize q.

3. Newton sequences and sufficient conditions

for monomial sum inequalities

Note that if a monomial sum inequality (1.7) holds for all p-Newton sequences,

then it is also an inequality on nonnegative Newton sequences lying in the closure

of p-Newton sequences. We note that a p-Newton sequence is necessarily unimodal:

it is either (weakly) increasing, (weakly) decreasing or (weakly) increasing and then

decreasing. The exponents can become (arbitrarily) negative, but once they become

negative, they stay negative and become more negative. When increasing, the se-

quence increases at most geometrically and, when decreasing, it decreases at least

geometrically.

Lemma 3.1. If cj11cj12 . . . cj1l1 + . . .+ cjm1
cjm2

. . . cjmlm
> ci11ci12 . . . ci1k1 + . . .+

cim1
cim2

. . . cimkm
, with indices satisfying (1.8), holds for all p-Newton sequences,

then:

1. the largest (smallest) weight monomial is on the larger side of the inequality;

2. if we order the summands of the inequality by largest indices on each side,

that is,

i1k1
6 i2k2

6 . . . 6 imkm
and j1l1 6 j2l2 6 . . . 6 jmlm ,

the highest index of the t-th terms is on the lower side, for t = 1, . . . ,m, i.e.

jtlt 6 itkt
;

3. if we order the summands of the inequality by smallest indices on each side,

that is,

i11 6 i21 6 . . . 6 im1 and j11 6 j21 6 . . . 6 jm1,

the lowest index of the t-th terms is on the lower side, for t = 1, . . . ,m, i.e.

it1 6 jt1;

4. increasing (or decreasing) all indices by 1 in an inequality results in an inequal-

ity.
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P r o o f. 1. It is clear evaluating the inequality at the p-Newton sequence 1, r,

r2, r3, . . . making r big enough.

2. Note that sequences of the form 1, . . . , 1, 0, . . . , 0 are in the closure of p-Newton

sequences, so they verify the inequality: the sequence of p-Newton sequences

{

1, . . . , 1,
1

M
,

1

M2
,

1

M3
, . . . ,

}∞

M=1

converges to 1, . . . , 1, 0, . . . , 0. These sequences, the ones formed with 1’s and 0’s,

with the switch in the appropriate place show the statement.

3. Index complementation (see remark below) and Statement 2. from this lemma

prove it.

4. This is true because a section of a p-Newton sequence is a p-Newton sequence.

�

Remark 3.2. By index complementation we mean replacing ci by cn−i for i =

0, 1, . . . , n. Index complementation of a p-Newton sequence results in a p-Newton

sequence, though the normalization c0 = 1 is lost (see comments before Lemma 11

in [1]).

Next, if the standard necessary conditions are met we note that if all monomials

on the lower side of a proposed inequality are equal, then it is an inequality.

Theorem 3.3. If i1 6 min{j11, . . . , jm1}, max{j12, . . . , jm2} 6 i2, and
m
∑

k=1

(jk1 +

jk2) = m(i1 + i2), then the inequality

cj11cj12 + . . .+ cjm1
cjm2

> mci1ci2

holds for all p-Newton sequences.

P r o o f. By majorization of indices [3] we have

cj11cj12cj21cj22 . . . cjm1
cjm2

> cmi1 c
m
i2 .

Now the inequality follows from the fact that the arithmetic mean is at least the

geometric mean. �

The above fact can make some monomial sum p-Newton inequalities obvious when

no other method does.

Using the NES, we may re-write a proposed monomial sum inequality (1.7) for

Newton sequences as an exponential polynomial inequality

(3.1) r
∑l1

t=1
xj1t + . . .+ r

∑lm
t=1

xj1t > r
∑k1

t=1
xi1t + . . .+ r

∑km
t=1

ximt

in which we view r > 1 as a variable.
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For the monomial sum inequality (1.7) to be valid for all p-Newton sequences,

(3.1) must be a valid exponential polynomial inequality for every NES.

Using the fact (Theorem 2.1) that weak majorization for the exponents is neces-

sary and sufficient for >r for the 2-term exponential polynomials, the main result

of [1] may be re-cast and generalized in terms of majorization of Newton exponent

sequences. Though this is not as combinatorially attractive as the statement of the

result given in [1], it does point the way to a general sufficient condition for monomial

sum inequalities, via Newton exponent sequences (1.2).

Lemma 3.4. If c0, . . . , cn is a p-Newton sequence with NES x0, . . . , xn, then

(3.2) cj11cj12 . . . cj1l1 + cj21cj22 . . . cj2l2 > ci11ci12 . . . ci1k1 + ci21ci22 . . . ci2k2

if and only if

{xj11 + xj12 + . . . + xj1l1
, xj21 + xj22 + . . .+ xj2l2

}
≻ {xi11 + xi12 + . . .+ xi1k1

, xi21 + xi22 + . . .+ xi2k2
}.

Corollary 3.5. The monomial sum inequality (3.2) holds for all p-Newton se-

quences if and only if

{xj11 + xj12 + . . . + xj1l1
, xj21 + xj22 + . . .+ xj2l2

}
≻ {xi11 + xi12 + . . .+ xi1k1

, xi21 + xi22 + . . .+ xi2k2
}

for all NES’s.

The above is an alternative to Theorem 21 of [1] in case k1 = k2 = l1 = l2 = 2.

Since weak majorization of exponents is not necessary for exponential polynomial

inequalities of more than 2 terms, we do not know if the analog to Corollary 3.5

holds for more complicated monomial sum inequalities. However, sufficiency does

hold and provides a useful tool, as we will see later.

Lemma 3.6. The monomial sum inequality (1.7) holds for a p-Newton sequence

c0, c1, . . . , cn, with NES x0, x1, . . . , xn if

{ l1
∑

t=1

xj1t , . . . ,

lm
∑

t=1

xjmt

}

≻w

{ k1
∑

t=1

xi1t , . . . ,

km
∑

t=1

ximt

}

.
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The above permits us to give our general result.

Theorem 3.7. The monomial sum inequality (1.7) holds for all p-Newton se-

quences if
{ l1
∑

t=1

xj1t , . . . ,

lm
∑

t=1

xjmt

}

≻w

{ k1
∑

t=1

xi1t , . . . ,

km
∑

t=1

ximt

}

for all NES’s.

We do not yet know if there are valid monomial sum inequalities for which there

is no weak majorization condition, as in the theorem, for some NES.

We note that, since

r
x log r1/ log r2
2 = rx1 for r1, r2 > 1,

the particular r, chosen to get a NES, is immaterial for whether or not the majoriza-

tion condition holds.

Example 3.8. The inequality c0c1 + c0c1 + c2c2 > c0c2 + c0c2 + c0c2 does not

follow from the 22 case, but it follows from Theorem 3.3 and can also be demonstrated

by majorization. Let us see {x0+x1, x0+x1, 2x2} ≻w {x0+x2, x0+x2, x0+x2}. The
total sum condition is verified: x0+x1+x0+x1+2x2 > 3x0+3x2 ⇔ 2x1 > x0+x2,

see (1.3). For the other two conditions, let us distinguish two cases:

⊲ x0 + x1 > 2x2. We have x1 > x2 because

x0 + x1 > 2x2 ⇒ x0 > 2x2 − x1

2x1 > x0 + x2

}

⇒ 2x1 > 3x2 − x1 ⇔ x1 > x2.

The two term condition holds: 2x0 + 2x1 > 2x0 + 2x2 ⇔ x1 > x2.

The one term condition holds: x0 + x1 > x0 + x2 ⇔ x1 > x2.

⊲ 2x2 > x0 + x1. We have x1 > x0 and x2 > x0 because

2x2 > x0 + x1 ⇒ x2 >
x0 + x1

2

2x1 > x0 + x2







⇒ 2x1 >
3x0 + x1

2
⇔ x1 > x0,

2x2 > x0 + x1

x1 > x0

}

⇒ 2x2 > 2x0 ⇔ x2 > x0.

The two term condition holds: 2x2 + x0 + x1 > 2x0 + 2x2 ⇔ x1 > x0.

The one term condition holds: 2x2 > x0 + x2 ⇔ x2 > x0.
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4. The 222 versus 222 inequalities for n 6 3

When the length of the Newton sequences, the number of factors in each monomial

and the number of monomials is limited, there is a finite number of monomial sums

and a finite number of possible inequalities. As we did in the case 22, we have

enumerated all the 222 possibilities for n 6 3 and checked each of them. (This was

a crucial step on the way to a theorem in the 22 case.) Many were easily ruled out

(870 with total weight less or equal to 9), by a simple choice of Newton sequence,

and many were verified as consequences of the 22 case (or in another easy way).

This left, perhaps, 20-odd cases that required some work. Of course, some were

ruled out by a rather thin set of Newton sequences. But, all were resolved. Here

we present the table of valid inequalities. Since index complementation preserves

a valid inequality, we need and do only present the ones of total weight less or equal

to 9, in order to economize on space. The ones that are easily verified from the prior

case are presented in regular type-face, while the remainder are in bold face. Typical

explanations are given for several of these after the table.

Given

(4.1) cj11cj12 + cj21cj22 + cj31cj32 > ci11ci12 + ci21ci22 + ci31ci32

we may assume, for convenience, without loss of generality, that

i11 6 i12, i21 6 i22, i31 6 i32,(4.2)

j11 6 j12, j21 6 j22, j31 6 j32.

For short, in the table an inequality like (4.1) will be written as

j11j12 + j21j22 + j31j32 > i11i12 + i21i22 + i31i32.

The next table lists all the inequalities for n 6 3 in increasing order with respect to

their weights. The inequalities of weight 9 that are not self complementary, produce

a new inequality of the same weight which is marked on the table as ↓ic, meaning
that the inequality comes from the above one by applying “index complementation”.

P r o o f s of the inequalities given in bold in the table:

(1) 00 + 11 + 12 > 01 + 02 + 02: (c0c0 + c1c1) + c1c2 > c0c1 + (c0c1 + c1c2) >

c0c1 + c0c2 + c0c2.

(2) 00 + 11 + 22 > 01 + 02 + 03: (c0c0 + c1c1) + c2c2 > c0c1 + (c0c1 + c2c2) >

c0c1 + c0c2 + c0c3.

(3) 00 + 11 + 22 > 01 + 02 + 12: (c0 − c1)
2 + (c0 − c2)

2 + (c1 − c2)
2 > 0.
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weight = 2 weight = 6 weight = 7

00 + 00 + 11 > 00 + 00 + 02 00 + 11 + 22 > 00 + 11 + 13 01 + 11 + 13 > 01 + 02 + 13
00 + 00 + 11 > 00 + 01 + 01 00 + 11 + 22 > 00 + 12 + 03 01 + 11 + 13 > 01 + 03 + 03

weight = 3 00 + 11 + 22 > 00 + 12 + 12 01 + 11 + 22 > 01 + 02 + 13
00 + 00 + 12 > 00 + 00 + 03 00 + 11 + 22 > 01 + 01 + 13 01 + 11 + 22 > 01 + 02 + 22
00 + 01 + 11 > 00 + 01 + 02 00 + 11 + 22 > 01 + 01 + 22 01 + 11 + 22 > 01 + 03 + 03
00 + 01 + 11 > 01 + 01 + 01 00+ 11+ 22 > 01+ 02+ 03 01 + 11 + 22 > 01 + 11 + 13

weight = 4 00+ 11+ 22 > 01+ 02+ 12 01 + 11 + 22 > 01 + 12 + 03
00 + 00 + 22 > 00 + 00 + 13 00 + 11 + 22 > 02 + 02 + 02 01 + 11 + 22 > 01 + 12 + 12
00 + 00 + 22 > 00 + 02 + 02 00 + 11 + 22 > 11 + 02 + 02 01 + 11 + 22 > 02 + 02 + 03
00 + 01 + 12 > 00 + 01 + 03 00 + 12 + 03 > 00 + 03 + 03 01+ 11+ 22 > 02+ 02+ 12

00 + 01 + 12 > 00 + 02 + 02 00 + 12 + 12 > 00 + 03 + 03 01 + 11 + 22 > 11 + 02 + 03
00 + 11 + 02 > 00 + 02 + 02 00 + 12 + 12 > 00 + 12 + 03 01 + 12 + 03 > 01 + 03 + 03
00 + 11 + 02 > 01 + 01 + 02 00+ 12+ 12 > 02+ 02+ 02 01 + 12 + 03 > 02 + 02 + 03
00 + 11 + 11 > 00 + 02 + 02 01 + 01 + 22 > 01 + 01 + 13 01 + 12 + 12 > 01 + 03 + 03
00 + 11 + 11 > 00 + 11 + 02 01 + 01 + 22 > 01 + 02 + 03 01 + 12 + 12 > 01 + 12 + 03
00 + 11 + 11 > 01 + 01 + 02 01+ 01+ 22 > 02+ 02+ 02 01 + 12 + 12 > 02 + 02 + 03
00 + 11 + 11 > 01 + 01 + 11 01 + 02 + 12 > 01 + 02 + 03 01 + 12 + 12 > 02 + 02 + 12
01 + 01 + 11 > 01 + 01 + 02 01 + 02 + 12 > 02 + 02 + 02 02 + 02 + 12 > 02 + 02 + 03

weight = 5 01 + 11 + 03 > 01 + 02 + 03 11 + 02 + 03 > 02 + 02 + 03
00 + 01 + 22 > 00 + 01 + 13 01 + 11 + 12 > 01 + 02 + 03 11 + 02 + 12 > 02 + 02 + 03
00 + 01 + 22 > 00 + 02 + 03 01 + 11 + 12 > 01 + 02 + 12 11 + 02 + 12 > 02 + 02 + 12
00 + 01 + 22 > 01 + 02 + 02 01 + 11 + 12 > 01 + 11 + 03 11 + 02 + 12 > 11 + 02 + 03
00 + 02 + 12 > 00 + 02 + 03 01 + 11 + 12 > 02 + 02 + 02 11 + 11 + 03 > 02 + 02 + 03
00 + 11 + 03 > 00 + 02 + 03 01 + 11 + 12 > 11 + 02 + 02 11 + 11 + 03 > 11 + 02 + 03
00 + 11 + 03 > 01 + 01 + 03 11 + 02 + 02 > 02 + 02 + 02 11 + 11 + 12 > 02 + 02 + 03
00 + 11 + 12 > 00 + 02 + 03 11 + 11 + 02 > 02 + 02 + 02 11 + 11 + 12 > 02 + 02 + 12
00 + 11 + 12 > 00 + 02 + 12 11 + 11 + 02 > 11 + 02 + 02 11 + 11 + 12 > 11 + 02 + 03
00 + 11 + 12 > 00 + 11 + 03 11 + 11 + 11 > 02 + 02 + 02 11 + 11 + 12 > 11 + 02 + 12
00 + 11 + 12 > 01 + 01 + 03 11 + 11 + 11 > 11 + 02 + 02 11 + 11 + 12 > 11 + 11 + 03
00 + 11 + 12 > 01 + 01 + 12 11 + 11 + 11 > 11 + 11 + 02 weight = 8

00+ 11+ 12 > 01+ 02+ 02 weight = 7 00 + 02 + 33 > 02 + 03 + 03
01 + 01 + 12 > 01 + 01 + 03 00 + 01 + 33 > 01 + 03 + 03 00 + 11 + 33 > 00 + 02 + 33
01 + 01 + 12 > 01 + 02 + 02 00 + 11 + 23 > 00 + 02 + 23 00 + 11 + 33 > 00 + 13 + 13
01 + 11 + 02 > 01 + 02 + 02 00 + 11 + 23 > 00 + 03 + 13 00 + 11 + 33 > 01 + 01 + 33
01 + 11 + 11 > 01 + 02 + 02 00 + 11 + 23 > 01 + 01 + 23 00+ 11+ 33 > 01+ 03+ 13

01 + 11 + 11 > 01 + 11 + 02 00+ 11+ 23 > 01+ 03+ 03 00 + 11 + 33 > 02 + 03 + 03
weight = 6 00 + 12 + 13 > 00 + 03 + 13 00 + 11 + 33 > 11 + 03 + 03

00 + 00 + 33 > 00 + 03 + 03 00 + 12 + 22 > 00 + 03 + 13 00 + 12 + 23 > 00 + 03 + 23
00 + 01 + 23 > 00 + 03 + 03 00 + 12 + 22 > 00 + 12 + 13 00 + 12 + 23 > 00 + 13 + 13
00 + 02 + 13 > 00 + 03 + 03 00 + 12 + 22 > 00 + 22 + 03 00+ 12+ 23 > 02+ 03+ 03

00 + 02 + 22 > 00 + 02 + 13 00 + 12 + 22 > 02 + 02 + 03 00 + 22 + 13 > 00 + 13 + 13
00 + 02 + 22 > 00 + 03 + 03 00 + 12 + 22 > 02 + 02 + 12 00 + 22 + 13 > 02 + 02 + 13
00 + 02 + 22 > 02 + 02 + 02 00 + 22 + 03 > 00 + 03 + 13 00+ 22+ 13 > 02+ 03+ 03

00 + 11 + 13 > 00 + 02 + 13 00 + 22 + 03 > 02 + 02 + 03 00 + 22 + 22 > 00 + 13 + 13
00 + 11 + 13 > 00 + 03 + 03 01 + 01 + 23 > 01 + 03 + 03 00 + 22 + 22 > 00 + 22 + 13
00 + 11 + 13 > 01 + 01 + 13 01 + 02 + 13 > 01 + 03 + 03 00 + 22 + 22 > 02 + 02 + 13
00 + 11 + 22 > 00 + 02 + 13 01 + 02 + 22 > 01 + 02 + 13 00 + 22 + 22 > 02 + 02 + 22
00 + 11 + 22 > 00 + 02 + 22 01 + 02 + 22 > 01 + 03 + 03 00+ 22+ 22 > 02+ 03+ 03

00 + 11 + 22 > 00 + 03 + 03 01 + 02 + 22 > 02 + 02 + 03 01 + 02 + 23 > 02 + 03 + 03
01 + 11 + 23 > 01 + 02 + 23
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(4) 00 + 12 + 12 > 02 + 02 + 02: It follows from Theorem 3.3.

(5) 01 + 01 + 22 > 02 + 02 + 02: It follows from Theorem 3.3.

(6) 00 + 11 + 23 > 01 + 03 + 03: (c0c0 + c1c1) + c2c3 > c0c1 + (c0c1 + c2c3) >

c0c1 + c0c3 + c0c3.

(7) 01 + 11 + 22 > 02 + 02 + 12: c0c1 + (c1c1 + c2c2) > (c0c1 + c1c2) + c1c2 >

c0c2 + c0c2 + c1c2.

(8) 00 + 11 + 33 > 01 + 03 + 13: (c0 − c1)
2 + (c0 − c3)

2 + (c1 − c3)
2 > 0.

(9) 00 + 12 + 23 > 02 + 03 + 03: c1 >
√
c0c2 ⇒ c20 + c1c2 + c2c3 − c0c2 − 2c0c3 >

c20 +
√
c0c2 c2 − c0c2 + (c2 − 2c0)c3 . Now we distinguish two cases:

⊲ c2 > 2c0. Then
√
c2 >

√
2c0 >

√
c0 and c

2
0 +

√
c0c2 c2 − c0c2 + (c2 − 2c0)c3 =

c20 +
√
c0c2(

√
c2 −

√
c0) + (c2 − 2c0)c3 > 0.

⊲ c2 < 2c0. Note that c
2
2 > c1c3 >

√
c0c2 c3 ⇒ c3 6 c2

√

c2/c0. Therefore

c20 +
√
c0c2 c2 − c0c2 + (c2 − 2c0)c3

> c20 +
√
c0c2 c2 − c0c2 + (c2 − 2c0)

c2
√
c2√
c0

=
(
√
c0 +

√
c2)(

√
c0 −

√
c2)

2(c0 +
√
c0c2 + c2)√

c0
> 0.

(10) 00 + 22 + 13 > 02 + 03 + 03: (c0c0 + c2c2) + c1c3 > c0c2 + (c0c2 + c1c3) >

c0c2 + c0c3 + c0c3.

(11) 00 + 22 + 22 > 02 + 03 + 03: (c0c0 + c2c2) + c2c2 > c0c2 + (c0c2 + c2c2) >

c0c2 + c0c3 + c0c3.

(12) 01 + 12 + 13 > 02 + 03 + 03: (c0c1 + c1c2) + c1c3 > c0c2 + (c0c2 + c1c3) >

c0c2 + c0c3 + c0c3.

(13) 00+ 12+ 33 > 02+ 03+ 13: It can happen (remember p-Newton sequences are

unimodal):

⊲ c1 > c0 and c2 > c3: c20 + c1c2 + c23 − c0c2 − c0c3 − c1c3 = (c0 − c3)
2 +

(c1 − c0)(c2 − c3) > 0.

⊲ c1 > c0 and c2 < c3, or c1 < c0:

c20 + c1c2 + c23 − c0c2 − c0c3 − c1c3 = (c1 − c0)
2 + (c2 − c1)

2 + (c3 − c2)
2

+ 2(c1 − c0)(c2 − c1) + 2(c2 − c1)(c3 − c2) + (c1 − c0)(c3 − c2) > 0.

(14) 00 + 13 + 23 > 03 + 03 + 03: It follows from Theorem 3.3.

(15) 00 + 22 + 23 > 03 + 03 + 03: It follows from Theorem 3.3.

(16) 01+ 12+ 23 > 02+ 03+ 13: It can happen (remember p-Newton sequences are

unimodal):
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weight = 8 weight = 8 weight = 9

01 + 11 + 23 > 01 + 03 + 13 11 + 12 + 03 > 11 + 03 + 03 02 + 12 + 22 > 02 + 03 + 13
01 + 11 + 23 > 02 + 03 + 03 11 + 12 + 12 > 02 + 03 + 03 ↓ic11 + 12 + 13 > 02 + 03 + 13
01 + 11 + 23 > 11 + 03 + 03 11 + 12 + 12 > 02 + 12 + 03 02 + 12 + 22 > 02 + 22 + 03
01 + 12 + 13 > 01 + 03 + 13 11 + 12 + 12 > 02 + 12 + 12 ↓ic11 + 12 + 13 > 11 + 03 + 13
01 + 12 + 13 > 02 + 02 + 13 11 + 12 + 12 > 11 + 03 + 03 02 + 12 + 22 > 02 + 12 + 13
01+ 12+ 13 > 02+ 03+ 03 11 + 12 + 12 > 11 + 12 + 03 ↓ic11 + 12 + 13 > 02 + 12 + 13
01 + 12 + 22 > 01 + 03 + 13 weight = 9 02 + 12 + 22 > 03 + 03 + 03
01 + 12 + 22 > 01 + 22 + 03 00 + 03 + 33 > 03 + 03 + 03 ↓ic11 + 12 + 13 > 03 + 03 + 03
01 + 12 + 22 > 01 + 12 + 13 00 + 12 + 33 > 00 + 03 + 33 02 + 12 + 22 > 12 + 03 + 03
01 + 12 + 22 > 02 + 02 + 13 00+ 12+ 33 > 02+ 03+ 13 ↓ic11 + 12 + 13 > 12 + 03 + 03
01 + 12 + 22 > 02 + 02 + 22 00 + 12 + 33 > 03 + 03 + 03 02 + 22 + 03 > 02 + 03 + 13
01 + 12 + 22 > 02 + 03 + 03 00 + 12 + 33 > 12 + 03 + 03 ↓ic11 + 03 + 13 > 02 + 03 + 13
01 + 12 + 22 > 02 + 12 + 03 00+ 13+ 23 > 03+ 03+ 03 02 + 22 + 03 > 03 + 03 + 03
01 + 22 + 03 > 01 + 03 + 13 ↓ic01 + 02 + 33 > 03 + 03 + 03 ↓ic11 + 03 + 13 > 03 + 03 + 03
01 + 22 + 03 > 02 + 03 + 03 00 + 22 + 23 > 00 + 13 + 23 11 + 12 + 22 > 02 + 03 + 13
02 + 02 + 13 > 02 + 03 + 03 ↓ic01 + 11 + 33 > 01 + 02 + 33 11 + 12 + 22 > 02 + 22 + 03
02 + 02 + 22 > 02 + 02 + 13 00 + 22 + 23 > 02 + 02 + 23 ↓ic11 + 12 + 22 > 11 + 03 + 13
02 + 02 + 22 > 02 + 03 + 03 ↓ic01 + 11 + 33 > 01 + 13 + 13 11 + 12 + 22 > 02 + 12 + 13
02 + 12 + 03 > 02 + 03 + 03 00+ 22+ 23 > 03+ 03+ 03 11 + 12 + 22 > 02 + 12 + 22
02 + 12 + 12 > 02 + 03 + 03 ↓ic01 + 11 + 33 > 03 + 03 + 03 ↓ic11 + 12 + 22 > 11 + 12 + 13
02 + 12 + 12 > 02 + 12 + 03 01 + 03 + 23 > 03 + 03 + 03 11 + 12 + 22 > 03 + 03 + 03
11 + 02 + 13 > 02 + 02 + 13 01 + 12 + 23 > 01 + 03 + 23 11 + 12 + 22 > 12 + 03 + 03
11 + 02 + 13 > 02 + 03 + 03 01 + 12 + 23 > 01 + 13 + 13 11 + 12 + 22 > 12 + 12 + 03
11 + 02 + 13 > 11 + 03 + 03 ↓ic01 + 12 + 23 > 02 + 02 + 23 11 + 12 + 22 > 12 + 12 + 12
11 + 02 + 22 > 02 + 02 + 13 01+ 12+ 23 > 02+ 03+ 13 11 + 12 + 22 > 11 + 22 + 03
11 + 02 + 22 > 02 + 02 + 22 01 + 12 + 23 > 03 + 03 + 03 11 + 22 + 03 > 02 + 03 + 13
11 + 02 + 22 > 02 + 03 + 03 01 + 12 + 23 > 12 + 03 + 03 11 + 22 + 03 > 02 + 22 + 03
11 + 02 + 22 > 02 + 12 + 03 01+ 13+ 13 > 03+ 03+ 03 ↓ic11 + 22 + 03 > 11 + 03 + 13
11 + 02 + 22 > 11 + 02 + 13 ↓ic02 + 02 + 23 > 03 + 03 + 03 11 + 22 + 03 > 03 + 03 + 03
11 + 02 + 22 > 02 + 12 + 12 01 + 22 + 13 > 01 + 13 + 13 11 + 22 + 03 > 12 + 03 + 03
11 + 02 + 22 > 11 + 03 + 03 ↓ic11 + 02 + 23 > 02 + 02 + 23 11 + 22 + 03 > 12 + 12 + 03
11 + 03 + 03 > 02 + 03 + 03 01 + 22 + 13 > 02 + 03 + 13 12 + 03 + 03 > 03 + 03 + 03
11 + 11 + 13 > 02 + 02 + 13 ↓ic11 + 02 + 23 > 02 + 03 + 13 12 + 12 + 03 > 03 + 03 + 03
11 + 11 + 13 > 02 + 03 + 03 01+ 22+ 13 > 03+ 03+ 03 12 + 12 + 03 > 12 + 03 + 03
11 + 11 + 13 > 11 + 02 + 13 ↓ic11 + 02 + 23 > 03 + 03 + 03 12 + 12 + 12 > 03 + 03 + 03
11 + 11 + 13 > 11 + 03 + 03 01 + 22 + 22 > 01 + 13 + 13 12 + 12 + 12 > 12 + 03 + 03
11 + 11 + 22 > 02 + 02 + 13 ↓ic11 + 11 + 23 > 02 + 02 + 23 12 + 12 + 12 > 12 + 12 + 03
11 + 11 + 22 > 02 + 02 + 22 01 + 22 + 22 > 01 + 22 + 13
11 + 11 + 22 > 02 + 03 + 03 ↓ic11 + 11 + 23 > 11 + 02 + 23
11 + 11 + 22 > 02 + 12 + 03 01 + 22 + 22 > 02 + 03 + 13
11 + 11 + 22 > 11 + 02 + 13 ↓ic11 + 11 + 23 > 02 + 03 + 13
11 + 11 + 22 > 11 + 02 + 22 01 + 22 + 22 > 02 + 22 + 03
11 + 11 + 22 > 02 + 12 + 12 ↓ic11 + 11 + 23 > 11 + 03 + 13
11 + 11 + 22 > 11 + 12 + 03 01+ 22+ 22 > 03+ 03+ 03

11 + 11 + 22 > 11 + 03 + 03 ↓ic11 + 11 + 23 > 03 + 03 + 03
11 + 11 + 22 > 11 + 11 + 13 02 + 03 + 13 > 03 + 03 + 03
11 + 11 + 22 > 11 + 12 + 12 02 + 12 + 13 > 02 + 03 + 13
11 + 12 + 03 > 02 + 03 + 03 02 + 12 + 13 > 12 + 03 + 03
11 + 12 + 03 > 02 + 12 + 03 02 + 12 + 13 > 03 + 03 + 03
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⊲ c2 > c1 and c3 > c0 , or c2 6 c1 and c3 6 c0 : Note that c1c2 > c0c3, then

c0c1 + c1c2 + c2c3 − c0c2 − c0c3 − c1c3 > c0c1 + c2c3 − c0c2 − c1c3

= (c2 − c1)(c3 − c0) > 0.

⊲ c2 < c1 and c3 > c0 : Because c3 6 c2 we have

c0c1 + c1c2 + c2c3 − c0c2 − c0c3 − c1c3

= c1(c2 − c3) + c2(c3 − c0) + c0(c1 − c3) > 0.

⊲ c2 > c1 and c3 < c0 : Because c1 > c0 and c21 > c0c2 we have

c0c1 + c1c2 + c2c3 − c0c2 − c0c3 − c1c3 > c0c1 + c1c2 + c2c3 − c21 − c0c3 − c1c3

= c1(c0 − c3) + c1(c2 − c1) + c3(c2 − c0) > 0.

(17) 01 + 13 + 13 > 03 + 03 + 03: It follows from Theorem 3.3.

(18) 01 + 22 + 13 > 03 + 03 + 03: (c0c1 + c2c2) + c1c3 > c0c3 + (c0c2 + c1c3) >

c0c3 + c0c3 + c0c3 or Theorem 3.3.

(19) 01 + 22 + 22 > 03 + 03 + 03: (c0c1 + c2c2) + c2c2 > c0c3 + (c0c2 + c2c2) >

c0c3 + c0c3 + c0c3 or Theorem 3.3.

We now recall the combinatorial description of the inequalities in the 22 case for

comparison. Given an inequality cj11cj12+cj21cj22 > ci11ci12+ci21ci22 , we may assume

i11 6 i12, i21 6 i22, i12 6 i22,(4.3)

j11 6 j12, j21 6 j22, j12 6 j22.

Let wi1 = i11+ i12, wi2 = i21+ i22, wj1 = j11+ j12 and wj2 = j21+ j22 be the weights

of the monomials. If {wj1 , wj2} 6= {wi1 , wi2}, then (see [1], Theorem 17)

j12, j22 6 i12, i22 and j11, j21 > i11, i21.

We call this condition DB, for “double between-ness”.

Theorem 4.1 ([1], Theorem 21). The inequality cj11cj12 + cj21cj22 > ci11ci12 +

ci21ci22 , with indices satisfying (4.3), holds for all p-Newton sequences if and only if

the following conditions are satisfied:

1. the weights {wj1 , wj2} majorize the weights {wi1 , wi2} and
2. either a) term-wise domination (majorization of indices) holds for a matching

of left hand monomials with right-hand monomials (in case the weight pairs are

equal) or b) DB holds (in case the weight pairs are different).
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It is possible to summarize the valid inequalities for n 6 3 in the 222 case in

a characterizing theorem, though it appears relatively complicated. To do this we

need some terminology.

Consider the ordered pair (Cj , Ci), where

Cj = cj11cj12 + cj21cj22 + cj31cj32 and Ci = ci11ci12 + ci21ci22 + ci31ci32

with all indices between 0 and 3. We say that cpcq is between crcs if min{p, q} >

min{r, s} and max{p, q} 6 max{r, s}. Then, Cj is n1-n2-n3 between Ci if for some
m1, cjm11

cjm12
is between at least n1 terms of Ci; for some m2 6= m1, cjm21

cjm22

is between at least n2 terms of Ci; and for the remaining index m3, cjm31
cjm32

is

between at least n3 terms of Ci.
The following two criteria will be used in the statement of our theorem. We will

say that (Cj , Ci) satisfies Criterion 1 if one of the following holds:
1. If imn, jmn 6= 3 for all m,n, then

{

|{(m,n) : jmn = k}| 6 |{(m,n) : imn = k}| if k = 0, 2,

|{(m,n) : jmn = k}| > |{(m,n) : imn = k}| if k = 1.

2. If imn, jmn 6= 0 for all m,n, then

{

|{(m,n) : jmn = k}| 6 |{(m,n) : imn = k}| if k = 1, 3,

|{(m,n) : jmn = k}| > |{(m,n) : imn = k}| if k = 2.

3. If {0, 3} ⊂ {imn, jmn}, then
{

|{(m,n) : jmn = k}| 6 |{(m,n) : imn = k}| if k = 0, 3,

|{(m,n) : jmn = k}| > |{(m,n) : imn = k}| if k = 1, 2.

We will say that (Cj , Ci) satisfies Criterion 2 if one of the following holds:
1. If neither Cj nor Ci has repeated terms, then Cj is 2-2-3 between Ci.
2. If only one of Cj and Ci has a repeated term, then Cj is 2-3-3 between Ci.
3. If Cj and Ci each have a repeated term, then Cj is 3-3-3 between Ci.
We may classify an ordered pair (Cj , Ci) by the weights wjk , wik as follows. Below,

brackets [ ] denote a multiset.

1. Class 1 will consist of those (Cj , Ci) with [wjk ]
3
k=1 = [wik ]

3
k=1.

2. Class 2 will consist of those (Cj , Ci) where [wjk ]
3
k=1 ∩ [wik ]

3
k=1 contains exactly

one element, say w. We may further subdivide this class by examining those

terms in (Cj , Ci) which have weight w. Even though Cj and Ci have only the
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weight w in common, it may happen that other terms of Cj and Ci have this
weight. For example, let Cj = c20 + c21 + c1c2 and Ci = c0c1 + c0c2 + c0c2.

Here w = 2 and it is the only weight in common, yet Ci has two terms with
weight 2. But because we only allow 0 6 imn, jmn 6 3, there are at most two

monomials cpcq with any particular weight. Therefore, given (Cj, Ci) in Class 2
with common weight w, we have the following possibilities:

(a) Cj and Ci each has exactly one term with weight w.
(b) One and only one of Cj and Ci has at least two terms with weight w, and all of
these terms are identical.

(c) One and only one of Cj and Ci has at least two terms with weight w, but these
terms are not all the same.

In the third case, we note that Cj and Ci necessarily share a term with weight w,
which will be called “the common-weight term” of Cj and Ci. Otherwise, they
each have a unique term (up to repetition) with the common weight w, and

we may speak of “the common-weight term” of Cj , i.e., the term of Cj with
weight w, and that of Ci without ambiguity.

(a) Class 2 (a) will consist of those (Cj , Ci) where the common-weight term of Cj
and that of Ci are the same.

(b) Class 2 (b) will consist of those (Cj, Ci) not in 2 (a) such that Cj dominates Ci
by secondary term-wise domination, i.e., if cjm1

cjm2
is the common-weight term

of Cj and cin1
cin2
is that of Ci, we have

cjm1
cjm2

> cin1
cin2

,
∑

k 6=m

cjk1
cjk2

>
∑

k 6=n

cik1
cik2

on all p-Newton sequences.

(c) Class 2 (c) will consist of those (Cj , Ci) not in 2 (a) and not in 2 (b) where the
common-weight term of Cj dominates that of Ci.

(d) Class 2 (d) will consist of those (Cj , Ci) not in 2 (a) where the common-weight
term of Ci dominates that of Cj .

3. Class 3 will consist of those (Cj , Ci) with [wjk ]
3
k=1 ∩ [wik ]

3
k=1 = ∅.

Theorem 4.2. Let

Cj = cj11cj12 + cj21cj22 + cj31cj32 and Ci = ci11ci12 + ci21ci22 + ci31ci32

with all indices between 0 and 3 and satisfying (4.2). Then Cj > Ci for all p-Newton
sequences if and only if

(1) (wj1 , wj2 , wj3) ≻ (wi1 , wi2 , wi3 );
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(2) if (Cj , Ci) is in Class 1 , there is term-wise domination;
(3) if (Cj , Ci) is in Class 2 (a) or 2 (b), Cj secondary term-wise dominates Ci;
(4) if (Cj , Ci) is in Class 2 (c) or 3, it meets criteria 1 and 2; and

(5) (Cj , Ci) is not in Class 2 (d).

The proof of the theorem is the inventory given in the table. The theorem may

be interpreted beyond n = 3, but, unfortunately, it does not remain valid. Item (2)

is no longer necessary, as shown by Example 5.4. However, (2) does remain valid in

some situations, which we explore.

5. The equal weights case

In the case 22 versus 22 we must always have weight majorization, and, in the

extreme case of equal weights, term-wise domination is necessary and sufficient for

an inequality. According to the table, this remains the case for 222 versus 222 when

n 6 3. The weight majorization is general for 222. What about the case of equal

weights for longer Newton sequences (or more general monomial sums); is it a general

principle that term-wise domination is necessary and sufficient? Under a wide variety

of situations, the answer is yes, but, unfortunately, not in general, even for the 222

case. Here we give the variety of affirmative situations and then use Theorem 3.7

to verify a counterexample that may be smallest. A number of other examples may

also be verified.

Theorem 5.1. If cj11cj12 + cj21cj22 + cj31cj32 > ci11ci12 + ci21ci22 + ci31ci32 , with

indices satisfying (4.2), holds for all p-Newton sequences and wik = wjk = w for

k = 1, 2, 3, then term-wise domination holds.

P r o o f. Without loss of generality, we can assume that i12 6 i22 6 i32 and

j12 6 j22 6 j32. By Lemma 3.1 we have jk2 6 ik2 for all k. But under the

assumption of equal weights we get

ik1 6 jk1 6 jk2 6 ik2

for all k, or equivalently cjk1
cjk2

> cik1
cik2
for all k (see (1.1)). �

Theorem 5.2. If cj11cj12 + cj21cj22 + cj31cj32 > ci11ci12 + ci21ci22 + ci31ci32 , with

indices satisfying (4.2), holds for all p-Newton sequences and {wik}3k=1 = {wjk}3k=1

takes exactly two different values w < w′, then there is term-wise domination.
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P r o o f. Without loss of generality, we can assume that i12 6 i22 6 i32 and

j12 6 j22 6 j32. By Lemma 3.1 we have jk2 6 ik2 for all k.

Note that term-wise domination holds in cj11cj12 + cj21cj22 + cj31cj32 > ci11ci12 +

ci21ci22 + ci31ci32 , with the considered sequence of weights, if and only if term-wise

domination holds for two terms (see (1.1)).

Suppose first that the weight w′ is attained twice, i.e.,

{wi1 , wi2 , wi3} = {wj1 , wj2 , wj3} = {w,w′, w′}.

We will prove the result matching a j monomial with an i monomial of equal weight

and the biggest j-index less than or equal to biggest i-index. In this situation (1.1)

guarantees that the j monomial beats the i monomial. It can happen:

⊲ w = wj1 = wi1 . In this case w
′ = wjk = wik for k = 2, 3 and the same argument

as in the previous theorem proves term-wise domination.

⊲ w = wj1 = wi2 . The matchings w = wj1 = wi2 and w
′ = wj3 = wi3 give term-wise

domination:
w = wj1 = wi2

j12 6 i22

}

(1.1)
=⇒ cj11cj12 > ci21ci22

and
w′ = wj3 = wi3

j32 6 i32

}

(1.1)
=⇒ cj31cj32 > ci31ci32 .

⊲ w = wj1 = wi3 . The matchings w = wj1 = wi3 and w
′ = wj2 = wi2 give the result.

⊲ w = wj2 = wi1 . The matchings w
′ = wj1 = wi2 and w′ = wj3 = wi3 give the

result.

⊲ w = wj2 = wi2 . The matchings w = wj2 = wi2 and w
′ = wj3 = wi3 give the result.

⊲ w = wj2 = wi3 . The matchings w = wj2 = wi3 and w
′ = wj1 = wi1 give the result.

⊲ w = wj3 = wi1 . The matchings w
′ = wj1 = wi2 and w′ = wj2 = wi3 give the

result.

⊲ w = wj3 = wi2 . The matchings w
′ = wj1 = wi1 and w′ = wj2 = wi3 give the

result.

⊲ w = wj3 = wi3 . The matchings w = wj3 = wi3 and w
′ = wj1 = wi1 give the result.

If the weightw is the one attained twice, the result follows by index complementation.

�

Theorem 5.3. If cj11cj12 + cj21cj22 + cj31cj32 > ci11ci12 + ci21ci22 + ci31ci32 , with

indices satisfying (4.2), holds for all p-Newton sequences and

wj1 < wj2 < wj3 and wik = wjk for all k,
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and at least one of

i11 6 j21 < i21 6 j11 6 j12 6 i22 < j22 6 i12,

i31 6 j21 < i21 6 j31 6 j32 6 i22 < j22 6 i32,

is not true, then there is term-wise domination.

P r o o f. We will show that if there is no term-wise domination, then there is

a NES such that the exponential version of (4.1) is not true for some r > 1. It is

clear that term-wise domination holds if and only if ik1 6 jk1 6 jk2 6 ik2 for all k.

If j11 < i11 6 i12 < j12, then consider the sequence

xi =

{

−i if i 6 i12,

−i12 − C(i − i12) if i > i12,

where C > 1 is a constant to be determined. Then β = max
16k63

{xjk1
+ xjk2

} 6

max{−j11 − i12 − C,−wj2 ,−wj3}, α = max
16k63

{xik1
+ xik2

} = max{−wi1 , xi21 +

xi22 , xi31 + xi32} > −wi1 . For sufficiently large C, β 6 −wj2 < −wi1 6 α. In-

dex complementation handles j31 < i31 6 i32 < j32. So, suppose we have

i11 6 j11 6 j12 6 i12,

j21 < i21 6 i22 < j22,

i31 6 j31 6 j32 6 i32.

If i12 < j22, use

xi =

{

−i if i 6 M,

−M − C(i −M) if i > M,

where C > 1 will be determined and M = j22 − 1. Then β = max
16k63

{xjk1
+

xjk2
} 6 max{−wj1 ,−j21 −M −C,−wj3} = −wj1 6 max{−wi1 ,−wi2 , xi31 + xi32} =

max
16k63

{xik1
+ xik2

} = α, and when C is large, max{−j21 −M − C,−wj3} = −wj3 <

−wi2 6 max{−wi2 , xi31 + xi32}.
If i32 < j22 use the sequence

xi =

{

i if i 6 M,

M − C(i −M)M if i > M,

where C > 1 and M = j22 − 1. Then β = max
16k63

{xjk1
+ xjk2

} 6 max{wj1 , j21 +

(1− C)M,wj3} = wj3 6 max{xi11 + xi12 , wi2 , wi3} = max
16k63

{xik1
+ xik2

} = α. Be-

cause M > 0 for large C, max{wj1 , j21 + (1 − C)M} = wj1 < wi2 6 max{xi11 +

xi12 , wi2}.
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If j12 > i22 consider the sequence

xi =

{

−i if i 6 i22,

−i22 − C(i − i22) if i > i22,

where C > 1. Then β = max
16k63

{xjk1
+ xjk2

} 6 max{−j11 − i22 − C,−j21 −
i22 − C,−wj3}, α = max

16k63
{xik1

+ xik2
} = max{xi11 + xi12 ,−wi2 , xi31 + xi32}. For

large enough C, we have β 6 −wj3 < −wi2 6 α.

Finally, if j32 > i22 consider

xi =

{

i if i 6 i22,

i22 − C(i− i22)i22 if i > i22,

where C > 1 is a constant that can be arbitrarily large. Then β = max
16k63

{xjk1
+

xjk2
} 6 max{wj1 , j21+i22−C, j31+i22−C}, α = max

16k63
{xik1

+xik2
} = max{xi11+xi12 ,

wi2 , xi31 + xi32}. For large C, β 6 wj1 < wi2 6 α. Index complementation handles

the cases i31 > j21, i11 > j21, i21 > j31, i21 > j11. �

We speculate that if wj1 < wj2 < wj3 , wik = wjk for all k, i11 6 j21 < i21 6

j11 6 j12 6 i22 < j22 6 i12, and i31 6 j21 < i21 6 j31 6 j32 6 i22 < j22 6 i32, then

(4.1) is true for all p-Newton sequences if and only if (wi1 , wi2 , wi3) is an arithmetic

progression.

Another speculation is that wj1 < wj2 < wj3 , wik = wjk for all k, i11 6 j21 <

i21 6 j11 6 j12 6 i22 < j22 6 i12, and i31 6 j21 < i21 6 j31 6 j32 6 i22 < j22 6 i32

is sufficient for (4.1) to hold for all p-Newton sequences.

However, the problem examined in this section is quite different from that in [1],

although the two are related. Even when {wik}3k=1 = {wjk}3k=1, (4.1) may hold

for all p-Newton sequences without term-wise domination as the following example

shows.

Example 5.4. We show that

c22 + c1c4 + c23 > c0c4 + c2c3 + c1c5

for all p-Newton sequences c : c0, c1, . . . , c5. Note that we have equal weights: 4, 5,

6 on the two sides, but that we do not have term-wise domination, as c1c4 does not

beat any term on the right. However, c22 > c0c4 and c23 > c1c5 for all p-Newton

sequences.

We apply Theorem 3.7 to the NES, by showing that {2x2, x1 + x4, 2x3} ≻w

{x0 + x4, x2 + x3, x1 + x5}.
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First, we make some observations about the sequence x.

(i) Note that xk−1 + xk+1 6 2xk if and only if xk+1 − xk 6 xk − xk−1. Hence, we

get the chain of inequalities: x1−x0 > x2−x1 > x3−x2 > . . ., which elucidates

the structure of x. We see that once x decreases, it continues decreasing, i.e. if

xk > xk+1, then xk > xk+1 > xk+2 > . . .

(ii) xi + xj > xi−k + xj+k whenever i 6 j and k > 0. This is equivalent to

xi − xi−k > xj+k − xj for i 6 j and k > 0, which follows easily from the

previous observation.

We have six cases to consider. First, note that

2x2 + (x1 + x4) + 2x3 > (x0 + x4) + (x2 + x3) + (x1 + x5)

⇔ x2 + x3 > x0 + x5,

and the latter inequality follows from (ii) above.

1. Suppose x0 + x4 > x2 + x3 > x1 + x5. Then we have

x1 + x3 > x0 + x4 > x2 + x3 ⇒ x1 > x2

⇒ x1 > x2 > x3 > x4 > x5.

Therefore,

2x2 > x1 + x3 > x1 + x4 = (x1 − x0) + (x0 + x4)

> (x2 − x1) + (x2 + x3) = (2x2 − x1) + x3 > 2x3.

Hence, 2x2 > x1 + x4 > 2x3. From (ii), we have 2x2 > x0 + x4 and x1 + x2 >

x0 + x3. Since

2x2 + (x1 + x4) > (x0 + x4) + (x2 + x3) ⇔ x1 + x2 > x0 + x3,

we find that (2x2, x1 + x4, 2x3) ≻w (x0 + x4, x2 + x3, x1 + x5).

2. Suppose x0 + x4 > x1 + x5 > x2 + x3. Note that the inequalities derived

above depend only on the fact that x0 + x4 > x2 + x3, so we still have 2x2 >

x1 + x4 > 2x3. Now,

2x2 + (x1 + x4) > (x0 + x4) + (x1 + x5) ⇔ 2x2 > x0 + x5.

But, 2x2 > x0 + x4 > x0 + x5 since x1 > . . . > x4 > x5. Hence,

(2x2, x1 + x4, 2x3) ≻w (x0 + x4, x2 + x3, x1 + x5).
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3. Suppose that x2 + x3 > x0 + x4 > x1 + x5.

(a) If x2 > x3, then 2x2 > 2x3 and x2 > x3 > x4 > x5. We also get

2x2 > x1 + x3 > x1 + x4.

Therefore, either 2x2 > x1 + x4 > 2x3 or 2x2 > 2x3 > x1 + x4. In any event,

2x2 > x2 + x3; furthermore,

2x2 + (x1 + x4) > (x2 + x3) + (x0 + x4) ⇔ x1 + x2 > x0 + x3,

2x2 + 2x3 > (x2 + x3) + (x0 + x4) ⇔ x2 + x3 > x0 + x4.

Either way, (2x2, x1 + x4, 2x3) ≻w (x0 + x4, x2 + x3, x1 + x5).

(b) If x2 6 x3, then 2x2 6 2x3 and x0 6 x1 6 x2 6 x3. Therefore,

2x3 > x2 + x4 > x1 + x4,

and either 2x3 > x1 + x4 > 2x2 or 2x3 > 2x2 > x1 + x4. In both cases,

2x3 > x2 + x3; also,

2x3 + (x1 + x4) > (x2 + x3) + (x0 + x4) ⇔ x1 + x3 > x0 + x2,

2x3 + 2x2 > (x2 + x3) + (x0 + x4) ⇔ x2 + x3 > x0 + x4.

Hence, (2x2, x1 + x4, 2x3) ≻w (x0 + x4, x2 + x3, x1 + x5).

4. Suppose that x2 + x3 > x1 + x5 > x0 + x4. Let y = (y0, y1, . . . , y5) be the

sequence with yk = x5−k so that yk−1 + yk+1 6 2yk for all k. Our hypothesis

then gives y3+y2 > y4+y0 > y5+y1; from (3) we know that (2y2, y1+y4, 2y3) ≻w

(y0 + y4, y2 + y3, y1 + y5), i.e. (2x3, x4 + x1, 2x2) ≻w (x5 + x1, x3 + x2, x4 + x0).

The remaining two cases, x1 + x5 > x0 + x4 > x2 + x3 and x1 + x5 > x2 + x3 >

x0 + x4, can be argued as in 4.

Addendum

In prior paper [1], in the case of inequalities between one sum of two two-factor

monomials and another (22), a principle is given as a lemma (Lemma 19), in which

increasing by 1 the higher index in each term preserves valid inequalities. (It is

equivalent to decreasing the lower index in each term by 1.) The principle, stated

there only for the indicated 22 versus 22 case, is valid, but the proof is not complete,

and it contains an inadvertent misstatement (“more” should be “less”). For the

record, we give here a complete, properly stated proof. The statement of the lemma,

the notation and references, as well as the comment about spreading indices, are

exactly the same.
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P r o o f (of Lemma 19 in [1]). In the case of term-wise domination, the statement

is trivially correct, monomial by monomial. So, we may assume that there is no term-

wise domination, in which case we know that there must be double between-ness in

the hypothesized valid inequality by Theorem 17 (display (13)) of [1].

Now,

cj11cj12+1 + cj21cj22+1 = cj11cj12
cj12+1

cj12
+ cj21cj22

cj22+1

cj22

> (cj11cj12 + cj21cj22 )
cj22+1

cj22

> (ci11ci12 + ci21ci22)
cj22+1

cj22

= ci11ci12
cj22+1

cj22
+ ci21ci22

cj22+1

cj22

> ci11ci12
ci12+1

ci12
+ ci21ci22

ci22+1

ci22
= ci11ci12+1 + ci21ci22+1.

The first inequality holds because the ratios of consecutive elements of a p-Newton

sequence form a nonincreasing sequence. The second is simply the substitution of

a valid inequality. And the third holds because of double between-ness and the

nonincreasing ratios property of p-Newton sequences.

The other claim, about decreeasing the smaller index in each term by 1, follows

by complementation of indices. �

We note that Lemma 19 also follows from the characterization, Theorem 21. How-

ever, Lemma 19 is used (significantly) in the proof of sufficiency of double between-

ness. Fortunately, only the necessity of double between-ness is used in the above

proof (and that was proven as Theorem 17 of [1]), so that the overall integrity of the

logic is intact.

We also note that we conjecture the principle of Lemma 19 (increasing the largest

(decreasing the smallest) index in each term of a valid inequality by 1 to get a valid

inequality) for general inequalities [1]. We have proven some other cases, but, so far,

only when something more about the structure of the inequality is known. This is

a very attractive and worthy conjecture.

Finally, we take this opportunity to note a typo in line 5 of the proof of Theorem 21

of [1]. “completation”, which appears, should be “complementation”.
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