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VECTOR INVARIANT IDEALS OF ABELIAN GROUP ALGEBRAS

UNDER THE ACTIONS OF THE UNITARY GROUPS

AND ORTHOGONAL GROUPS

Lingli Zeng, Xi’an, Jizhu Nan, Dalian

(Received March 6, 2015)

Abstract. Let F be a finite field of characteristic p andK a field which contains a primitive
pth root of unity and charK 6= p. Suppose that a classical group G acts on the F -vector
space V . Then it can induce the actions on the vector space V ⊕V and on the group algebra
K[V ⊕ V ], respectively. In this paper we determine the structure of G-invariant ideals of
the group algebra K[V ⊕ V ], and establish the relationship between the invariant ideals of
K[V ] and the vector invariant ideals of K[V ⊕ V ], if G is a unitary group or orthogonal
group. Combining the results obtained by Nan and Zeng (2013), we solve the problem of
vector invariant ideals for all classical groups over finite fields.
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1. Introduction

Let V be an abelian group, G a group of automorphisms of V , and K a field.

Then G can act on the group algebra K[V ]. It is an interesting problem to deter-

mine all G-invariant ideals of K[V ]. The motivation for this actually arises from

the study of the lattice of ideals in group algebras of certain infinite locally finite

groups. A natural special case of the problem occurs if V is a finite-dimensional

vector space over a field F with charF 6= charK. In this case Brookes and Evans

in [1] proved that if F is infinite then the GLn(F )-invariant ideals of K[V ] are only

0, K[V ] and the augmentation ideal ω(V ;V ), while if F is finite then there is an

The research has been supported by the Scientific Research Program Funded by Shaanxi
Provincial Education Department (Program No. 16JK1789), and the National Natural
Science Foundation of China (Program No. 11371343).
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additional GLn(F )-invariant ideal generated by
∑

a∈V a. In [3], [8], the authors de-

scribed the structure of G-invariant ideals by the augmentation ideals where G is the

multiplicative group of a field or a division ring. They showed that the set of these

G-invariant ideals is Noetherian. Passman in [6], [7] investigated the F ∗-invariant

ideals of the group algebra K[V ] under the torus action of F ∗ and proved that every

F ∗-invariant ideal of K[V ] is uniquely a finite irredundant intersection of augmenta-

tion ideals. In particular, K[V ] has exactly four F ∗-invariant proper ideals of K[V ]

if V is the direct sum of two 1-dimensional vector spaces. The articles [4], [5] were

concerned with the simple linear groups and the finitary version of the classical linear

groups. Also, these groups act on only a single vector space V and the G-invariant

ideals are considered on the group algebra K[V ]. Richman in [9], [11], [10] studied

the ring of vector invariantsK[mV ]G with the diagonal action of G on the coordinate

ring of
m⊕

V , and determined the relationship between the ring of vector invariants

K[
m⊕

V ]G and the ring of invariants K[V ]G. Thus, it is natural to ask what is the

structure of the G-vector invariant ideals of the group algebra K[
m⊕

V ], and what

is the relationship between the vector invariant ideals of K[
m⊕

V ] and the invariant

ideals of K[V ].

Nan and Zeng in [2] studied the vector invariant ideals of the group algebra

K[V ⊕ V ] under the action of the symplectic group. The present paper determines

the structure of the vector invariant ideals under the actions of unitary groups (or

orthogonal groups) and establishes the relationship between the invariant ideals and

the vector invariant ideals, which can be viewed as a continuation of the work [2].

Combining the results obtained in [2], we solve the problem of vector invariant ideals

for all classical groups over finite fields.

Our paper is arranged as follows. Section 2 investigates the structure of the

invariant ideals of the group algebra K[V ] and of the vector invariant ideals of

the group algebra K[V ⊕ V ] under the actions of unitary groups. In Section 3,

we establish the relationship between the invariant ideals of K[V ] and the vector

invariant ideals of K[V ⊕V ] under the actions of unitary groups using augmentation

ideals. In Sections 4 and 5, we study the structure of the vector invariant ideals

under the actions of orthogonal groups over finite fields of odd characteristic and

characteristic 2, respectively.

2. Invariant ideals under the actions of unitary groups

In this section, we study the structure of G-invariant ideals under the actions of

unitary groups. We first recall some relevant material about unitary groups in [12].

Throughout this paper, p will always be a prime number and q a power of p. Let
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us denote by Fq2 the finite field with q2 elements. It is well known that Fq2 has

an involutive automorphism a 7→ a = aq, and the fixed field of this automorphism

is Fq. Let A = (aik)16i6m,16k6n be an m × n matrix over Fq2 . Define the matrix

A = (aik)16i6m,16k6n where aik = aik
q by the involutive automorphism. Two n×n

matrices A and B over Fq2 are said to be cogredient, if there is an nonsingular matrix

Q such that QAQ
T
= B, where Q

T
denotes the transpose of Q. It is easy to verify

that cogredient matrices over Fq2 have the same rank. An n× n matrix H is called

Hermitian if H
T
= H .

IfH is a nonsingular Hermitian matrix over Fq2 , then it is necessarily cogredient to

the n×n identity matrix I(n), see [12], Theorem 5.2, Corollary 5.4, and so cogredient

to
(

0 I(ν)

I(ν) 0

)
or




0 I(ν)

I(ν) 0

1




where n = 2ν is even or n = 2ν + 1 is odd, respectively. In this section, we suppose

that ν > 2.

Let H be an n × n nonsingular Hermitian matrix over Fq2 . A matrix A is called

a unitary matrix with respect to H if AHA
T

= H. The set of all such unitary

matrices forms a group with respect to matrix multiplication, called the unitary

group of degree n with respect to H and denoted by Un(Fq2 , H), i.e.,

Un(Fq2 , H) = {A ∈ GLn(Fq2) : AHA′ = H}.

Suppose that Un(Fq2 , H) acts on the Fq2 -vector space F
(n)
q2 by

(x)A = xA−1T , x ∈ F
(n)
q2 , A ∈ Un(Fq2 , H).

Then it can induce an action on the vector space F
(n)
q2 ⊕ F

(n)
q2 , defined by

(x, y)A = (xA−1T , yA−1T), x, y ∈ F
(n)
q2 , A ∈ Un(Fq2 , H).

For convenience, we define

G =

{
(A) =

(
A 0

0 A

)
: A ∈ Un(Fq2 , H)

}
.

The action of G on the vector space F
(n)
q2 ⊕ F

(n)
q2 coincides with the action of

Un(Fq2 , H) on F
(n)
q2 ⊕ F

(n)
q2 , i.e.,

(x, y)
(A)

= (xA−1T , yA−1T), x, y ∈ F
(n)
q2 , (A) ∈ G.
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And so G can act on the group algebra K[F
(n)
q2 ⊕ F

(n)
q2 ] by

(∑

i,j

aij(xi, yj)

)(A)

=
∑

i,j

aij(xi, yj)
(A)

,

where K is a field of characteristic different from p and K contains ε, a primitive

pth root of unity.

To investigate the structure of invariant ideals, the following results given in [6]

are necessary. Since Fq2 is a field with charFq2 = p > 0, it follows that any finite-

dimensional Fq2 -vector space V is additively an elementary abelian p-group.

Lemma 2.1 ([6], Lemma 3.1). Let V be a finite elementary abelian p-group and

let G be a group of automorphisms of V .

(1) The group algebra K[V ] is semisimple. Indeed, it is a direct sum of |V | copies

of K and every ideal is uniquely an intersection of maximal ideals.

(2) The maximal ideals of K[V ] are in a one-to-one correspondence with the linear

characters χ : V → K∗. To be precise, the ideal corresponding to χ is the kernel

of the natural algebra extension χ : K[V ] → K.

(3) G permutes the linear characters of V by defining χg(x) = χ(xg−1

) for all

g ∈ G and x ∈ V . This action corresponds to the permutation action of G on

the maximal ideals of K[V ].

(4) Every G-invariant ideal of K[V ] is uniquely an intersection of maximal G-

invariant ideals of K[V ]. The latter are precisely the intersections of G-orbits

of maximal ideals of K[V ].

(5) χg = χ if and only if x−1xg−1

∈ Kerχ for all x ∈ V .

Lemma 2.2 ([6], Lemma 2.4). Let E ⊇ F be fields with |E : F | < ∞ and let

λ : E → F be a nonzero F -linear function. Then every F -linear function from E

to F is uniquely of the form λa for a ∈ E, where λa(x) = λ(ax).

We now briefly recall some facts and notation concerning linear characters and

kernel ideals in [6]. Let GF (p) denote the prime subfield of Fq2 and let µ : Fq2 →

GF (p) be a nonzero GF (p)-linear function. Then, by Lemma 2.2, all linear functions

from Fq2 to GF (p) are of the form µa : Fq2 → GF (p), where a ∈ Fq2 and µa(x) =

µ(ax). Hence all characters χ : Fq2 → K∗ are given by

χa(x) = εµa(x) = εµ(ax), a, x ∈ Fq2

where ε is a primitive pth root of unity in K. Furthermore, the characters from F
(n)
q2

to K∗ are necessarily products χ1χ2 . . . χn where each χi is a character from Fq2
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to K∗, so they are all of the form

χα(x) =

n∏

i=1

χai
(xi) = ε

∑
n
i=1 µ(aixi) = εµ(

∑
n
i=1 aixi) = εµ(αx

T), α, x ∈ F
(n)
q2

where αxT =
n∑

i=1

aixi denotes the usual dot product of two vectors α = (a1, . . . , an)

and x = (x1, . . . , xn). These characters in turn extend naturally to the K-algebra

homomorphisms χα : K[F
(n)
q2 ] → K and their kernels Iα = Kerχα are precisely the

set of maximal ideals of the group algebra K[F
(n)
q2 ].

Note that the following result from [12] is very important for us to study the

G-orbits.

Lemma 2.3 ([12], Lemma 5.12). Let P1 and P2 be two m × 2ν matrices of

rank m. Then there exists an element T ∈ Un(Fq2 , H) such that P1 = P2T if and

only if P1HP1
T
= P2HP2

T
.

Lemma 2.4. Let Fq2 be a field with q
2 elements, where q is a power of a prime p.

Suppose that Un(Fq2 , H) acts on the Fq2 -vector space F
(n)
q2 . Then for any 0 6= α,

β ∈ F
(n)
q2 , the maximal ideals Iα and Iβ of K[F

(n)
q2 ] are in the same orbit if and only

if the unitary dot products are equal, i.e. αHαT = βHβ
T
= t, t ∈ Fq.

P r o o f. For any A ∈ Un(Fq2 , H) we have

χA
α (x) = χα(x

A−1

) = χα(xA
T) = εµ(α(xA

T)T) = εµ(αAxT) = χαA(x).

Hence

(2.1) IAα = IαA.

Suppose now that the maximal ideals Iα and Iβ are in the same orbit. Then there

exists an A ∈ Un(Fq2 , H) such that β = αA due to the equality (2.1). Further, we

have

βHβ
T
= (αA)H(αA)

T
= α(AHA

T
)αT = αHαT.

Let t = αHαT. Then t
T
= αHαT

T
= αH

T
αT = αHαT = t. Since t ∈ Fq2 , it follows

that t
T
= t and so t = t. Hence t ∈ Fq.

Conversely, if αHαT = βHβ
T
, then by Lemma 2.3 there exists an A ∈ Un(Fq2 , H)

such that β = αA. This implies that IAα = IαA = Iβ . Thus Iα and Iβ are in the same

orbit. �
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Let

M(m, r) =

(
I(r)

0(m−r)

)
.

We denote by n(m, r;n) the number of m× n matrices P of rank m which satisfy

PHP
T
= M(m, r).

Lemma 2.5 (Anzahl theorem, [12], Lemma 5.18). Let 2r 6 2m 6 n+ r. Then

n(m, r;n) = qrn+(m−r)(m−r−1)−r(r+1)/2
n∏

i=n+r−2m+1

(qi − (−1)i).

Proposition 2.6. Let Fq2 be a field with q2 elements, where q is a power of

a prime p. Suppose that Un(Fq2 , H) acts on the Fq2 -vector space F
(n)
q2 . Then there

are exactly (q + 1) of Un(Fq2 , H)-orbits of maximal ideals of K[F
(n)
q2 ], i.e.,

Ω0 = {I0}, Ωt = {Iα : 0 6= α ∈ F
(n)
q2 , αHαT = t}, t ∈ Fq.

P r o o f. First, it is easy to see that Ω0 and Ωt, t ∈ Fq are distinct Un(Fq2 , H)

-orbits of maximal ideals by Lemma 2.4.

We next show that every orbit Ωt is nonempty. By Lemma 2.5, if t 6= 0, then

the number of α is n(1, 1;n) = qn−1(qn − (−1)n). If t = 0, then the number of α is

n(1, 0;n) = (qn−1 − (−1)n−1)(qn − (−1)n). Thus Ωt 6= ∅, and this implies that there

are exactly (q + 1) of Un(Fq2 , H) -orbits of maximal ideals of K[F
(n)
q2 ]. �

Remark 1. We define I0 , I0, It ,
⋂

Iα∈Ωt

Iα, t ∈ Fq and Q1 , {I0}∪{It : t ∈ Fq}.

We shall now prove the first main result of this paper.

Theorem 2.7. Let Fq2 be a field with q
2 elements, where q is a power of a prime p.

Suppose that Un(Fq2 , H) acts on the Fq2 -vector space F
(n)
q2 . Then every Un(Fq2 , H)-

invariant ideal I of K[F
(n)
q2 ] is an intersection of finitely many ideals in the set Q1

(the same notation as in Remark 1), i.e. I =
⋂

I′∈Q′

1

I ′ where Q′

1 is a subset of Q1.

P r o o f. By Lemma 2.1 (4), we know that the maximal Un(Fq2 , H)-invariant

ideals of K[F
(n)
q2 ] are precisely the intersections of Un(Fq2 , H)-orbits of maximal

ideals. Then it follows by Proposition 2.6 that Q1 is the set of all maximal

Un(Fq2 , H)-invariant ideals ofK[F
(n)
q2 ]. Again by Lemma 2.1 (4), we deduce that each

Un(Fq2 , H)-invariant ideal is the intersection of finitely many maximal Un(Fq2 , H)-

invariant ideals in Q1, i.e., that I =
⋂

I′∈Q′

1

I ′ where Q′

1 (6 Q1) is a subset of Q1. �
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Next, we shall study the structure of G-vector invariant ideals of the group algebra

K[F
(n)
q2 ⊕F

(n)
q2 ]. By a similar argument (on page 4) we can show that the characters

from F
(n)
q2 ⊕ F

(n)
q2 to K

∗ are all of the form

χ(α,β)(x, y) = εµ(αx
T+βyT), α, β, x, y ∈ F

(n)
q2 .

These characters can be extended to the K-algebra homomorphisms

χ(α,β) : K[F
(n)
q2 ⊕ F

(n)
q2 ] → K

and their kernels I(α,β) = Kerχ(α,β) are precisely the set of maximal ideals of

K[F
(n)
q2 ⊕ F

(n)
q2 ].

Lemma 2.8. Let Fq2 be a field with q
2 elements, where q is a power of a prime p.

Suppose that

G =

{
(A) =

(
A 0

0 A

)
: A ∈ Un(Fq2 , H)

}

acts on the vector space F
(n)
q2 ⊕ F

(n)
q2 . If two maximal ideals I(α,β) and I(γ,δ) of

K[F
(n)
q2 ⊕ F

(n)
q2 ] are in the same orbit, then the unitary dot products are equal,

i.e. that αHβ
T
= γHδ

T
.

P r o o f. For any (A) ∈ G we have

χ
(A)
(α,β)(x, y) = χ(α,β)((x, y)

(A)−1

) = χ(α,β)(xA
T

, yA
T

)

= εµ(α(xA
T
)
T
+β(yA

T
)
T
) = εµ(αAxT+βAyT) = χ(αA,βA)(x, y).

Hence

(2.2) I
(A)
(α,β) = I(αA,βA).

Since the unitary dot product of αA and βA is

αAH(βA)
T
= αAHA

T
β
T
= αHβ

T
;

by combining the equality (2.2), the required result follows. �
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Lemma 2.9. Let Fq2 be a field with q
2 elements, where q is a power of a prime p.

Let

G =

{
(A) =

(
A 0

0 A

)
: A ∈ Un(Fq2 , H)

}

act on the vector space F
(n)
q2 ⊕F

(n)
q2 . Suppose that 0 6= α, β, γ, δ ∈ F

(n)
q2 . If the vectors

α and β are linearly dependent, i.e., β = kα for some k ∈ Fq2 , then the maximal

ideals I(α,β) and I(γ,δ) of K[F
(n)
q2 ⊕ F

(n)
q2 ] are in the same orbit if and only if δ = kγ

and αHαT = γHγT.

P r o o f. Suppose that the maximal ideals I(α,β) and I(γ,δ) are in the same orbit.

By the equality (2.2), there exists an (A) ∈ G such that γ = αA, δ = βA. Since

β = kα, we have

δ = βA = kαA = kγ and γHγT = αAHA
T
αT = αHαT.

Conversely, if αHαT = γHγT then by Lemma 2.3 there exists an A ∈ Un(Fq2 , H)

such that γ = αA, and so δ = kγ = kαA = βA. It follows that

I
(A)
(α,β) = I(αA,βA) = I(γ,δ).

�

Lemma 2.10. Let Fq2 be a field with q
2 elements, where q is a power of a prime p.

Let

G =

{
(A) =

(
A 0

0 A

)
: A ∈ Un(Fq2 , H)

}

act on the vector space F
(n)
q2 ⊕ F

(n)
q2 . Suppose that 0 6= α, β, γ, δ ∈ F

(n)
q2 . If the

vectors α and β are linearly independent, then the maximal ideals I(α,β) and I(γ,δ) of

K[F
(n)
q2 ⊕ F

(n)
q2 ] are in the same orbit if and only if γ and δ are linearly independent

and αHαT = γHγT, βHβ
T
= δHδ

T
, αHβ

T
= γHδ

T
.

P r o o f. Suppose first that the maximal ideals I(α,β) and I(γ,δ) are in the same

orbit. Then, by the equality (2.2), there exists an A ∈ Un(Fq2 , H) such that γ = αA,

δ = βA. It is easy to verify that

αHαT = γHγT, βHβ
T
= δHδ

T
and αHβ

T
= γHδ

T
.

If γ and δ are linearly dependent, then α and β are also linearly dependent by

Lemma 2.9, a contradiction.
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Conversely, suppose that γ and δ are linearly independent and αHαT = γHγT,

βHβ
T
= δHδ

T
, αHβ

T
= γHδ

T
. Then

( α

β

)
and

( γ

δ

)
are two 2×n matrices of rank 2.

Since (
α

β

)
H

(
α

β

)T

=

(
αHαT αHβ

T

βHαT βHβ
T

)

and (
γ

δ

)
H

(
γ

δ

)T

=

(
γHγT γHδ

T

δHγT δHδ
T

)
,

we obtain that (
α

β

)
H

(
α

β

)T

=

(
γ

δ

)
H

(
γ

δ

)T

.

Hence, by Lemma 2.3, there exists an A ∈ Un(Fq2 , H) such that

(
γ

δ

)
=

(
α

β

)
A

and so

I
(A)
(α,β) = I(αA,βA) = I(γ,δ).

�

By the previous lemmas, we can describe a classification of the G-orbits of maximal

ideals of K[F
(n)
q2 ⊕ F

(n)
q2 ].

Proposition 2.11. Let Fq2 be a field with q2 elements, where q is a power of

a prime p. Suppose that

G =

{
(A) =

(
A 0

0 A

)
: A ∈ Un(Fq2 , H)

}

acts on the vector space F
(n)
q2 ⊕F

(n)
q2 . Then there are exactly (q

4+q3+q+1) G-orbits

of maximal ideals of K[F
(n)
q2 ⊕ F

(n)
q2 ], i.e.,

Ψ0 = {I(0,0)};

Ψ0r
t = {I(α,0) : 0 6= α ∈ F

(n)
q2 , αHαT = t}, t ∈ Fq;

Ψ0l
t = {I(0,β) : 0 6= β ∈ F

(n)
q2 , βHβ

T
= t}, t ∈ Fq;

Ψt,k = {I(α,β) : 0 6= α ∈ F
(n)
q2 , β = kα, αHαT = t}, t ∈ Fq , k ∈ F ∗

q2 ;

Ψt,t′,t′′ = {I(α,β) : 0 6= α ∈ F
(n)
q2 , β 6= kα, k ∈ Fq2 , αHβ

T
= t, αHαT = t′,

βHβ
T
= t′′}, t ∈ Fq2 , t′, t′′ ∈ Fq.
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P r o o f. For any α, β ∈ F
(n)
q2 , we now distinguish four cases:

Case 1. α = β = 0. It is obvious that Ψ0 is a G-orbit.

Case 2. α 6= 0, β = 0. Ψ0r
t is a G-orbit by the equality (2.1) and Proposition 2.6.

Case 3. α = 0, β 6= 0. It is similar to Case 2.

Case 4. α 6= 0, β 6= 0. Consider the following two subcases:

Subcase 4.1. β = kα for some k ∈ F ∗

q2 . Ψt,k is a G-orbit by Lemma 2.9.

Subcase 4.2. β 6= kα for all k ∈ Fq2 . Ψt,t′,t′′ is a G-orbit by Lemma 2.10.

Then it follows that the above sets Ψ are all the G-orbits.

In the sequel we shall prove that the above orbits are all nonempty. We first

consider the G-orbits Ψt,t′,t′′ , t ∈ Fq2 , t
′, t′′ ∈ Fq . If I(α,β) ∈ Ψt,t′,t′′ , then

(2.3)

(
α

β

)
H

(
α

β

)T

=

(
αHαT αHβ

T

βHαT βHβ
T

)
=

(
t′ t

t t′′

)
,

and so
( α

β

)
H
( α

β

)T
is a 2× 2 Hermitian matrix. Thus it is cogredient to one of

H0 =

(
0 0

0 0

)
, H1 =

(
0 0

0 1

)
and H2 =

(
0 1

1 0

)
.

In other words, there exists a nonsingular matrix C such that C
( α

β

)
H
( α

β

)T
C

T
is

equal to one of H0, H1 and H2. By Lemma 2.5, it follows that the numbers ni,

i = 0, 1, 2, of matrices Di which satisfy

DiHDi
T
= Hi

are n0 = n(2, 0;n) =
n∏

i=n−3

(qi − (−1)i)q2, n1 = n(2, 1;n) =
n∏

i=n−2

(qi − (−1)i)qn−1

and n2 = n(2, 2;n) =
n∏

i=n−1

(qi − (−1)i)q2n−3, respectively. Let
( α

β

)
= C−1Di. Then

there is a one-one correspondence between
( α

β

)
and Di, and so the numbers of (α, β)

satisfying the equality (2.3) are n0, n1 and n2, respectively. Since ν > 2, n > 4, the

numbers ni, i = 0, 1, 2, are all larger than q2. Hence there exists at least one (α, β)

satisfying the equality (2.3) and β 6= kα for all k ∈ Fq2 . Consequently, the orbits

Ψt,t′,t′′ , t ∈ Fq2 , t
′, t′′ ∈ Fq are nonempty.

Similarly, we can show that the remaining orbits are all nonempty.

Then it follows that there are exactly (q4 + q3 + q+1) G-orbits of maximal ideals

of K[F
(n)
q2 ⊕ F

(n)
q2 ]. �
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Remark 2. For convenience, we define

I0,0 , I(0,0);

I0rt ,
⋂

I(α,β)∈Ψ0r
t

I(α,β), t ∈ Fq; It,k ,
⋂

I(α,β)∈Ψt,k

I(α,β), t ∈ Fq, k ∈ F ∗

q2 ;

I0lt ,
⋂

I(α,β)∈Ψ
0l
t

I(α,β), t ∈ Fq; It,t′,t′′ ,
⋂

I(α,β)∈Ψt,t′,t′′

I(α,β), t ∈ Fq2 , t′, t′′ ∈ Fq;

Q2 , {I0,0, I
0r
t , t ∈ Fq, I

0l
t , t ∈ Fq, It,k, t ∈ Fq, k ∈ F ∗

q2 , It,t′,t′′ , t ∈ Fq2 , t
′, t′′ ∈ Fq}.

By an argument similar to that in Theorem 2.7, from Lemma 2.1 (4) and Propo-

sition 2.11 we deduce one of the main results of this paper.

Theorem 2.12. Let Fq2 be a field with q2 elements, where q is a power of

a prime p. Suppose that

G =

{
(A) =

(
A 0

0 A

)
: A ∈ Un(Fq2 , H)

}

acts on the vector space F
(n)
q2 ⊕F

(n)
q2 . Then everyG-invariant ideal I of K[F

(n)
q2 ⊕F

(n)
q2 ]

is an intersection of finitely many ideals in the set Q2 (the same notation as in

Remark 2), i.e., I =
⋂

I′∈Q′

2

I ′ where Q′

2 is a subset of Q2.

3. Relationship

So far, we have investigated the structure of invariant ideals of the group algebra

K[F
(n)
q2 ] and of vector invariant ideals of the group algebraK[F

(n)
q2 ⊕F

(n)
q2 ] in Section 2.

In this section we shall establish the relationship between invariant ideals of K[F
(n)
q2 ]

and vector invariant ideals of K[F
(n)
q2 ⊕ F

(n)
q2 ] using augmentation ideals.

Let V be an abelian group, viewed multiplicatively, and let K[V ] denote its group

algebra over the field K. If U is a subgroup of V , then there exists a natural

epimorphism ϕ : K[V ] → K[V/U ]. Let us denote the kernel of ϕ by ω(U ;V ) and

call it the augmentation ideal of U in V .

We first compute the maximal ideals by characters, and then describe the corre-

sponding augmentation ideals. Finally, by an argument similar to that in Section 3

of [2] we may show the following two lemmas.
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Lemma 3.1. Let Fq2 be a field with q
2 elements, where q is a power of a prime p.

Let Un(Fq2 , H) act on the Fq2 -vector space F
(n)
q2 . Suppose that K is a field with

charK 6= p and K contains a primitive pth root of unity ε. Then I0 = ω(F
(n)
q2 ;F

(n)
q2 )

and It =
{∑

i aixi :
∑

i aiε
µ(αxi

T) = 0, for all 0 6= α ∈ F
(n)
q2 and αHαT = t

}
, t ∈ Fq.

Lemma 3.2. Let Fq2 be a field with q
2 elements, where q is a power of a prime p.

Let

G =

{
(A) =

(
A 0

0 A

)
: A ∈ Un(Fq2 , H)

}

act on the vector space F
(n)
q2 ⊕ F

(n)
q2 . Suppose that K is a field with charK 6= p and

K contains a primitive pth root of unity ε. Then

I0,0 = ω(F
(n)
q2 ⊕ F

(n)
q2 ; F

(n)
q2 ⊕ F

(n)
q2 ),

I0rt =

{∑

i,j

aij(xi, yj) :
∑

i,j

aijε
µ(αxi

T) = 0, ∀ 0 6= α ∈ F
(n)
q2 and αHαT = t

}
, t ∈ Fq,

I0lt =

{∑

i,j

aij(xi, yj) :
∑

i,j

aijε
µ(βyj

T) = 0, ∀ 0 6= β ∈ F
(n)
q2 and βHβ

T
= t

}
, t ∈ Fq,

⋂

t∈Fq

I0rt
⋂

I0,0 = ω(0⊕ F
(n)
q2 ; F

(n)
q2 ⊕ F

(n)
q2 )

and
⋂

t∈Fq

I0lt
⋂

I0,0 = ω(F
(n)
q2 ⊕ 0; F

(n)
q2 ⊕ F

(n)
q2 ).

Let
π : K[F

(n)
q2 ⊕ F

(n)
q2 ] → K[F

(n)
q2 ],

∑

i,j

aij(xi, yj) 7→
∑

i,j

aijxi

be the natural projection. The next theorem establishes the relationship between

invariant ideals of K[F
(n)
q2 ] and vector invariant ideals of K[F

(n)
q2 ⊕ F

(n)
q2 ] by the

natural projection π.

Theorem 3.3. Let Fq2 be a finite field of characteristic p. Let Un(Fq2 , H) act on

the vector space F
(n)
q2 and

G =

{
(A) =

(
A 0

0 A

)
: A ∈ Un(Fq2 , H)

}

act on the vector space F
(n)
q2 ⊕ F

(n)
q2 . Then the invariant ideals of K[F

(n)
q2 ] are pre-

cisely the intersections of the natural projections of some vector invariant ideals of

K[F
(n)
q2 ⊕ F

(n)
q2 ].
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P r o o f. By Lemma 3.1 and Lemma 3.2, we have

π(I0,0) = I0, π(I0rt ) = It.

Then, by Theorem 2.7, every Un(Fq2 , H)-invariant ideal I must be of the form

I =
⋂

It′∈Q′

1, Q
′

16Q1

It′ =
⋂

I0r
t′

∈Q′

2, Q
′

26Q2

π(I0rt′ )

where Q′

2 corresponds to Q′

1 (I
0r
t′ → It′). If there exists I0 in the above equation,

we need only add π(I0,0). Therefore the invariant ideals of K[F
(n)
q2 ] are precisely the

intersections of the natural projections of some vector invariant ideals of K[F
(n)
q2 ⊕

F
(n)
q2 ]. �

4. Orthogonal groups over finite fields of odd characteristic

This section is concerned with the orthogonal groups over finite fields of odd

characteristic. We first recall some relevant material in [12]. Suppose that Fq is

a finite field of odd characteristic p. If S is an n× n nonsingular symmetric matrix

such that ST = S over Fq, then S is necessarily cogredient to one of the following

four forms:

S2ν =

(
0 I(ν)

I(ν) 0

)
, S2ν+1,1 =




0 I(ν)

I(ν) 0

1


 ,

S2ν+1,z =




0 I(ν)

I(ν) 0

z


 , S2ν+2 =




0 I(ν)

I(ν) 0

1

−z


 ,

where z is a fixed non-square element of Fq \ {0} and n = 2ν, 2ν + 1, 2ν + 1 and

2ν + 2, respectively. In this section, we suppose that ν > 2.

Let S be an n × n nonsingular symmetric matrix over Fq. A matrix A is called

an orthogonal matrix with respect to S if ASAT = S. The set of all such orthogonal

matrices forms a group with respect to matrix multiplication, called the orthogonal

group of degree n with respect to S over Fq and is denoted by On(Fq, S), i.e.,

On(Fq, S) = {A ∈ GLn(Fq) : ASAT = S}.
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Suppose that On(Fq, S) acts on the Fq-vector space F
(n)
q by

(x)A = xA−1T , x ∈ F (n)
q , A ∈ On(Fq, S).

Then it can induce an action on the vector space F
(n)
q ⊕ F

(n)
q , defined by

(x, y)A = (xA−1T , yA−1T), x, y ∈ F (n)
q , A ∈ On(Fq , S).

For convenience, we define

Ĝ =

{
(A) =

(
A 0

0 A

)
: A ∈ On(Fq , S)

}
.

The action of Ĝ on the vector space F
(n)
q ⊕F

(n)
q coincides with the action ofOn(Fq, S)

on F
(n)
q ⊕ F

(n)
q , i.e.,

(x, y)
(A)

= (xA−1T , yA−1T), x, y ∈ F (n)
q , (A) ∈ Ĝ.

And so Ĝ can act on the group algebra K[F
(n)
q ⊕ F

(n)
q ] by

(∑

i,j

aij(xi, yj)

)(A)

=
∑

i,j

aij(xi, yj)
(A)

,

where K is a field of characteristic different from p and K contains ε, a primitive

pth root of unity.

The following propositions and theorems will describe the structure of On(Fq , S)-

invariant ideals of K[F
(n)
q ] and Ĝ-vector invariant ideals of K[F

(n)
q ⊕F

(n)
q ], and also

establish the relationship between them. The proofs of these results are similar to

those of the corresponding results in Section 2 and Section 3, and thus omitted.

Proposition 4.1. Let Fq be a field with q elements, where q is a power of an odd

prime p. Suppose that On(Fq , S) acts on the Fq-vector space F
(n)
q . Then there are

(q + 1) of On(Fq , S)-orbits of maximal ideals of K[F
(n)
q ], i.e.,

Ω̂0 = {I0}, Ω̂t = {Iα : 0 6= α ∈ F (n)
q , αSαT = t}, t ∈ Fq.

Remark 3. We define I0 , I0, It ,
⋂

Iα∈Ω̂t

Iα, t ∈ Fq and Q̂1 , {I0}∪{It : t ∈ Fq}.

1072



Theorem 4.2. Let Fq be a field with q elements, where q is a power of an odd

prime p. Suppose that On(Fq , S) acts on the Fq-vector space F
(n)
q . Then every

On(Fq, S)-invariant ideal I of K[F
(n)
q ] is an intersection of finitely many ideals in the

set Q̂1 (the same notation as in Remark 3), i.e., I =
⋂

I′∈Q̂′

1

I ′ where Q̂′

1 is a subset

of Q̂1.

Proposition 4.3. Let Fq be a field with q elements, where q is a power of an odd

prime p. Suppose that

Ĝ =

{
(A) =

(
A 0

0 A

)
: A ∈ On(Fq, S)

}

acts on the vector space F
(n)
q ⊕ F

(n)
q . Then there are (q3 + q2 + q + 1) Ĝ -orbits of

the maximal ideals of K[F
(n)
q ⊕ F

(n)
q ], i.e.,

Ψ̂0 = {I(0,0)};

Ψ̂0r
t = {I(α,0) : 0 6= α ∈ F (n)

q , αSαT = t}, t ∈ Fq;

Ψ̂0l
t = {I(0,β) : 0 6= β ∈ F (n)

q , βSβT = t}, t ∈ Fq ;

Ψ̂t,k = {I(α,β) : 0 6= α ∈ F (n)
q , β = kα, αSαT = t}, t ∈ Fq, k ∈ F ∗

q ;

Ψ̂t,t′,t′′ = {I(α,β) : 0 6= α ∈ F (n)
q , β 6= kα, k ∈ Fq, αSβT = t, αSαT = t′,

βSβT = t′′}, t, t′, t′′ ∈ Fq.

Remark 4. For convenience, we define

I0 , I(0,0);

I0rt ,
⋂

I(α,β)∈Ψ̂0r
t

I(α,β), t ∈ Fq;

It,k ,
⋂

I(α,β)∈Ψ̂t,k

I(α,β), t ∈ Fq, k ∈ F ∗

q ;

I0lt ,
⋂

I(α,β)∈Ψ̂
0l
t

I(α,β), t ∈ Fq;

It,t′,t′′ ,
⋂

I(α,β)∈Ψ̂t,t′,t′′

I(α,β), t, t′, t′′ ∈ Fq;

Q̂2 , {I0, I0rt , t ∈ Fq, I0lt , t ∈ Fq, It,k, t ∈ Fq , k ∈ F ∗

q , It,t′,t′′ , t, t′, t′′ ∈ Fq}.
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Theorem 4.4. Let Fq be a field with q elements, where q is a power of an odd

prime p. Suppose that

Ĝ =

{
(A) =

(
A 0

0 A

)
: A ∈ On(Fq, S)

}

acts on the vector space F
(n)
q ⊕F

(n)
q . Then every Ĝ-invariant ideal I of K[F

(n)
q ⊕F

(n)
q ]

is an intersection of finitely many ideals in the set Q̂2 (the same notation as in

Remark 4), i.e., I =
⋂

I′∈Q̂′

2

I ′ where Q̂′

2 is a subset of Q̂2.

Theorem 4.5. Let F q be a field of odd characteristic. Suppose that On(Fq, S)

acts on the Fq -vector space F
(n)
q and

Ĝ =

{
(A) =

(
A 0

0 A

)
: A ∈ On(Fq, S)

}

acts on the vector space F
(n)
q ⊕ F

(n)
q . Then the invariant ideals of K[F

(n)
q ] are

precisely the intersections of the natural projections of some vector invariant ideals

of K[F
(n)
q ⊕ F

(n)
q ].

5. Orthogonal groups over finite fields of characteristic 2

This section is concerned with orthogonal groups over finite fields of character-

istic 2. Recall some relevant material in [12]. Suppose that Fq is a finite field of

characteristic 2. Then we have F 2
q = Fq. An n× n matrix D = (dij) is called alter-

nate if dij = dji for all i 6= j, 1 6 i, j 6 n and dii = 0 for all i = 1, 2, . . . , n. Denote

the set of all n× n alternate matrices over Fq by Kn. Two n× n matrices A and B

over Fq are said to be congruent mod Kn if A + B ∈ Kn, which is usually denoted

by

A ≡ B (mod Kn)

or simply, A ≡ B. Two n×n matrices A and B over Fq are said to be ‘cogredient’, if

there is a nonsingular matrix Q such that QAQT ≡ B. A matrix A is called definite

if xAxT = 0, where x ∈ F
(n)
q implies x = 0.

By [12], Theorem 1.30, we know that any n× n matrix R over Fq is ‘cogredient’

to a matrix of the form

M =




A I(p)

B

C

0


 ,
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where A and B are p×p diagonal matrices, and C is a d×d definite matrix. Moreover,

p and d are uniquely determined by R. An n × n matrix R is said to be regular if

n = 2p+ d.

Let R be an n × n regular matrix over Fq. A matrix A is called an orthogonal

matrix with respect to R if ARAT ≡ R. The set of all such orthogonal matrices

forms a group with respect to matrix multiplication, called the orthogonal group of

degree n with respect to R over Fq, and denoted by On(Fq,R), i.e.,

On(Fq,R) = {A ∈ GLn(Fq) : ARAT ≡ R}.

Suppose that On(Fq, R) acts on the Fq -vector space F
(n)
q by

(x)
A
= xA−1T , x ∈ F (n)

q , A ∈ On(Fq, R).

Then it can induce an action on the vector space F
(n)
q ⊕ F

(n)
q , defined by

(x, y)
A
= (xA−1T , yA−1T), x, y ∈ F (n)

q , A ∈ On(Fq , R).

For convenience, we define

G̃ =

{
(A) =

(
A 0

0 A

)
: A ∈ On(Fq , R)

}
.

The action of G̃ on the vector space F
(n)
q ⊕F

(n)
q coincides with the action of On(Fq, R)

on F
(n)
q ⊕ F

(n)
q , i.e.,

(x, y)
(A)

= (xA−1T , yA−1T), x, y ∈ F (n)
q , (A) ∈ G̃.

And so G̃ can act on the group algebra K[F
(n)
q ⊕ F

(n)
q ] by

(∑

i,j

aij(xi, yj)

)(A)

=
∑

i,j

aij(xi, yj)
(A)

,

where K is a field of characteristic different from 2 and K contains ε, a primitive

2nd root of unity.

The following propositions and theorems will describe the structure of On(Fq , R)-

invariant ideals of K[F
(n)
q ] and G̃-vector invariant ideals of K[F

(n)
q ⊕F

(n)
q ], and also

establish the relationship between them. The proofs of these results are similar to

those of the corresponding results in Section 2 and Section 3, and thus omitted.
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Proposition 5.1. Let Fq be a finite field of characteristic 2. Suppose that

On(Fq, R) acts on the Fq-vector space F
(n)
q . Then there are (q+1) On(Fq, R)-orbits

of maximal ideals of K[F
(n)
q ], i.e., Ω̃0 = {I0}, Ω̃t = {Iα : 0 6= α ∈ F

(n)
q , αRαT ≡ t},

t ∈ Fq .

Remark 5. We define I0 , I0, It ,
⋂

Iα∈Ω̃t

Iα, t ∈ Fq and Q̃1 , {I0}∪{It : t ∈ Fq}.

Theorem 5.2. Let Fq be a finite field of characteristic 2. Suppose that On(Fq, R)

acts on the Fq -vector space F
(n)
q . Then every On(Fq, R)-invariant ideal I of K[F

(n)
q ]

is an intersection of finitely many ideals in the set Q̃1 (the same notation as in

Remark 5), i.e., I =
⋂

I′∈Q̃′

1

I ′ where Q̃′

1 is a subset of Q̃1.

Proposition 5.3. Let Fq be a field with q elements and charFq = 2. Suppose

that

G̃ =

{
(A) =

(
A 0

0 A

)
: A ∈ On(Fq, R)

}

acts on the vector space F
(n)
q ⊕ F

(n)
q . Then there are (q3 + q2 + q + 1) G̃ -orbits of

maximal ideals of K[F
(n)
q ⊕ F

(n)
q ], i.e.,

Ψ̃0 = {I(0,0)};

Ψ̃0r
t = {I(α,0) : 0 6= α ∈ F (n)

q , αRαT ≡ t}, t ∈ Fq;

Ψ̃0l
t = {I(0,β) : 0 6= β ∈ F (n)

q , βRβT ≡ t}, t ∈ Fq;

Ψ̃t,k = {I(α,β) : 0 6= α ∈ F (n)
q , β = kα, αRαT ≡ t}, t ∈ Fq, k ∈ F ∗

q ;

Ψ̃t,t′,t′′ = {I(α,β) : 0 6= α ∈ F (n)
q , β 6= kα, k ∈ Fq, α(R +RT)βT ≡ t, αRαT ≡ t′,

βRβT ≡ t′′}, t, t′, t′′ ∈ Fq.

Remark 6. For convenience, we define

I0 , I(0,0);

I0rt ,
⋂

I(α,β)∈Ψ̃0r
t

I(α,β), t ∈ Fq; It,k ,
⋂

I(α,β)∈Ψ̃t,k

I(α,β), t ∈ Fq, k ∈ F ∗

q ;

I0lt ,
⋂

I(α,β)∈Ψ̃
0l
t

I(α,β), t ∈ Fq; It,t′,t′′ ,
⋂

I(α,β)∈Ψ̃t,t′,t′′

I(α,β), t, t′, t′′ ∈ Fq;

Q̃2 , {I0, I0rt , t ∈ Fq, I0lt , t ∈ Fq, It,k, t ∈ Fq, k ∈ F ∗

q , It,t′,t′′ , t, t′, t′′ ∈ Fq}.
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Theorem 5.4. Let Fq be a field with q elements and charFq = 2. Suppose that

G̃ =

{
(A) =

(
A 0

0 A

)
: A ∈ On(Fq, R)

}

acts on the vector space F
(n)
q ⊕F

(n)
q . Then every G̃-invariant ideal I of K[F

(n)
q ⊕F

(n)
q ]

is an intersection of finitely many ideals in the set Q̃2 (the same notation as in

Remark 6), i.e., I =
⋂

I′∈Q̃′

2

I ′ where Q̃′

2 is a subset of Q̃2.

Theorem 5.5. Let Fq be a finite field of characteristic 2. Suppose that On(Fq, R)

acts on the Fq-vector space F
(n)
q and

G̃ =

{
(A) =

(
A 0

0 A

)
: A ∈ On(Fq, R)

}

acts on the vector space F
(n)
q ⊕ F

(n)
q . Then the invariant ideals of K[F

(n)
q ] are

precisely the intersections of the natural projections of some vector invariant ideals

of K[F
(n)
q ⊕ F

(n)
q ].
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