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Abstract. Let G be a graph of order n and λ(G) the spectral radius of its adjacency
matrix. We extend some recent results on sufficient conditions for Hamiltonian paths and
cycles in G. One of the main results of the paper is the following theorem:
Let k > 2, n > k3 + k + 4, and let G be a graph of order n, with minimum degree

δ(G) > k. If
λ(G) > n− k − 1,

then G has a Hamiltonian cycle, unlessG = K1∨(Kn−k−1+Kk) or G = Kk∨(Kn−2k+K̄k).
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1. Introduction

This paper presents sufficient spectral conditions for Hamiltonian paths and cycles

in graphs with large minimum degree.

Let λ(G) denote the spectral radius of the adjacency matrix of a graph G. In 2010,

Fiedler and Nikiforov in [9] gave some bounds on λ(G) that imply the existence of

Hamiltonian paths and cycles in G. This work motivated further research, as could

be seen, e.g., in [1], [12], [13], [15], [14], [17], [20].

In the present paper we extend some recent results by Benediktovich [1], Li and

Ning [13], and Ning and Ge [17]. To state those results we need to introduce three

families of extremal graphs.

WriteKs and K̄s for the complete and the edgeless graphs of order s. Given graphs

G and H, write G ∨H for their join and G+H for their disjoint union.
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First, for any k > 1 and n > k + 2, let

Lk(n) := K1 ∨ (Kn−k−1 +Kk).

That is to say, the graph Lk(n) consists of a Kn−k and a Kk+1 sharing a single

vertex.

Second, for any k > 1 and n > 2k + 1, let

Mk(n) := Kk ∨ (Kn−2k + K̄k).

That is to say, the graph Mk(n) consists of a Kn−k and a set of k independent

vertices all joined to some k vertices from the Kn−k.

Finally, for any k > 1 and n > 2k, let

Nk(n) := Kk ∨ (Kn−2k−1 + K̄k+1).

That is to say, the graph Nk(n) consists of a Kn−k−1 and a set of k+1 independent

vertices all joined to some k vertices from the Kn−k−1.

Note that for any admissible k and n, the graphs Lk(n) and Mk(n) contain no

Hamiltonian cycles and the graph Nk(n) contains no Hamiltonian paths, whereas

the minimum degree of each of them is exactly k.

The graphs Mk(n) and Nk(n) were used by Erdős in [7] as extremal graphs in his

results on Hamiltonicity of graphs with large minimum degree. Moreover, recently

Li and Ning in [13] showed thatMk(n) and Nk(n) are also relevant for some spectral

analogs of Erdős’s results:

Theorem 1.1 (Li, Ning [13]). Let k > 0 and let G be a graph of order n, with

minimum degree δ(G) > k.

(1) If n > max{6k + 10, (k2 + 7k + 8)/2} and

λ(G) > λ(Nk(n)),

then G has a Hamiltonian path, unless G = Nk(n).

(2) If k > 1, n > max{6k + 5, (k2 + 6k + 4)/2}, and

λ(G) > λ(Mk(n)),

then G has a Hamiltonian cycle, unless G = Mk(n).

Theorem 1.1 seems as good as one can get, and yet somewhat subtler and stronger

statements have been proved for k = 1, 2.
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Theorem 1.2 (Ning, Ge [17]). Let n > 7 and let G be a graph of order n, with

minimum degree δ(G) > 1. If

λ(G) > n− 3,

then G has a Hamiltonian path, unless G = N1(n).

Theorem 1.3 (Benediktovich [1]). Let n > 10 and let G be a graph of order n,

with minimum degree δ(G) > 2. If

λ(G) > n− 3,

then G has a Hamiltonian cycle, unless G = L2(n) or G = M2(n).

Note that in our renditions of Theorems 1.2 and 1.3, a few details have been

omitted from the original statements in order to get more streamlined assertions. In

this way one sees that these theorems are instances of more general statements, in

which δ(G) is bounded by a parameter.

Thus, here we propose the following two theorems, which generalize Theorems 1.2

and 1.3, and strengthen Theorem 1.1 for n sufficiently large:

Theorem 1.4. Let k > 1, n > k3 + k + 4, and let G be a graph of order n, with

minimum degree δ(G) > k. If

λ(G) > n− k − 1,

then G has a Hamiltonian cycle, unless G = Lk(n) or G = Mk(n).

Theorem 1.5. Let k > 1, n > k3 + k2 +2k+ 5, and let G be a graph of order n,

with minimum degree δ(G) > k. If

λ(G) > n− k − 2,

then G has a Hamiltonian path, unless G = Nk(n) or G = Kn−k−1 +Kk+1.

We shall give independent, self-contained proofs of Theorems 1.4 and 1.5, although

many smart ideas could be readily borrowed from each of the papers [1], [13], and [17].

Crucial points of our arguments are based on the following straightforward theorems,

whose proofs are nevertheless long and technical:
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Theorem 1.6. Let k > 2, n > k3 + k + 4, and let G be a graph of order n, with

minimum degree δ(G) > k.

(i) If G is a subgraph of Lk(n), then

λ(G) < n− k − 1,

unless G = Lk(n).

(ii) If G is a subgraph of Mk(n), then

λ(G) < n− k − 1,

unless G = Mk(n).

Theorem 1.7. Let k > 1, n > k3 + k2 +2k+ 5, and let G be a graph of order n,

with minimum degree δ(G) > k.

(i) If G is a subgraph of Nk(n), then

λ(G) < n− k − 2,

unless G = Nk(n).

(ii) If G is a subgraph of Kn−k−1 +Kk+1, then

λ(G) < n− k − 2,

unless G = Kn−k−1 +Kk+1.

The rest of the paper is structured as follows: In Section 2 we introduce some

notation, recall some details about graph closure, and state a few results that will be

used in the proofs of Theorems 1.4–1.7. The proofs themselves are given in Section 3.

The last section is dedicated to a brief discussion and some open problems.

2. Notation and preliminaries

For graph notation and terminology undefined here we refer the reader to [2].

We write A(G) for the adjacency matrix of a graph, and denote the quadratic form

of A(G) by 〈A(G)x,x〉, where x is a vector of size equal to the order of G. Note that

if G is of order n and x = (x1, . . . , xn), then

〈A(G)x,x〉 = 2
∑

{i,j}∈E(G)

xixj .
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If G is a graph of order n, we write d1, . . . , dn for the degrees of G indexed in

ascending order.

A graph G is called Hamiltonian-connected if for any two vertices u and v of G,

there is a Hamiltonian path in G whose ends are u and v.

We shall need the concept of graph closure, used implicitly by Ore in [19], [18],

and developed further by Bondy and Chvátal in [3]: Fix an integer k > 0. Given

a graph G, perform the following operation: if there are two nonadjacent vertices u

and v with dG(u)+dG(v) > k, add the edge uv to E(G). A k-closure of G is a graph

obtained from G by successively applying this operation as long as possible. As it

turns out, the k-closure of G is unique, that is to say, it does not depend on the order

in which edges are added; see [3] for details.

Write clk(G) for the k-closure of G and note its main property:

If u and v are nonadjacent vertices of clk(G), then dclk(G)(u)+dclk(G)(v) 6 k−1.

The usefulness of graph closure is demonstrated by the following facts, due essen-

tially to Ore [19], [18]:

(A) A graph G of order n has a Hamiltonian path if and only if cln−1(G) has one.

(B) A graph G of order n has a Hamiltonian cycle if and only if cln(G) has one.

(C) A 2-connected graph G of order n is Hamiltonian-connected if and only if

cln+1(G) is Hamiltonian-connected.

For convenience we restate the last two statements in a more usable form.

Theorem 2.1 (Ore [18]). If G is a graph of order n and du + dv > n for any two

distinct nonadjacent vertices u and v, then G has a Hamiltonian cycle.

Theorem 2.2 (Ore [18]). If G is a 2-connected graph of order n and du+dv > n+1

for any two distinct nonadjacent vertices u and v, then G is Hamiltonian-connected.

We shall also need two classical results of Chvátal [5] on Hamiltonicity of graphs.

Theorem 2.3 (Chvátal [5]). Let G be a graph of order n, with degrees d1, . . . , dn.

If G has no Hamiltonian cycle, then there is an integer s < n/2 such that ds 6 s

and dn−s 6 n− s− 1.

Corollary 2.4 (Chvátal [5]). Let G be a graph of order n, with degrees d1, . . . , dn.

If G has no Hamiltonian path, then there is an integer s < (n + 1)/2 such that

ds 6 s− 1 and dn−s+1 6 n− s− 1.

Finally, we shall need the following inequality, proved in [16]:
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Corollary 2.5 ([10], [16]). If G is a graph of order n, withm edges, and minimum

degree δ, then

(2.1) λ(G) 6
δ − 1

2
+

√

2m− nδ +
(δ + 1)2

4
.

For connected graphs inequality (2.1) has been proved independently by Hong,

Shu and Fang in [10].

The following observation is useful in applications of inequality (2.1).

Proposition 2.6 ([10], [16]). If 2m 6 n(n− 1), the function

f(x) =
x− 1

2
+

√

2m− nx+
(x+ 1)2

4

is decreasing in x for x 6 n− 1.

3. Proofs

P r o o f of Theorem 1.6. Set for short λ := λ(G), and let x = (x1, . . . , xn) be

a positive unit eigenvector to λ. Recall that Rayleigh’s principle implies that

λ = 〈A(G)x,x〉.

The idea of the proofs below exploits the fact that both Mk(n) and Lk(n) consist of

a Kn−k, together with an “outgrowth” of bounded order. It turns out that if n is

large, all the edges incident to the “outgrowth” contribute to 〈A(G)x,x〉 much less

than a single edge of the Kn−k.

Now we give the details.

P r o o f of (i). Assume that G is a proper subgraph of Mk(n). Clearly, we may

assume that G is obtained by omitting just one edge {u, v} of Mk(n).

Write X for the set of vertices of Mk(n) of degree k, let Y be the set of their

neighbors, and let Z be the set of the remaining n− 2k vertices of Mk(n).

Since δ(G) > k, we see that G must contain all the edges between X and Y.

Therefore, {u, v} ⊂ Y ∪Z, with three possible cases: (a) {u, v} ⊂ Y ; (b) u ∈ Y, v ∈ Z;

(c) {u, v} ⊂ Z.We shall show that case (c) yields a graph of no smaller spectral radius

than case (b), and that case (b) yields a graph of no smaller spectral radius than

case (a).
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Indeed, by symmetry, xi = xj for any i, j ∈ X ; likewise xi = xj for any i, j ∈

Y \ {u, v} and for any i, j ∈ Z \ {u, v}. Thus, let

x := xi, i ∈ X,

y := xi, i ∈ Y \ {u, v},

z := xi, i ∈ Z \ {u, v}.

Suppose that case (a) holds, that is, {u, v} ⊂ Y. Choose a vertex w ∈ Z, remove

the edge {v, w} and add the edge {u, v}. If xw > xv, swap the entries xv and xw;

write x′ for the resulting vector.

First, note that the obtained graph G′ is covered by case (b) and that x′ is a unit

vector. We see that

〈A(G′)x′,x′〉 − 〈A(G)x,x〉 = (x′
v − xv)

∑

i∈X

xi > 0,

and, by the Rayleigh principle, λ(G′) > λ(G), as claimed.

Essentially the same argument proves that case (c) yields a graph of no smaller

spectral radius than case (b). Therefore, we may assume that {u, v} ⊂ Z. Hence,

the vertices u and v are symmetric, and so xu = xv. Set t := xu and note that the n

eigenequations of G are reduced to four equations involving just the unknowns x, y,

z, and t :

λx = ky,(3.1)

λy = kx+ (k − 1)y + (n− 2k − 2)z + 2t,(3.2)

λz = ky + (n− 2k − 3)z + 2t,(3.3)

λt = ky + (n− 2k − 2)z.(3.4)

We find that

x =
k

λ
y,(3.5)

z =
(

1−
k2

λ(λ + 1)

)

y,

t =
λ+ 1

λ+ 2

(

1−
k2

λ(λ+ 1)

)

y.(3.6)

Further, note that if we remove all edges between X and Y and add the edge

{u, v} to G, we obtain the graph Kn−k + K̄k. Letting x
′′ be the restriction of x to

Kn−k, we find that

〈A(Kn−k)x
′′,x′′〉 = 〈A(G)x,x〉 + 2t2 − 2k2xy = λ+ 2t2 − 2k2xy.
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But since ‖x′′‖ < 1, we see that

〈A(Kn−k)x
′′,x′′〉 < λ(Kn−k) = n− k − 1,

that is,

(3.7) λ+ 2t2 − 2k2xy < n− k − 1.

Assume for a contradiction that λ > n− k− 1. This assumption, together with (3.7)

yields the inequality

k2xy > t2.

Now, (3.5) and (3.6) imply that

k3

λ
y2 >

(λ+ 1

λ+ 2

)2(

1−
k2

λ(λ + 1)

)2

y2.

Cancelling y2 and applying Bernoulli’s inequality to the right side, we get

k3

λ
>

(

1−
2

λ+ 2

)(

1−
2k2

λ(λ + 1)

)

> 1−
2

λ+ 2
−

2k2

λ(λ + 1)
.

Referring to the inequalities λ > n− k − 1 > k3 + 3, we find that

k3 > λ−
2λ

λ+ 2
−

2k2

λ+ 1
> k3 + 3− 2−

2k2

k3 + 4
> k3,

a contradiction, completing the proof of (i). �

P r o o f of (ii). As in (i), assume that G is a subgraph of Lk(n) obtained by

omitting just one edge {u, v} of Lk(n). Recall that Lk(n) consists of a Kn−k and

a Kk+1 sharing a single vertex, say w. Let Y be the set {w}, write X for the set of

vertices of Kk+1 that are distinct from w, and write Z for the set of vertices of Kn−k

that are distinct from w.

Clearly, the condition δ(G) > k implies that {u, v} ⊂ Y ∪ Z; among the three

possible placements of {u, v}, the case {u, v} ⊂ Z yields a graph with maximum

spectral radius, so we assume that {u, v} ⊂ Z. Now, by symmetry, xi = xj for any

i, j ∈ X ; likewise xu = xv and xi = xj for any i, j ∈ Z \ {u, v}. Thus, let

x := xi, i ∈ X,

y := xw, i ∈ Y,

z := xi, i ∈ Z \ {u, v},

t := xu = xv.
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The n eigenequations of G now reduce to the four equations

λx = y + (k − 1)x,

λy = kx+ (n− 2k − 3)z + 2t,

λz = y + (n− 2k − 4)z + 2t,

λt = y + (n− 2k − 3)z.

Hence, we find that

x =
1

λ− k + 1
y,

z =
(

1−
k

(λ− k + 1)(λ+ 1)

)

y,

t =
λ+ 1

λ+ 2

(

1−
k

(λ− k + 1)(λ+ 1)

)

y.

Further, if we delete all edges incident to vertices in X and add the edge {u, v}, we

obtain the graph Kn−k + K̄k. Reasoning as in the proof of (i), we get the inequality

k(k − 1)

2(λ− k + 1)2
y2 +

k

λ− k + 1
y2 > t2 =

(λ+ 1

λ+ 2

)2(

1−
k

(λ − k + 1)(λ+ 1)

)2

y2,

which in turn yields

k(k − 1)

2(λ− k + 1)
+ k > λ− k + 1−

2(λ− k + 1)

λ+ 2
−

2k

λ+ 1
.

It is not hard to see that this inequality contradicts

λ > n− k − 1 > k3 + 3,

completing the proof of clause (ii) of Theorem 1.6. �

P r o o f of Theorem 1.7. The proof of (ii) is obvious. On the other hand, the

proof of (i) is very similar to the proof of clause (i) of Theorem 1.6, so we shall skip

it, stating just the starting system of equations, obtained with the same choice of

variables as in equations (3.1)–(3.4):

λx = ky,

λy = (k + 1)x+ (k − 1)y + (n− 2k − 3)z + 2t,

λz = ky + (n− 2k − 4)z + 2t,

λt = ky + (n− 2k − 3)z.
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Solving this system with respect to y and proceeding further as in the proof of

clause (i) of Theorem 1.6, we get the inequality

k2(k + 1)

λ
>

(

1−
2

λ+ 2

)(

1−
2k(k + 1)

λ(λ+ 1)

)

> 1−
2

λ+ 2
−

2k(k + 1)

λ(λ + 1)
,

which contradicts the inequalities λ > n− k − 2 > k3 + k2 + k + 3. �

P r o o f of Theorem 1.4. Let k > 1, n > k3 + k+4 and let G be a graph of order

n, with δ(G) > k. Write m for the number of edges of G, and set δ := δ(G).

Assume that λ(G) > n − k − 1, but G has no Hamiltonian cycle. To prove the

theorem we need to show that G = Lk(n) or G = Mk(n). Note that, in view of

Theorem 1.6, it is sufficient to prove that cln(G) = Lk(n) or cln(G) = Mk(n), so this

will be our main goal.

Clearly, cln(G) has no Hamiltonian cycle and

δ(cln(G)) > δ(G) > k, λ(cln(G)) > λ(G) > n− k − 1,

so for the rest of the proof we assume that G = cln(G). The main consequence of

this assumption is that

(3.8) di + dj 6 n− 1

for every two nonadjacent vertices i and j.

Next, since G has no Hamiltonian cycle, Theorem 2.3 implies that there is an

integer s < n/2 such that ds 6 s and dn−s 6 n − s − 1. Obviously, s > δ > k, and

we easily find an upper bound on 2m :

2m =

s
∑

i=1

di +

n−s
∑

i=s+1

di +

n
∑

i=n−s+1

di

6 s2 + (n− 2s)(n− s− 1) + s(n− 1)

= n2 − 2sn+ 3s2 + s− n.

Clearly, the expression n2− 2sn+3s2+ s−n is convex in s; hence it is maximal in s

for s = δ or s = (n− 1)/2. Hence, either

(3.9) 2m 6 n2 − 2δn+ 3δ2 + δ − n

or

(3.10) 2m 6 n2 − (n− 1)n+ 3
(n− 1)2

4
+

n− 1

2
− n.
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On the other hand, inequality (2.1) implies that

n− k − 1 6 λ(G) 6
δ − 1

2
+

√

2m− nδ +
(δ + 1)2

4
.

Hence, in view of Proposition 2.6, we get

n− k − 1 6 λ(G) 6
k − 1

2
+

√

2m− nk +
(k + 1)2

4
,

which, after some algebra, gives

(3.11) 2m > n2 − 2kn+ 2k2 + k − n.

We shall now prove that s = k. Indeed, if s > k+1, then (3.9) and (3.10) imply that

either

n2 − 2(k + 1)n+ 3(k + 1)2 + k + 1− n > n2 − 2kn+ 2k2 + k − n

or

n2 − (n− 1)n+
3

4
(n− 1)2 +

1

2
(n− 1)− n > n2 − 2kn+ 2k2 + k − n.

Each of these inequalities leads to a contradiction, so we have s = k, and thus δ = k.

Therefore,

d1 = . . . = dk = k.

Our next goal is to show that dk+1 > n− k − 1− k2. Indeed, suppose that

dk+1 < n− k − 1− k2.

Now, using Theorem 2.3, we get

2m =

k
∑

i=1

di + dk+1 +

n−k
∑

i=k+2

di +

n
∑

i=n−k+1

di

< k2 + n− k − 1− k2 + (n− 2k − 1)(n− k − 1) + k(n− 1)

= n2 − 2kn+ 2k2 + k − n,

contradicting (3.11). Hence di > n− k − 1− k2 for every i ∈ {k + 1, . . . , n}.

Next, we shall show that the vertices k + 1, . . . , n induce a complete graph in G.

Indeed, let i ∈ {k+ 1, . . . , n} and j ∈ {k + 1, . . . , n} be two distinct vertices of G. If
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they are nonadjacent, then

di + dj > 2n− 2k − 2− 2k2

> n+ k3 + k + 4− 2k − 2− 2k2

= (n− 1) + k3 − 2k2 − k + 3 > n− 1,

contradicting (3.8).

WriteX for the vertex set {1, . . . , k}.Write Y for the set of vertices in {k+1, . . . , n}

having neighbors in X. It is easy to see that Y 6= ∅, since |X | = k and so any vertex

in X must have a neighbor in {k + 1, . . . , n}.

In fact, every vertex from Y is adjacent to every vertex in X . Indeed, suppose

that this is not the case, and let w ∈ {k+ 1, . . . , n}, u ∈ X, v ∈ X be such that w is

adjacent to u, but not to v. We see that

dw + dv > n− k + k = n,

contradicting (3.8).

Next, let l := |Y | and note that 1 6 l 6 k, since d1 = k. If l = 1, then G = Lk(n),

and if l = k, then G = Mk(n). To finish the proof we shall show that if 1 < l < k,

then G has a Hamiltonian cycle, which contradicts the assumptions about G.

Indeed, let H be the graph induced by the set X ∪ Y. Since Kl ∨ K̄k ⊂ H and

l > 2, we see that H is 2-connected. Further, if u and v are distinct nonadjacent

vertices of H, with degrees d′u and d′v, they must belong to X, and so d′u = du = k

and d′v = dv = k. That is to say,

d′u + d′v = 2k > k + l.

By Theorem 2.2, H is Hamiltonian-connected, and it is easy to see that G has

a Hamiltonian cycle.

The proof of Theorem 1.4 is completed. �

P r o o f of Theorem 1.5. Although this proof is very close to the proof of Theo-

rem 1.4, we shall carry it in full, due to the numerous specific details.

Let k > 1, n > k3 + k2 + 2k + 5 and let G be a graph of order n, with δ(G) > k.

Write m for the number of edges of G, and set δ := δ(G).

Assume that λ(G) > n − k − 2, but G has no Hamiltonian path. To prove the

theorem we need to show that G = Nk(n) or G = Kn−k−1 + Kk+1. Note that,

in view of Theorem 1.6, it is sufficient to prove that cln(G) = Nk(n) or cln(G) =

Kn−k−1 +Kk+1, so this will be our main goal.
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Clearly, cln(G) has no Hamiltonian path and

δ(cln(G)) > δ(G) > k, λ(cln(G)) > λ(G) > n− k − 2,

so for the rest of the proof we assume that G = cln(G). The main consequence of

this assumption is that

(3.12) di + dj 6 n− 2

for every two nonadjacent vertices i and j.

Next, since G has no Hamiltonian path, Corollary 2.4 implies that there is an

integer s 6 n/2 such that ds 6 s−1 and dn−s+1 6 n−s. Obviously, s > δ+1 > k+1,

and we easily find an upper bound on 2m :

2m =

s
∑

i=1

di +

n−s+1
∑

i=s+1

di +

n
∑

i=n−s+2

di

6 s(s− 1) + (n− 2s+ 1)(n− s− 1) + (s− 1)(n− 1)

= n2 − 2sn+ 3s2 − s− n.

Clearly, the expression n2 − 2sn+ 3s2 − s− n is convex in s; hence it is maximal in

s for s = δ + 1 or s = n/2. Therefore, either

(3.13) 2m 6 n2 − 2(δ + 1)n+ 3(δ + 1)2 − (δ + 1)− n

or

(3.14) 2m 6
3

4
n2 −

3

2
n.

On the other hand, inequality (2.1) implies that

n− k − 2 6 λ(G) 6
δ − 1

2
+

√

2m− nδ +
(δ + 1)2

4
.

In view of Proposition 2.6, we get

n− k − 2 6 λ(G) 6
k − 1

2
+

√

2m− nk +
(k + 1)2

4
,

which, after some algebra, gives

(3.15) 2m > n2 − 2kn+ 2k2 + 4k − 3n+ 2.
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We shall prove that s = k + 1. Indeed, if s > k + 2, then (3.13) and (3.14) imply

that either

n2 − 2(k + 2)n+ 3(k + 2)2 − (k + 2)− n > n2 − 2kn+ 2k2 + 4k − 3n+ 2

or
3

4
n2 −

3

2
n > n2 − 2kn+ 2k2 + 4k − 3n+ 2.

Each of these inequalities leads to a contradiction, so we have s = k + 1 and thus

δ = k. Therefore,

d1 = . . . = dk+1 = k.

Our next goal is to show that dk+2 > n− 2k − 2− k2. Indeed, suppose that

dk+2 < n− 2k − 2− k2.

Now we get

2m =

k+1
∑

i=1

di + dk+2 +

n−k
∑

i=k+3

di +

n
∑

i=n−k+1

di

< k(k + 1) + n− 2k − 2− k2 + (n− 2k − 2)(n− k − 2) + k(n− 1)

= n2 − 2kn+ 2k2 + 4k − 3n+ 2,

contradicting (3.15). Hence di > n− 2k − 2− k2 for every i ∈ {k + 2, . . . , n}.

We shall show that the vertices k+2, . . . , n induce a complete graph in G. Indeed,

let i ∈ {k+2, . . . , n} and j ∈ {k+2, . . . , n} be two distinct vertices of G. If they are

nonadjacent, then

di + dj > 2n− 4k − 4− 2k2

> n+ k3 + k2 + 2k + 5− 4k − 4− 2k2

= (n− 2) + k3 − k2 − 2k + 3 > n− 2,

contradicting (3.12).

Write X for the vertex set {1, . . . , k + 1}. Write Y for the set of vertices in

{k + 2, . . . , n} that have neighbors in X. If Y = ∅, then G is a disconnected graph

and the order of its largest component is at most n− k− 1. Also X induces a Kk+1.

Clearly, the inequality λ(G) > n−k−2 implies that G = Kn−k−1+Kk+1, completing

the proof if Y = ∅.
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Now, suppose that Y 6= ∅. We shall show that every vertex in Y is adjacent to every

vertex in X . Indeed, suppose that this is not the case, and let w ∈ {k + 1, . . . , n},

u ∈ X, v ∈ X be such that w is adjacent to u, but not to v. We see that

dw + dv > n− k − 1 + k = n− 1,

contradicting (3.8).

Next, let l := |Y | and note that 1 6 l 6 k, as d1 = k. If l = k, then G = Nk(n).

To finish the proof we shall show that if 1 6 l < k, then G has a Hamiltonian path.

Indeed, let H be the graph induced by the set X ∪ Y. Further, if u and v are

distinct nonadjacent vertices of H, with degrees d′u and d′v, they must belong to X,

and so d′u = du = k and d′v = dv = k. That is to say,

d′u + d′v = 2k > k + 1 + l.

By Theorem 2.1, H contains a Hamiltonian cycle, and hence G has a Hamiltonian

path.

The proof of Theorem 1.5 is completed. �

4. Concluding remarks

It should be noted that most of the results discussed in the present paper and in the

references [1], [12], [13], [15], [14], [17], [20] deal exclusively with very dense graphs,

which makes these results somewhat one-sided. Hoping to change this tendency, we

would like to state two open problems.

First, recall that Dirac’s theorem in [6] is probably the most famous sufficient

condition for Hamiltonian cycles. Yet, no comparable spectral statement seems to

be known so far.

Problem 4.1. Find a spectral sufficient condition for Hamiltonian cycles that

would imply Dirac’s sufficient condition.

Second, a deep result of Krivelevich and Sudakov in [11] establishes a sufficient

condition on the second largest singular value of a regular graph that implies exis-

tence of Hamiltonian cycles. Two attempts have been made to extend this result

to nonregular graphs, but these extensions forsake the adjacency matrix for other

matrices ([4], [8]), so comparisons are difficult.

Hence, it is worth to reiterate the following problem, first raised in [11]:

Problem 4.2. Extend the result of Krivelevich and Sudakov to nonregular

graphs, using the second largest singular value of the adjacency matrix.
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