## Czechoslovak Mathematical Journal

Lingli Zeng; Jizhu Nan
Vector invariant ideals of abelian group algebras under the actions of the unitary groups and orthogonal groups

Czechoslovak Mathematical Journal, Vol. 66 (2016), No. 4, 1059-1078
Persistent URL: http://dml.cz/dmlcz/145919

## Terms of use:

© Institute of Mathematics AS CR, 2016

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

# VECTOR INVARIANT IDEALS OF ABELIAN GROUP ALGEBRAS UNDER THE ACTIONS OF THE UNITARY GROUPS AND ORTHOGONAL GROUPS 

Lingli Zeng, Xi'an, Jizhu Nan, Dalian

(Received March 6, 2015)


#### Abstract

Let $F$ be a finite field of characteristic $p$ and $K$ a field which contains a primitive $p$ th root of unity and char $K \neq p$. Suppose that a classical group $G$ acts on the $F$-vector space $V$. Then it can induce the actions on the vector space $V \oplus V$ and on the group algebra $K[V \oplus V]$, respectively. In this paper we determine the structure of $G$-invariant ideals of the group algebra $K[V \oplus V]$, and establish the relationship between the invariant ideals of $K[V]$ and the vector invariant ideals of $K[V \oplus V]$, if $G$ is a unitary group or orthogonal group. Combining the results obtained by Nan and Zeng (2013), we solve the problem of vector invariant ideals for all classical groups over finite fields.


Keywords: vector invariant ideal; group algebra; unitary group; orthogonal group
MSC 2010: 16S34, 20G40

## 1. Introduction

Let $V$ be an abelian group, $G$ a group of automorphisms of $V$, and $K$ a field. Then $G$ can act on the group algebra $K[V]$. It is an interesting problem to determine all $G$-invariant ideals of $K[V]$. The motivation for this actually arises from the study of the lattice of ideals in group algebras of certain infinite locally finite groups. A natural special case of the problem occurs if $V$ is a finite-dimensional vector space over a field $F$ with char $F \neq \operatorname{char} K$. In this case Brookes and Evans in [1] proved that if $F$ is infinite then the $G L_{n}(F)$-invariant ideals of $K[V]$ are only $0, K[V]$ and the augmentation ideal $\omega(V ; V)$, while if $F$ is finite then there is an

The research has been supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 16JK1789), and the National Natural Science Foundation of China (Program No. 11371343).
additional $G L_{n}(F)$-invariant ideal generated by $\sum_{a \in V} a$. In [3], [8], the authors described the structure of $G$-invariant ideals by the augmentation ideals where $G$ is the multiplicative group of a field or a division ring. They showed that the set of these $G$-invariant ideals is Noetherian. Passman in [6], [7] investigated the $F^{*}$-invariant ideals of the group algebra $K[V]$ under the torus action of $F^{*}$ and proved that every $F^{*}$-invariant ideal of $K[V]$ is uniquely a finite irredundant intersection of augmentation ideals. In particular, $K[V]$ has exactly four $F^{*}$-invariant proper ideals of $K[V]$ if $V$ is the direct sum of two 1 -dimensional vector spaces. The articles [4], [5] were concerned with the simple linear groups and the finitary version of the classical linear groups. Also, these groups act on only a single vector space $V$ and the $G$-invariant ideals are considered on the group algebra $K[V]$. Richman in [9], [11], [10] studied the ring of vector invariants $K[m V]^{G}$ with the diagonal action of $G$ on the coordinate ring of $\bigoplus_{\bigoplus} V$, and determined the relationship between the ring of vector invariants $K\left[\bigoplus^{m} V\right]^{G}$ and the ring of invariants $K[V]^{G}$. Thus, it is natural to ask what is the structure of the $G$-vector invariant ideals of the group algebra $K\left[\bigoplus^{m} V\right]$, and what is the relationship between the vector invariant ideals of $K[\stackrel{m}{\oplus} V]$ and the invariant ideals of $K[V]$.

Nan and Zeng in [2] studied the vector invariant ideals of the group algebra $K[V \oplus V]$ under the action of the symplectic group. The present paper determines the structure of the vector invariant ideals under the actions of unitary groups (or orthogonal groups) and establishes the relationship between the invariant ideals and the vector invariant ideals, which can be viewed as a continuation of the work [2]. Combining the results obtained in [2], we solve the problem of vector invariant ideals for all classical groups over finite fields.

Our paper is arranged as follows. Section 2 investigates the structure of the invariant ideals of the group algebra $K[V]$ and of the vector invariant ideals of the group algebra $K[V \oplus V]$ under the actions of unitary groups. In Section 3, we establish the relationship between the invariant ideals of $K[V]$ and the vector invariant ideals of $K[V \oplus V]$ under the actions of unitary groups using augmentation ideals. In Sections 4 and 5, we study the structure of the vector invariant ideals under the actions of orthogonal groups over finite fields of odd characteristic and characteristic 2 , respectively.

## 2. Invariant ideals under the actions of unitary groups

In this section, we study the structure of $G$-invariant ideals under the actions of unitary groups. We first recall some relevant material about unitary groups in [12]. Throughout this paper, $p$ will always be a prime number and $q$ a power of $p$. Let
us denote by $F_{q^{2}}$ the finite field with $q^{2}$ elements. It is well known that $F_{q^{2}}$ has an involutive automorphism $a \mapsto \bar{a}=a^{q}$, and the fixed field of this automorphism is $F_{q}$. Let $A=\left(a_{i k}\right)_{1 \leqslant i \leqslant m, 1 \leqslant k \leqslant n}$ be an $m \times n$ matrix over $F_{q^{2}}$. Define the matrix $\bar{A}=\left(\bar{a}_{i k}\right)_{1 \leqslant i \leqslant m, 1 \leqslant k \leqslant n}$ where $\bar{a}_{i k}=a_{i k}{ }^{q}$ by the involutive automorphism. Two $n \times n$ matrices $A$ and $B$ over $F_{q^{2}}$ are said to be cogredient, if there is an nonsingular matrix $Q$ such that $Q A \bar{Q}^{\mathrm{T}}=B$, where $\bar{Q}^{\mathrm{T}}$ denotes the transpose of $\bar{Q}$. It is easy to verify that cogredient matrices over $F_{q^{2}}$ have the same rank. An $n \times n$ matrix $H$ is called Hermitian if $\bar{H}^{\mathrm{T}}=H$.

If $H$ is a nonsingular Hermitian matrix over $F_{q^{2}}$, then it is necessarily cogredient to the $n \times n$ identity matrix $I^{(n)}$, see [12], Theorem 5.2, Corollary 5.4, and so cogredient to

$$
\left(\begin{array}{cc}
0 & I^{(\nu)} \\
I^{(\nu)} & 0
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ccc}
0 & I^{(\nu)} & \\
I^{(\nu)} & 0 & \\
& & 1
\end{array}\right)
$$

where $n=2 \nu$ is even or $n=2 \nu+1$ is odd, respectively. In this section, we suppose that $\nu \geqslant 2$.

Let $H$ be an $n \times n$ nonsingular Hermitian matrix over $F_{q^{2}}$. A matrix $A$ is called a unitary matrix with respect to $H$ if $A H \bar{A}^{\mathrm{T}}=H$. The set of all such unitary matrices forms a group with respect to matrix multiplication, called the unitary group of degree $n$ with respect to $H$ and denoted by $U_{n}\left(F_{q^{2}}, H\right)$, i.e.,

$$
U_{n}\left(F_{q^{2}}, H\right)=\left\{A \in G L_{n}\left(F_{q^{2}}\right): A H \overline{A^{\prime}}=H\right\}
$$

Suppose that $U_{n}\left(F_{q^{2}}, H\right)$ acts on the $F_{q^{2}}$-vector space $F_{q^{2}}^{(n)}$ by

$$
(x)^{A}=x A^{-1^{\mathrm{T}}}, \quad x \in F_{q^{2}}^{(n)}, A \in U_{n}\left(F_{q^{2}}, H\right)
$$

Then it can induce an action on the vector space $F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}$, defined by

$$
(x, y)^{A}=\left(x A^{-1^{\mathrm{T}}}, y A^{-1^{\mathrm{T}}}\right), \quad x, y \in F_{q^{2}}^{(n)}, A \in U_{n}\left(F_{q^{2}}, H\right) .
$$

For convenience, we define

$$
G=\left\{(A)=\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right): A \in U_{n}\left(F_{q^{2}}, H\right)\right\} .
$$

The action of $G$ on the vector space $F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}$ coincides with the action of $U_{n}\left(F_{q^{2}}, H\right)$ on $F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}$, i.e.,

$$
(x, y)^{(A)}=\left(x A^{-1^{\mathrm{T}}}, y A^{-1^{\mathrm{T}}}\right), \quad x, y \in F_{q^{2}}^{(n)},(A) \in G .
$$

And so $G$ can act on the group algebra $K\left[F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}\right]$ by

$$
\left(\sum_{i, j} a_{i j}\left(x_{i}, y_{j}\right)\right)^{(A)}=\sum_{i, j} a_{i j}\left(x_{i}, y_{j}\right)^{(A)}
$$

where $K$ is a field of characteristic different from $p$ and $K$ contains $\varepsilon$, a primitive $p$ th root of unity.

To investigate the structure of invariant ideals, the following results given in [6] are necessary. Since $F_{q^{2}}$ is a field with char $F_{q^{2}}=p>0$, it follows that any finitedimensional $F_{q^{2}}$-vector space $V$ is additively an elementary abelian $p$-group.

Lemma 2.1 ([6], Lemma 3.1). Let $V$ be a finite elementary abelian $p$-group and let $G$ be a group of automorphisms of $V$.
(1) The group algebra $K[V]$ is semisimple. Indeed, it is a direct sum of $|V|$ copies of $K$ and every ideal is uniquely an intersection of maximal ideals.
(2) The maximal ideals of $K[V]$ are in a one-to-one correspondence with the linear characters $\chi: V \rightarrow K^{*}$. To be precise, the ideal corresponding to $\chi$ is the kernel of the natural algebra extension $\chi: K[V] \rightarrow K$.
(3) $G$ permutes the linear characters of $V$ by defining $\chi^{g}(x)=\chi\left(x^{g^{-1}}\right)$ for all $g \in G$ and $x \in V$. This action corresponds to the permutation action of $G$ on the maximal ideals of $K[V]$.
(4) Every $G$-invariant ideal of $K[V]$ is uniquely an intersection of maximal $G$ invariant ideals of $K[V]$. The latter are precisely the intersections of $G$-orbits of maximal ideals of $K[V]$.
(5) $\chi^{g}=\chi$ if and only if $x^{-1} x^{g^{-1}} \in \operatorname{Ker} \chi$ for all $x \in V$.

Lemma 2.2 ([6], Lemma 2.4). Let $E \supseteq F$ be fields with $|E: F|<\infty$ and let $\lambda: E \rightarrow F$ be a nonzero $F$-linear function. Then every $F$-linear function from $E$ to $F$ is uniquely of the form $\lambda_{a}$ for $a \in E$, where $\lambda_{a}(x)=\lambda(a x)$.

We now briefly recall some facts and notation concerning linear characters and kernel ideals in [6]. Let $G F(p)$ denote the prime subfield of $F_{q^{2}}$ and let $\mu: F_{q^{2}} \rightarrow$ $G F(p)$ be a nonzero $G F(p)$-linear function. Then, by Lemma 2.2, all linear functions from $F_{q^{2}}$ to $G F(p)$ are of the form $\mu_{a}: F_{q^{2}} \rightarrow G F(p)$, where $a \in F_{q^{2}}$ and $\mu_{a}(x)=$ $\mu(a x)$. Hence all characters $\chi: F_{q^{2}} \rightarrow K^{*}$ are given by

$$
\chi_{a}(x)=\varepsilon^{\mu_{a}(x)}=\varepsilon^{\mu(a x)}, \quad a, x \in F_{q^{2}}
$$

where $\varepsilon$ is a primitive $p$ th root of unity in $K$. Furthermore, the characters from $F_{q^{2}}^{(n)}$ to $K^{*}$ are necessarily products $\chi_{1} \chi_{2} \ldots \chi_{n}$ where each $\chi_{i}$ is a character from $F_{q^{2}}$
to $K^{*}$, so they are all of the form

$$
\chi_{\alpha}(x)=\prod_{i=1}^{n} \chi_{a_{i}}\left(x_{i}\right)=\varepsilon^{\sum_{i=1}^{n} \mu\left(a_{i} x_{i}\right)}=\varepsilon^{\mu\left(\sum_{i=1}^{n} a_{i} x_{i}\right)}=\varepsilon^{\mu\left(\alpha x^{\mathrm{T}}\right)}, \quad \alpha, x \in F_{q^{2}}^{(n)}
$$

where $\alpha x^{\mathrm{T}}=\sum_{i=1}^{n} a_{i} x_{i}$ denotes the usual dot product of two vectors $\alpha=\left(a_{1}, \ldots, a_{n}\right)$ and $x=\left(x_{1}, \ldots, x_{n}\right)$. These characters in turn extend naturally to the $K$-algebra homomorphisms $\chi_{\alpha}: K\left[F_{q^{2}}^{(n)}\right] \rightarrow K$ and their kernels $I_{\alpha}=\operatorname{Ker} \chi_{\alpha}$ are precisely the set of maximal ideals of the group algebra $K\left[F_{q^{2}}^{(n)}\right]$.

Note that the following result from [12] is very important for us to study the $G$-orbits.

Lemma 2.3 ([12], Lemma 5.12). Let $P_{1}$ and $P_{2}$ be two $m \times 2 \nu$ matrices of rank $m$. Then there exists an element $T \in U_{n}\left(F_{q^{2}}, H\right)$ such that $P_{1}=P_{2} T$ if and only if $P_{1} H{\overline{P_{1}}}^{\mathrm{T}}=P_{2} H{\overline{P_{2}}}^{\mathrm{T}}$.

Lemma 2.4. Let $F_{q^{2}}$ be a field with $q^{2}$ elements, where $q$ is a power of a prime $p$. Suppose that $U_{n}\left(F_{q^{2}}, H\right)$ acts on the $F_{q^{2}}$-vector space $F_{q^{2}}^{(n)}$. Then for any $0 \neq \alpha$, $\beta \in F_{q^{2}}^{(n)}$, the maximal ideals $I_{\alpha}$ and $I_{\beta}$ of $K\left[F_{q^{2}}^{(n)}\right]$ are in the same orbit if and only if the unitary dot products are equal, i.e. $\alpha H \bar{\alpha}^{\mathrm{T}}=\beta H \bar{\beta}^{\mathrm{T}}=t, t \in F_{q}$.

Proof. For any $A \in U_{n}\left(F_{q^{2}}, H\right)$ we have

$$
\chi_{\alpha}^{A}(x)=\chi_{\alpha}\left(x^{A^{-1}}\right)=\chi_{\alpha}\left(x A^{\mathrm{T}}\right)=\varepsilon^{\mu\left(\alpha\left(x A^{\mathrm{T}}\right)^{\mathrm{T}}\right)}=\varepsilon^{\mu\left(\alpha A x^{\mathrm{T}}\right)}=\chi_{\alpha A}(x) .
$$

Hence

$$
\begin{equation*}
I_{\alpha}^{A}=I_{\alpha A} . \tag{2.1}
\end{equation*}
$$

Suppose now that the maximal ideals $I_{\alpha}$ and $I_{\beta}$ are in the same orbit. Then there exists an $A \in U_{n}\left(F_{q^{2}}, H\right)$ such that $\beta=\alpha A$ due to the equality (2.1). Further, we have

$$
\beta H \bar{\beta}^{\mathrm{T}}=(\alpha A) H \overline{(\alpha A)}^{\mathrm{T}}=\alpha\left(A H \bar{A}^{\mathrm{T}}\right) \bar{\alpha}^{\mathrm{T}}=\alpha H \bar{\alpha}^{\mathrm{T}} .
$$

Let $t=\alpha H \bar{\alpha}^{\mathrm{T}}$. Then $\bar{t}^{\mathrm{T}}={\overline{\alpha H \bar{\alpha}^{\mathrm{T}}}}^{\mathrm{T}}=\alpha \bar{H}^{\mathrm{T}} \bar{\alpha}^{\mathrm{T}}=\alpha H \bar{\alpha}^{\mathrm{T}}=t$. Since $\bar{t} \in F_{q^{2}}$, it follows that $\bar{t}^{\mathrm{T}}=\bar{t}$ and so $\bar{t}=t$. Hence $t \in F_{q}$.

Conversely, if $\alpha H \bar{\alpha}^{\mathrm{T}}=\beta H \bar{\beta}^{\mathrm{T}}$, then by Lemma 2.3 there exists an $A \in U_{n}\left(F_{q^{2}}, H\right)$ such that $\beta=\alpha A$. This implies that $I_{\alpha}^{A}=I_{\alpha A}=I_{\beta}$. Thus $I_{\alpha}$ and $I_{\beta}$ are in the same orbit.

Let

$$
M(m, r)=\left(\begin{array}{cc}
I^{(r)} & \\
& 0^{(m-r)}
\end{array}\right)
$$

We denote by $\mathfrak{n}(m, r ; n)$ the number of $m \times n$ matrices $P$ of rank $m$ which satisfy

$$
P H \bar{P}^{\mathrm{T}}=M(m, r)
$$

Lemma 2.5 (Anzahl theorem, [12], Lemma 5.18). Let $2 r \leqslant 2 m \leqslant n+r$. Then

$$
\mathfrak{n}(m, r ; n)=q^{r n+(m-r)(m-r-1)-r(r+1) / 2} \prod_{i=n+r-2 m+1}^{n}\left(q^{i}-(-1)^{i}\right) .
$$

Proposition 2.6. Let $F_{q^{2}}$ be a field with $q^{2}$ elements, where $q$ is a power of a prime $p$. Suppose that $U_{n}\left(F_{q^{2}}, H\right)$ acts on the $F_{q^{2}}$-vector space $F_{q^{2}}^{(n)}$. Then there are exactly $(q+1)$ of $U_{n}\left(F_{q^{2}}, H\right)$-orbits of maximal ideals of $K\left[F_{q^{2}}^{(n)}\right]$, i.e.,

$$
\Omega_{\overline{0}}=\left\{I_{0}\right\}, \quad \Omega_{t}=\left\{I_{\alpha}: 0 \neq \alpha \in F_{q^{2}}^{(n)}, \alpha H \bar{\alpha}^{\mathrm{T}}=t\right\}, \quad t \in F_{q}
$$

Proof. First, it is easy to see that $\Omega_{\overline{0}}$ and $\Omega_{t}, t \in F_{q}$ are distinct $U_{n}\left(F_{q^{2}}, H\right)$ -orbits of maximal ideals by Lemma 2.4.

We next show that every orbit $\Omega_{t}$ is nonempty. By Lemma 2.5 , if $t \neq 0$, then the number of $\alpha$ is $\mathfrak{n}(1,1 ; n)=q^{n-1}\left(q^{n}-(-1)^{n}\right)$. If $t=0$, then the number of $\alpha$ is $\mathfrak{n}(1,0 ; n)=\left(q^{n-1}-(-1)^{n-1}\right)\left(q^{n}-(-1)^{n}\right)$. Thus $\Omega_{t} \neq \emptyset$, and this implies that there are exactly $(q+1)$ of $U_{n}\left(F_{q^{2}}, H\right)$-orbits of maximal ideals of $K\left[F_{q^{2}}^{(n)}\right]$.

Remark 1. We define $I_{\overline{0}} \triangleq I_{0}, I_{t} \triangleq \bigcap_{I_{\alpha} \in \Omega_{t}} I_{\alpha}, t \in F_{q}$ and $Q_{1} \triangleq\left\{I_{\overline{0}}\right\} \cup\left\{I_{t}: t \in F_{q}\right\}$.
We shall now prove the first main result of this paper.
Theorem 2.7. Let $F_{q^{2}}$ be a field with $q^{2}$ elements, where $q$ is a power of a prime $p$. Suppose that $U_{n}\left(F_{q^{2}}, H\right)$ acts on the $F_{q^{2}}$-vector space $F_{q^{2}}^{(n)}$. Then every $U_{n}\left(F_{q^{2}}, H\right)$ invariant ideal $I$ of $K\left[F_{q^{2}}^{(n)}\right]$ is an intersection of finitely many ideals in the set $Q_{1}$ (the same notation as in Remark 1), i.e. $I=\bigcap_{I^{\prime} \in Q_{1}^{\prime}} I^{\prime}$ where $Q_{1}^{\prime}$ is a subset of $Q_{1}$.

Proof. By Lemma 2.1 (4), we know that the maximal $U_{n}\left(F_{q^{2}}, H\right)$-invariant ideals of $K\left[F_{q^{2}}^{(n)}\right]$ are precisely the intersections of $U_{n}\left(F_{q^{2}}, H\right)$-orbits of maximal ideals. Then it follows by Proposition 2.6 that $Q_{1}$ is the set of all maximal $U_{n}\left(F_{q^{2}}, H\right)$-invariant ideals of $K\left[F_{q^{2}}^{(n)}\right]$. Again by Lemma 2.1 (4), we deduce that each $U_{n}\left(F_{q^{2}}, H\right)$-invariant ideal is the intersection of finitely many maximal $U_{n}\left(F_{q^{2}}, H\right)$ invariant ideals in $Q_{1}$, i.e., that $I=\bigcap_{I^{\prime} \in Q_{1}^{\prime}} I^{\prime}$ where $Q_{1}^{\prime}\left(\leqslant Q_{1}\right)$ is a subset of $Q_{1}$.

Next, we shall study the structure of $G$-vector invariant ideals of the group algebra $K\left[F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}\right]$. By a similar argument (on page 4) we can show that the characters from $F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}$ to $K^{*}$ are all of the form

$$
\chi_{(\alpha, \beta)}(x, y)=\varepsilon^{\mu\left(\alpha x^{\mathrm{T}}+\beta y^{\mathrm{T}}\right)}, \quad \alpha, \beta, x, y \in F_{q^{2}}^{(n)} .
$$

These characters can be extended to the $K$-algebra homomorphisms

$$
\chi_{(\alpha, \beta)}: K\left[F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}\right] \rightarrow K
$$

and their kernels $I_{(\alpha, \beta)}=\operatorname{Ker} \chi_{(\alpha, \beta)}$ are precisely the set of maximal ideals of $K\left[F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}\right]$.

Lemma 2.8. Let $F_{q^{2}}$ be a field with $q^{2}$ elements, where $q$ is a power of a prime $p$. Suppose that

$$
G=\left\{(A)=\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right): A \in U_{n}\left(F_{q^{2}}, H\right)\right\}
$$

acts on the vector space $F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}$. If two maximal ideals $I_{(\alpha, \beta)}$ and $I_{(\gamma, \delta)}$ of $K\left[F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}\right]$ are in the same orbit, then the unitary dot products are equal, i.e. that $\alpha H \bar{\beta}^{\mathrm{T}}=\gamma H \bar{\delta}^{\mathrm{T}}$.

Proof. For any $(A) \in G$ we have

$$
\begin{aligned}
\chi_{(\alpha, \beta)}^{(A)}(x, y) & =\chi_{(\alpha, \beta)}\left((x, y)^{(A)^{-1}}\right)=\chi_{(\alpha, \beta)}\left(x A^{\mathrm{T}}, y A^{\mathrm{T}}\right) \\
& =\varepsilon^{\mu\left(\alpha\left(x A^{\mathrm{T}}\right)^{\mathrm{T}}+\beta\left(y A^{\mathrm{T}}\right)^{\mathrm{T}}\right)}=\varepsilon^{\mu\left(\alpha A x^{\mathrm{T}}+\beta A y^{\mathrm{T}}\right)}=\chi_{(\alpha A, \beta A)}(x, y) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
I_{(\alpha, \beta)}^{(A)}=I_{(\alpha A, \beta A)} . \tag{2.2}
\end{equation*}
$$

Since the unitary dot product of $\alpha A$ and $\beta A$ is

$$
\alpha A H \overline{(\beta A)}^{\mathrm{T}}=\alpha A H \bar{A}^{\mathrm{T}} \bar{\beta}^{\mathrm{T}}=\alpha H \bar{\beta}^{\mathrm{T}}
$$

by combining the equality (2.2), the required result follows.

Lemma 2.9. Let $F_{q^{2}}$ be a field with $q^{2}$ elements, where $q$ is a power of a prime $p$. Let

$$
G=\left\{(A)=\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right): A \in U_{n}\left(F_{q^{2}}, H\right)\right\}
$$

act on the vector space $F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}$. Suppose that $0 \neq \alpha, \beta, \gamma, \delta \in F_{q^{2}}^{(n)}$. If the vectors $\alpha$ and $\beta$ are linearly dependent, i.e., $\beta=k \alpha$ for some $k \in F_{q^{2}}$, then the maximal ideals $I_{(\alpha, \beta)}$ and $I_{(\gamma, \delta)}$ of $K\left[F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}\right]$ are in the same orbit if and only if $\delta=k \gamma$ and $\alpha H \bar{\alpha}^{\mathrm{T}}=\gamma H \bar{\gamma}^{\mathrm{T}}$.

Proof. Suppose that the maximal ideals $I_{(\alpha, \beta)}$ and $I_{(\gamma, \delta)}$ are in the same orbit. By the equality (2.2), there exists an $(A) \in G$ such that $\gamma=\alpha A, \delta=\beta A$. Since $\beta=k \alpha$, we have

$$
\delta=\beta A=k \alpha A=k \gamma \quad \text { and } \quad \gamma H \bar{\gamma}^{\mathrm{T}}=\alpha A H \bar{A}^{\mathrm{T}} \bar{\alpha}^{\mathrm{T}}=\alpha H \bar{\alpha}^{\mathrm{T}}
$$

Conversely, if $\alpha H \bar{\alpha}^{\mathrm{T}}=\gamma H \bar{\gamma}^{\mathrm{T}}$ then by Lemma 2.3 there exists an $A \in U_{n}\left(F_{q^{2}}, H\right)$ such that $\gamma=\alpha A$, and so $\delta=k \gamma=k \alpha A=\beta A$. It follows that

$$
I_{(\alpha, \beta)}^{(A)}=I_{(\alpha A, \beta A)}=I_{(\gamma, \delta)}
$$

Lemma 2.10. Let $F_{q^{2}}$ be a field with $q^{2}$ elements, where $q$ is a power of a prime $p$. Let

$$
G=\left\{(A)=\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right): A \in U_{n}\left(F_{q^{2}}, H\right)\right\}
$$

act on the vector space $F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}$. Suppose that $0 \neq \alpha, \beta, \gamma, \delta \in F_{q^{2}}^{(n)}$. If the vectors $\alpha$ and $\beta$ are linearly independent, then the maximal ideals $I_{(\alpha, \beta)}$ and $I_{(\gamma, \delta)}$ of $K\left[F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}\right]$ are in the same orbit if and only if $\gamma$ and $\delta$ are linearly independent and $\alpha H \bar{\alpha}^{\mathrm{T}}=\gamma H \bar{\gamma}^{\mathrm{T}}, \beta H \bar{\beta}^{\mathrm{T}}=\delta H \bar{\delta}^{\mathrm{T}}, \alpha H \bar{\beta}^{\mathrm{T}}=\gamma H \bar{\delta}^{\mathrm{T}}$.

Proof. Suppose first that the maximal ideals $I_{(\alpha, \beta)}$ and $I_{(\gamma, \delta)}$ are in the same orbit. Then, by the equality (2.2), there exists an $A \in U_{n}\left(F_{q^{2}}, H\right)$ such that $\gamma=\alpha A$, $\delta=\beta A$. It is easy to verify that

$$
\alpha H \bar{\alpha}^{\mathrm{T}}=\gamma H \bar{\gamma}^{\mathrm{T}}, \quad \beta H \bar{\beta}^{\mathrm{T}}=\delta H \bar{\delta}^{\mathrm{T}} \quad \text { and } \quad \alpha H \bar{\beta}^{\mathrm{T}}=\gamma H \bar{\delta}^{\mathrm{T}}
$$

If $\gamma$ and $\delta$ are linearly dependent, then $\alpha$ and $\beta$ are also linearly dependent by Lemma 2.9, a contradiction.

Conversely, suppose that $\gamma$ and $\delta$ are linearly independent and $\alpha H \bar{\alpha}^{\mathrm{T}}=\gamma H \bar{\gamma}^{\mathrm{T}}$, $\beta H \bar{\beta}^{\mathrm{T}}=\delta H \bar{\delta}^{\mathrm{T}}, \alpha H \bar{\beta}^{\mathrm{T}}=\gamma H \bar{\delta}^{\mathrm{T}}$. Then $\binom{\alpha}{\beta}$ and $\binom{\gamma}{\delta}$ are two $2 \times n$ matrices of rank 2 . Since

$$
\binom{\alpha}{\beta} H \overline{\left(\begin{array}{l}
\alpha \\
\beta
\end{array}\right.}^{\mathrm{T}}=\left(\begin{array}{ll}
\alpha H \bar{\alpha}^{\mathrm{T}} & \alpha H \bar{\beta}^{\mathrm{T}} \\
\beta H \bar{\alpha}^{\mathrm{T}} & \beta H \bar{\beta}^{\mathrm{T}}
\end{array}\right)
$$

and

$$
\binom{\gamma}{\delta} H \overline{\binom{\gamma}{\delta}}^{\mathrm{T}}=\left(\begin{array}{ll}
\gamma H \bar{\gamma}^{\mathrm{T}} & \gamma H \bar{\delta}^{\mathrm{T}} \\
\delta H \bar{\gamma}^{\mathrm{T}} & \delta H \bar{\delta}^{\mathrm{T}}
\end{array}\right)
$$

we obtain that

$$
\binom{\alpha}{\beta} H \overline{\left(\begin{array}{l}
\alpha \\
\beta
\end{array}\right.}^{\mathrm{T}}=\binom{\gamma}{\delta} H \overline{\left(\begin{array}{l}
\gamma \\
\delta
\end{array}\right.}^{\mathrm{T}}
$$

Hence, by Lemma 2.3, there exists an $A \in U_{n}\left(F_{q^{2}}, H\right)$ such that

$$
\binom{\gamma}{\delta}=\binom{\alpha}{\beta} A
$$

and so

$$
I_{(\alpha, \beta)}^{(A)}=I_{(\alpha A, \beta A)}=I_{(\gamma, \delta)} .
$$

By the previous lemmas, we can describe a classification of the $G$-orbits of maximal ideals of $K\left[F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}\right]$.

Proposition 2.11. Let $F_{q^{2}}$ be a field with $q^{2}$ elements, where $q$ is a power of a prime $p$. Suppose that

$$
G=\left\{(A)=\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right): A \in U_{n}\left(F_{q^{2}}, H\right)\right\}
$$

acts on the vector space $F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}$. Then there are exactly $\left(q^{4}+q^{3}+q+1\right) G$-orbits of maximal ideals of $K\left[F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}\right]$, i.e.,

$$
\begin{aligned}
\Psi^{0}= & \left\{I_{(0,0)}\right\} ; \\
\Psi_{t}^{0_{r}}= & \left\{I_{(\alpha, 0)}: 0 \neq \alpha \in F_{q^{2}}^{(n)}, \alpha H \bar{\alpha}^{\mathrm{T}}=t\right\}, \quad t \in F_{q} ; \\
\Psi_{t}^{0_{l}}= & \left\{I_{(0, \beta)}: 0 \neq \beta \in F_{q^{2}}^{(n)}, \beta H \bar{\beta}^{\mathrm{T}}=t\right\}, \quad t \in F_{q} ; \\
\Psi_{t, k}= & \left\{I_{(\alpha, \beta)}: 0 \neq \alpha \in F_{q^{2}}^{(n)}, \beta=k \alpha, \alpha H \bar{\alpha}^{\mathrm{T}}=t\right\}, \quad t \in F_{q}, k \in F_{q^{2}}^{*} ; \\
\Psi_{t, t^{\prime}, t^{\prime \prime}}= & \left\{I_{(\alpha, \beta)}: 0 \neq \alpha \in F_{q^{2}}^{(n)}, \beta \neq k \alpha, k \in F_{q^{2}}, \alpha H \bar{\beta}^{\mathrm{T}}=t, \alpha H \bar{\alpha}^{\mathrm{T}}=t^{\prime},\right. \\
& \left.\beta H \bar{\beta}^{\mathrm{T}}=t^{\prime \prime}\right\}, \quad t \in F_{q^{2}}, t^{\prime}, t^{\prime \prime} \in F_{q} .
\end{aligned}
$$

Proof. For any $\alpha, \beta \in F_{q^{2}}^{(n)}$, we now distinguish four cases:
Case 1. $\alpha=\beta=0$. It is obvious that $\Psi^{0}$ is a $G$-orbit.
Case 2. $\alpha \neq 0, \beta=0 . \Psi_{t}^{0_{r}}$ is a $G$-orbit by the equality (2.1) and Proposition 2.6.
Case 3. $\alpha=0, \beta \neq 0$. It is similar to Case 2 .
Case 4. $\alpha \neq 0, \beta \neq 0$. Consider the following two subcases:
Subcase 4.1. $\beta=k \alpha$ for some $k \in F_{q^{2}}^{*} . \Psi_{t, k}$ is a $G$-orbit by Lemma 2.9.
Subcase 4.2. $\beta \neq k \alpha$ for all $k \in F_{q^{2}} . \Psi_{t, t^{\prime}, t^{\prime \prime}}$ is a $G$-orbit by Lemma 2.10.
Then it follows that the above sets $\Psi$ are all the $G$-orbits.
In the sequel we shall prove that the above orbits are all nonempty. We first consider the $G$-orbits $\Psi_{t, t^{\prime}, t^{\prime \prime}}, t \in F_{q^{2}}, t^{\prime}, t^{\prime \prime} \in F_{q}$. If $I_{(\alpha, \beta)} \in \Psi_{t, t^{\prime}, t^{\prime \prime}}$, then

$$
\binom{\alpha}{\beta} H \overline{\left(\begin{array}{l}
\alpha  \tag{2.3}\\
\beta
\end{array}\right.}^{\mathrm{T}}=\left(\begin{array}{ll}
\alpha H \bar{\alpha}^{\mathrm{T}} & \alpha H \bar{\beta}^{\mathrm{T}} \\
\beta H \bar{\alpha}^{\mathrm{T}} & \beta H \bar{\beta}^{\mathrm{T}}
\end{array}\right)=\left(\begin{array}{cc}
t^{\prime} & t \\
\bar{t} & t^{\prime \prime}
\end{array}\right)
$$

and so $\left.\binom{\alpha}{\beta} H \overline{(\alpha}_{\beta}^{\alpha}\right)^{\mathrm{T}}$ is a $2 \times 2$ Hermitian matrix. Thus it is cogredient to one of

$$
H_{0}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), H_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad H_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

In other words, there exists a nonsingular matrix $C$ such that $C\binom{\alpha}{\beta} H \overline{\binom{\alpha}{\beta}}^{\mathrm{T}} \bar{C}^{\mathrm{T}}$ is equal to one of $H_{0}, H_{1}$ and $H_{2}$. By Lemma 2.5, it follows that the numbers $n_{i}$, $i=0,1,2$, of matrices $D_{i}$ which satisfy

$$
D_{i} H{\overline{D_{i}}}^{\mathrm{T}}=H_{i}
$$

are $n_{0}=\mathfrak{n}(2,0 ; n)=\prod_{i=n-3}^{n}\left(q^{i}-(-1)^{i}\right) q^{2}, n_{1}=\mathfrak{n}(2,1 ; n)=\prod_{i=n-2}^{n}\left(q^{i}-(-1)^{i}\right) q^{n-1}$ and $n_{2}=\mathfrak{n}(2,2 ; n)=\prod_{i=n-1}^{n}\left(q^{i}-(-1)^{i}\right) q^{2 n-3}$, respectively. Let $\binom{\alpha}{\beta}=C^{-1} D_{i}$. Then there is a one-one correspondence between $\binom{\alpha}{\beta}$ and $D_{i}$, and so the numbers of $(\alpha, \beta)$ satisfying the equality (2.3) are $n_{0}, n_{1}$ and $n_{2}$, respectively. Since $\nu \geqslant 2, n \geqslant 4$, the numbers $n_{i}, i=0,1,2$, are all larger than $q^{2}$. Hence there exists at least one $(\alpha, \beta)$ satisfying the equality (2.3) and $\beta \neq k \alpha$ for all $k \in F_{q^{2}}$. Consequently, the orbits $\Psi_{t, t^{\prime}, t^{\prime \prime}}, t \in F_{q^{2}}, t^{\prime}, t^{\prime \prime} \in F_{q}$ are nonempty.

Similarly, we can show that the remaining orbits are all nonempty.
Then it follows that there are exactly $\left(q^{4}+q^{3}+q+1\right) G$-orbits of maximal ideals of $K\left[F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}\right]$.

Remark 2. For convenience, we define
$I_{0,0} \triangleq I_{(0,0)} ;$
$I_{t}^{0_{r}} \triangleq \bigcap_{I_{(\alpha, \beta)} \in \Psi_{t}^{0_{r}}} I_{(\alpha, \beta)}, t \in F_{q} ; \quad I_{t, k} \triangleq \bigcap_{I_{(\alpha, \beta)} \in \Psi_{t, k}} I_{(\alpha, \beta)}, t \in F_{q}, k \in F_{q^{2}}^{*} ;$
$I_{t}^{0_{l}} \triangleq \bigcap_{I_{(\alpha, \beta)} \in \Psi_{t}^{0_{l}}} I_{(\alpha, \beta)}, t \in F_{q} ; \quad I_{t, t^{\prime}, t^{\prime \prime}} \triangleq \bigcap_{I_{(\alpha, \beta) \in \Psi_{t, t^{\prime}, t^{\prime \prime}}} I_{(\alpha, \beta)}, t \in F_{q^{2}}, t^{\prime}, t^{\prime \prime} \in F_{q} ; ~ ; ~ ; ~}^{\text {l }}$
$Q_{2} \triangleq\left\{I_{0,0}, I_{t}^{0_{r}}, t \in F_{q}, I_{t}^{0_{l}}, t \in F_{q}, I_{t, k}, t \in F_{q}, k \in F_{q^{2}}^{*}, I_{t, t^{\prime}, t^{\prime \prime}}, t \in F_{q^{2}}, t^{\prime}, t^{\prime \prime} \in F_{q}\right\}$.
By an argument similar to that in Theorem 2.7, from Lemma 2.1 (4) and Proposition 2.11 we deduce one of the main results of this paper.

Theorem 2.12. Let $F_{q^{2}}$ be a field with $q^{2}$ elements, where $q$ is a power of a prime $p$. Suppose that

$$
G=\left\{(A)=\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right): A \in U_{n}\left(F_{q^{2}}, H\right)\right\}
$$

acts on the vector space $F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}$. Then every $G$-invariant ideal I of $K\left[F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}\right]$ is an intersection of finitely many ideals in the set $Q_{2}$ (the same notation as in Remark 2), i.e., $I=\bigcap_{I^{\prime} \in Q_{2}^{\prime}} I^{\prime}$ where $Q_{2}^{\prime}$ is a subset of $Q_{2}$.

## 3. Relationship

So far, we have investigated the structure of invariant ideals of the group algebra $K\left[F_{q^{2}}^{(n)}\right]$ and of vector invariant ideals of the group algebra $K\left[F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}\right]$ in Section 2. In this section we shall establish the relationship between invariant ideals of $K\left[F_{q^{2}}^{(n)}\right]$ and vector invariant ideals of $K\left[F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}\right]$ using augmentation ideals.

Let $V$ be an abelian group, viewed multiplicatively, and let $K[V]$ denote its group algebra over the field $K$. If $U$ is a subgroup of $V$, then there exists a natural epimorphism $\varphi: K[V] \rightarrow K[V / U]$. Let us denote the kernel of $\varphi$ by $\omega(U ; V)$ and call it the augmentation ideal of $U$ in $V$.

We first compute the maximal ideals by characters, and then describe the corresponding augmentation ideals. Finally, by an argument similar to that in Section 3 of [2] we may show the following two lemmas.

Lemma 3.1. Let $F_{q^{2}}$ be a field with $q^{2}$ elements, where $q$ is a power of a prime $p$. Let $U_{n}\left(F_{q^{2}}, H\right)$ act on the $F_{q^{2}}$-vector space $F_{q^{2}}^{(n)}$. Suppose that $K$ is a field with char $K \neq p$ and $K$ contains a primitive $p$ th root of unity $\varepsilon$. Then $I_{\overline{0}}=\omega\left(F_{q^{2}}^{(n)} ; F_{q^{2}}^{(n)}\right)$ and $I_{t}=\left\{\sum_{i} a_{i} x_{i}: \sum_{i} a_{i} \varepsilon^{\mu\left(\alpha x_{i}{ }^{\mathrm{T}}\right)}=0\right.$, for all $0 \neq \alpha \in F_{q^{2}}^{(n)}$ and $\left.\alpha H \bar{\alpha}^{\mathrm{T}}=t\right\}, t \in F_{q}$.

Lemma 3.2. Let $F_{q^{2}}$ be a field with $q^{2}$ elements, where $q$ is a power of a prime $p$. Let

$$
G=\left\{(A)=\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right): A \in U_{n}\left(F_{q^{2}}, H\right)\right\}
$$

act on the vector space $F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}$. Suppose that $K$ is a field with char $K \neq p$ and $K$ contains a primitive $p$ th root of unity $\varepsilon$. Then

$$
\begin{aligned}
& I_{0,0}=\omega\left(F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)} ; F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}\right), \\
& I_{t}^{0_{r}}=\left\{\sum_{i, j} a_{i j}\left(x_{i}, y_{j}\right): \sum_{i, j} a_{i j} \varepsilon^{\mu\left(\alpha x_{i}{ }^{\mathrm{T}}\right)}=0, \forall 0 \neq \alpha \in F_{q^{2}}^{(n)} \text { and } \alpha H \bar{\alpha}^{\mathrm{T}}=t\right\}, \quad t \in F_{q}, \\
& I_{t}^{0_{l}}=\left\{\sum_{i, j} a_{i j}\left(x_{i}, y_{j}\right): \sum_{i, j} a_{i j} \varepsilon^{\mu\left(\beta y_{j}{ }^{\mathrm{T}}\right)}=0, \forall 0 \neq \beta \in F_{q^{2}}^{(n)} \text { and } \beta H \bar{\beta}^{\mathrm{T}}=t\right\}, \quad t \in F_{q}, \\
& \bigcap_{t \in F_{q}} I_{t}^{0_{r}} \bigcap I_{0,0}=\omega\left(0 \oplus F_{q^{2}}^{(n)} ; F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}\right)
\end{aligned}
$$

and

$$
\bigcap_{t \in F_{q}} I_{t}^{0_{l}} \bigcap I_{0,0}=\omega\left(F_{q^{2}}^{(n)} \oplus 0 ; F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}\right)
$$

Let

$$
\begin{gathered}
\pi: K\left[F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}\right] \rightarrow K\left[F_{q^{2}}^{(n)}\right], \\
\sum_{i, j} a_{i j}\left(x_{i}, y_{j}\right) \mapsto \sum_{i, j} a_{i j} x_{i}
\end{gathered}
$$

be the natural projection. The next theorem establishes the relationship between invariant ideals of $K\left[F_{q^{2}}^{(n)}\right]$ and vector invariant ideals of $K\left[F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}\right]$ by the natural projection $\pi$.

Theorem 3.3. Let $F_{q^{2}}$ be a finite field of characteristic $p$. Let $U_{n}\left(F_{q^{2}}, H\right)$ act on the vector space $F_{q^{2}}^{(n)}$ and

$$
G=\left\{(A)=\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right): A \in U_{n}\left(F_{q^{2}}, H\right)\right\}
$$

act on the vector space $F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}$. Then the invariant ideals of $K\left[F_{q^{2}}^{(n)}\right]$ are precisely the intersections of the natural projections of some vector invariant ideals of $K\left[F_{q^{2}}^{(n)} \oplus F_{q^{2}}^{(n)}\right]$.

Proof. By Lemma 3.1 and Lemma 3.2, we have

$$
\pi\left(I_{0,0}\right)=I_{\overline{0}}, \quad \pi\left(I_{t}^{0_{r}}\right)=I_{t}
$$

Then, by Theorem 2.7, every $U_{n}\left(F_{q^{2}}, H\right)$-invariant ideal $I$ must be of the form

$$
I=\bigcap_{I_{t^{\prime}} \in Q_{1}^{\prime}, Q_{1}^{\prime} \leqslant Q_{1}} I_{t^{\prime}}=\bigcap_{I_{t^{\prime}}^{0,} \in Q_{2}^{\prime}, Q_{2}^{\prime} \leqslant Q_{2}} \pi\left(I_{t^{\prime}}^{0_{r}}\right)
$$

where $Q_{2}^{\prime}$ corresponds to $Q_{1}^{\prime}\left(I_{t^{\prime}}^{0_{r}} \rightarrow I_{t^{\prime}}\right)$. If there exists $I_{\overline{0}}$ in the above equation, we need only add $\pi\left(I_{0,0}\right)$. Therefore the invariant ideals of $K\left[F_{q^{2}}^{(n)}\right]$ are precisely the intersections of the natural projections of some vector invariant ideals of $K\left[F_{q^{2}}^{(n)} \oplus\right.$ $F_{q^{2}}^{(n)}$.

## 4. Orthogonal groups over finite fields of odd characteristic

This section is concerned with the orthogonal groups over finite fields of odd characteristic. We first recall some relevant material in [12]. Suppose that $F_{q}$ is a finite field of odd characteristic $p$. If $S$ is an $n \times n$ nonsingular symmetric matrix such that $S^{\mathrm{T}}=S$ over $F_{q}$, then $S$ is necessarily cogredient to one of the following four forms:

$$
\begin{gathered}
S_{2 \nu}=\left(\begin{array}{cc}
0 & I^{(\nu)} \\
I^{(\nu)} & 0
\end{array}\right), \quad S_{2 \nu+1,1}=\left(\begin{array}{ccc}
0 & I^{(\nu)} & \\
I^{(\nu)} & 0 & \\
& & 1
\end{array}\right) \\
S_{2 \nu+1, z}=\left(\begin{array}{ccc}
0 & I^{(\nu)} & \\
I^{(\nu)} & 0 & \\
& & z
\end{array}\right), \quad S_{2 \nu+2}=\left(\begin{array}{cccc}
0 & I^{(\nu)} & & \\
I^{(\nu)} & 0 & & \\
& & 1 & \\
& & & -z
\end{array}\right),
\end{gathered}
$$

where $z$ is a fixed non-square element of $F_{q} \backslash\{0\}$ and $n=2 \nu, 2 \nu+1,2 \nu+1$ and $2 \nu+2$, respectively. In this section, we suppose that $\nu \geqslant 2$.

Let $S$ be an $n \times n$ nonsingular symmetric matrix over $F_{q}$. A matrix $A$ is called an orthogonal matrix with respect to $S$ if $A S A^{\mathrm{T}}=S$. The set of all such orthogonal matrices forms a group with respect to matrix multiplication, called the orthogonal group of degree $n$ with respect to $S$ over $F_{q}$ and is denoted by $O_{n}\left(F_{q}, S\right)$, i.e.,

$$
O_{n}\left(F_{q}, S\right)=\left\{A \in G L_{n}\left(F_{q}\right): A S A^{\mathrm{T}}=S\right\}
$$

Suppose that $O_{n}\left(F_{q}, S\right)$ acts on the $F_{q}$-vector space $F_{q}^{(n)}$ by

$$
(x)^{A}=x A^{-1^{\mathrm{T}}}, \quad x \in F_{q}^{(n)}, A \in O_{n}\left(F_{q}, S\right) .
$$

Then it can induce an action on the vector space $F_{q}^{(n)} \oplus F_{q}^{(n)}$, defined by

$$
(x, y)^{A}=\left(x A^{-1^{\mathrm{T}}}, y A^{-1^{\mathrm{T}}}\right), \quad x, y \in F_{q}^{(n)}, A \in O_{n}\left(F_{q}, S\right) .
$$

For convenience, we define

$$
\widehat{G}=\left\{(A)=\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right): A \in O_{n}\left(F_{q}, S\right)\right\} .
$$

The action of $\widehat{G}$ on the vector space $F_{q}^{(n)} \oplus F_{q}^{(n)}$ coincides with the action of $O_{n}\left(F_{q}, S\right)$ on $F_{q}^{(n)} \oplus F_{q}^{(n)}$, i.e.,

$$
(x, y)^{(A)}=\left(x A^{-1^{\mathrm{T}}}, y A^{-1^{\mathrm{T}}}\right), \quad x, y \in F_{q}^{(n)},(A) \in \widehat{G} .
$$

And so $\widehat{G}$ can act on the group algebra $K\left[F_{q}^{(n)} \oplus F_{q}^{(n)}\right]$ by

$$
\left(\sum_{i, j} a_{i j}\left(x_{i}, y_{j}\right)\right)^{(A)}=\sum_{i, j} a_{i j}\left(x_{i}, y_{j}\right)^{(A)}
$$

where $K$ is a field of characteristic different from $p$ and $K$ contains $\varepsilon$, a primitive $p$ th root of unity.

The following propositions and theorems will describe the structure of $O_{n}\left(F_{q}, S\right)$ invariant ideals of $K\left[F_{q}^{(n)}\right]$ and $\widehat{G}$-vector invariant ideals of $K\left[F_{q}^{(n)} \oplus F_{q}^{(n)}\right]$, and also establish the relationship between them. The proofs of these results are similar to those of the corresponding results in Section 2 and Section 3, and thus omitted.

Proposition 4.1. Let $F_{q}$ be a field with $q$ elements, where $q$ is a power of an odd prime $p$. Suppose that $O_{n}\left(F_{q}, S\right)$ acts on the $F_{q}$-vector space $F_{q}^{(n)}$. Then there are $(q+1)$ of $O_{n}\left(F_{q}, S\right)$-orbits of maximal ideals of $K\left[F_{q}^{(n)}\right]$, i.e.,

$$
\widehat{\Omega}_{\overline{0}}=\left\{I_{0}\right\}, \quad \widehat{\Omega}_{t}=\left\{I_{\alpha}: 0 \neq \alpha \in F_{q}^{(n)}, \alpha S \alpha^{\mathrm{T}}=t\right\}, \quad t \in F_{q} .
$$

Remark 3. We define $I_{\overline{0}} \triangleq I_{0}, I_{t} \triangleq \bigcap_{I_{\alpha} \in \widehat{\Omega}_{t}} I_{\alpha}, t \in F_{q}$ and $\widehat{Q}_{1} \triangleq\left\{I_{\overline{0}}\right\} \cup\left\{I_{t}: t \in F_{q}\right\}$.

Theorem 4.2. Let $F_{q}$ be a field with $q$ elements, where $q$ is a power of an odd prime p. Suppose that $O_{n}\left(F_{q}, S\right)$ acts on the $F_{q}$-vector space $F_{q}^{(n)}$. Then every $O_{n}\left(F_{q}, S\right)$-invariant ideal $I$ of $K\left[F_{q}^{(n)}\right]$ is an intersection of finitely many ideals in the set $\widehat{Q}_{1}$ (the same notation as in Remark 3), i.e., $I=\bigcap_{I^{\prime} \in \widehat{Q}_{1}^{\prime}} I^{\prime}$ where $\widehat{Q}_{1}^{\prime}$ is a subset
of $\widehat{Q}_{1}$.

Proposition 4.3. Let $F_{q}$ be a field with $q$ elements, where $q$ is a power of an odd prime $p$. Suppose that

$$
\widehat{G}=\left\{(A)=\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right): A \in O_{n}\left(F_{q}, S\right)\right\}
$$

acts on the vector space $F_{q}^{(n)} \oplus F_{q}^{(n)}$. Then there are $\left(q^{3}+q^{2}+q+1\right) \widehat{G}$-orbits of the maximal ideals of $K\left[F_{q}^{(n)} \oplus F_{q}^{(n)}\right]$, i.e.,

$$
\begin{aligned}
\widehat{\Psi}^{0}= & \left\{I_{(0,0)}\right\} ; \\
\widehat{\Psi}_{t}^{0_{r}}= & \left\{I_{(\alpha, 0)}: 0 \neq \alpha \in F_{q}^{(n)}, \alpha S \alpha^{\mathrm{T}}=t\right\}, \quad t \in F_{q} ; \\
\widehat{\Psi}_{t}^{0_{l}}= & \left\{I_{(0, \beta)}: 0 \neq \beta \in F_{q}^{(n)}, \beta S \beta^{\mathrm{T}}=t\right\}, \quad t \in F_{q} ; \\
\widehat{\Psi}_{t, k}= & \left\{I_{(\alpha, \beta)}: 0 \neq \alpha \in F_{q}^{(n)}, \beta=k \alpha, \alpha S \alpha^{\mathrm{T}}=t\right\}, \quad t \in F_{q}, k \in F_{q}^{*} ; \\
\widehat{\Psi}_{t, t^{\prime}, t^{\prime \prime}}= & \left\{I_{(\alpha, \beta)}: 0 \neq \alpha \in F_{q}^{(n)}, \beta \neq k \alpha, k \in F_{q}, \alpha S \beta^{\mathrm{T}}=t, \alpha S \alpha^{\mathrm{T}}=t^{\prime},\right. \\
& \left.\beta S \beta^{\mathrm{T}}=t^{\prime \prime}\right\}, \quad t, t^{\prime}, t^{\prime \prime} \in F_{q} .
\end{aligned}
$$

Remark 4. For convenience, we define

$$
\begin{aligned}
& I^{0} \triangleq I_{(0,0)} ; \\
& I_{t}^{0_{r}} \triangleq \bigcap_{I_{(\alpha, \beta)} \in \widehat{\Psi}_{t}^{0_{r}}} I_{(\alpha, \beta)}, \quad t \in F_{q} ; \\
& I_{t, k} \triangleq \bigcap_{I_{(\alpha, \beta)} \in \widehat{\Psi}_{t, k}} I_{(\alpha, \beta)}, \quad t \in F_{q}, k \in F_{q}^{*} ; \\
& I_{t}^{0_{l}} \triangleq \bigcap_{I_{(\alpha, \beta)} \in \widehat{\Psi}_{t}^{0_{l}}} I_{(\alpha, \beta)}, \quad t \in F_{q} ; \\
& I_{t, t^{\prime}, t^{\prime \prime}} \triangleq \bigcap_{I_{(\alpha, \beta)} \in \widehat{\Psi}_{t, t t^{\prime}, t^{\prime \prime}}} I_{(\alpha, \beta)}, \quad t, t^{\prime}, t^{\prime \prime} \in F_{q} ; \\
& \widehat{Q}_{2} \triangleq I_{I^{0},} I_{t}^{0_{r},} t \in F_{q}, I_{t}^{0_{l}}, t \in F_{q}, I_{t, k}, t \in F_{q}, k \in F_{q}^{*}, I_{\left.t, t^{\prime}, t^{\prime \prime}, t, t^{\prime}, t^{\prime \prime} \in F_{q}\right\} .}
\end{aligned}
$$

Theorem 4.4. Let $F_{q}$ be a field with $q$ elements, where $q$ is a power of an odd prime $p$. Suppose that

$$
\widehat{G}=\left\{(A)=\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right): A \in O_{n}\left(F_{q}, S\right)\right\}
$$

acts on the vector space $F_{q}^{(n)} \oplus F_{q}^{(n)}$. Then every $\widehat{G}$-invariant ideal $I$ of $K\left[F_{q}^{(n)} \oplus F_{q}^{(n)}\right]$ is an intersection of finitely many ideals in the set $\widehat{Q}_{2}$ (the same notation as in Remark 4), i.e., $I=\bigcap_{I^{\prime} \in \widehat{Q}_{2}^{\prime}} I^{\prime}$ where $\widehat{Q}_{2}^{\prime}$ is a subset of $\widehat{Q}_{2}$.

Theorem 4.5. Let $F_{q}$ be a field of odd characteristic. Suppose that $O_{n}\left(F_{q}, S\right)$ acts on the $F_{q}$-vector space $F_{q}^{(n)}$ and

$$
\widehat{G}=\left\{(A)=\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right): A \in O_{n}\left(F_{q}, S\right)\right\}
$$

acts on the vector space $F_{q}^{(n)} \oplus F_{q}^{(n)}$. Then the invariant ideals of $K\left[F_{q}^{(n)}\right]$ are precisely the intersections of the natural projections of some vector invariant ideals of $K\left[F_{q}^{(n)} \oplus F_{q}^{(n)}\right]$.

## 5. Orthogonal groups over finite fields of characteristic 2

This section is concerned with orthogonal groups over finite fields of characteristic 2. Recall some relevant material in [12]. Suppose that $F_{q}$ is a finite field of characteristic 2 . Then we have $F_{q}^{2}=F_{q}$. An $n \times n$ matrix $D=\left(d_{i j}\right)$ is called alternate if $d_{i j}=d_{j i}$ for all $i \neq j, 1 \leqslant i, j \leqslant n$ and $d_{i i}=0$ for all $i=1,2, \ldots, n$. Denote the set of all $n \times n$ alternate matrices over $F_{q}$ by $\mathcal{K}_{n}$. Two $n \times n$ matrices $A$ and $B$ over $F_{q}$ are said to be congruent $\bmod \mathcal{K}_{n}$ if $A+B \in \mathcal{K}_{n}$, which is usually denoted by

$$
A \equiv B\left(\bmod \mathcal{K}_{n}\right)
$$

or simply, $A \equiv B$. Two $n \times n$ matrices $A$ and $B$ over $F_{q}$ are said to be 'cogredient', if there is a nonsingular matrix $Q$ such that $Q A Q^{\mathrm{T}} \equiv B$. A matrix $A$ is called definite if $x A x^{\mathrm{T}}=0$, where $x \in F_{q}^{(n)}$ implies $x=0$.

By [12], Theorem 1.30, we know that any $n \times n$ matrix $R$ over $F_{q}$ is 'cogredient' to a matrix of the form

$$
M=\left(\begin{array}{cccc}
A & I^{(p)} & & \\
& B & & \\
& & C & \\
& & & 0
\end{array}\right)
$$

where $A$ and $B$ are $p \times p$ diagonal matrices, and $C$ is a $d \times d$ definite matrix. Moreover, $p$ and $d$ are uniquely determined by $R$. An $n \times n$ matrix $R$ is said to be regular if $n=2 p+d$.

Let $R$ be an $n \times n$ regular matrix over $F_{q}$. A matrix $A$ is called an orthogonal matrix with respect to $R$ if $A R A^{\mathrm{T}} \equiv R$. The set of all such orthogonal matrices forms a group with respect to matrix multiplication, called the orthogonal group of degree $n$ with respect to $R$ over $F_{q}$, and denoted by $O_{n}\left(F_{q}, R\right)$, i.e.,

$$
O_{n}\left(F_{q}, R\right)=\left\{A \in G L_{n}\left(F_{q}\right): A R A^{\mathrm{T}} \equiv R\right\}
$$

Suppose that $O_{n}\left(F_{q}, R\right)$ acts on the $F_{q}$-vector space $F_{q}^{(n)}$ by

$$
(x)^{A}=x A^{-1^{\mathrm{T}}}, \quad x \in F_{q}^{(n)}, A \in O_{n}\left(F_{q}, R\right)
$$

Then it can induce an action on the vector space $F_{q}^{(n)} \oplus F_{q}^{(n)}$, defined by

$$
(x, y)^{A}=\left(x A^{-1^{\mathrm{T}}}, y A^{-1^{\mathrm{T}}}\right), \quad x, y \in F_{q}^{(n)}, A \in O_{n}\left(F_{q}, R\right) .
$$

For convenience, we define

$$
\widetilde{G}=\left\{(A)=\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right): A \in O_{n}\left(F_{q}, R\right)\right\}
$$

The action of $\widetilde{G}$ on the vector space $F_{q}^{(n)} \oplus F_{q}^{(n)}$ coincides with the action of $O_{n}\left(F_{q}, R\right)$ on $F_{q}^{(n)} \oplus F_{q}^{(n)}$, i.e.,

$$
(x, y)^{(A)}=\left(x A^{-1^{\mathrm{T}}}, y A^{-1^{\mathrm{T}}}\right), \quad x, y \in F_{q}^{(n)},(A) \in \widetilde{G}
$$

And so $\widetilde{G}$ can act on the group algebra $K\left[F_{q}^{(n)} \oplus F_{q}^{(n)}\right]$ by

$$
\left(\sum_{i, j} a_{i j}\left(x_{i}, y_{j}\right)\right)^{(A)}=\sum_{i, j} a_{i j}\left(x_{i}, y_{j}\right)^{(A)}
$$

where $K$ is a field of characteristic different from 2 and $K$ contains $\varepsilon$, a primitive 2 nd root of unity.

The following propositions and theorems will describe the structure of $O_{n}\left(F_{q}, R\right)$ invariant ideals of $K\left[F_{q}^{(n)}\right]$ and $\widetilde{G}$-vector invariant ideals of $K\left[F_{q}^{(n)} \oplus F_{q}^{(n)}\right]$, and also establish the relationship between them. The proofs of these results are similar to those of the corresponding results in Section 2 and Section 3, and thus omitted.

Proposition 5.1. Let $F_{q}$ be a finite field of characteristic 2. Suppose that $O_{n}\left(F_{q}, R\right)$ acts on the $F_{q}$-vector space $F_{q}^{(n)}$. Then there are $(q+1) O_{n}\left(F_{q}, R\right)$-orbits of maximal ideals of $K\left[F_{q}^{(n)}\right]$, i.e., $\widetilde{\Omega}_{\overline{0}}=\left\{I_{0}\right\}, \widetilde{\Omega}_{t}=\left\{I_{\alpha}: 0 \neq \alpha \in F_{q}^{(n)}, \alpha R \alpha^{\mathrm{T}} \equiv t\right\}$, $t \in F_{q}$.

Remark 5. We define $I_{\overline{0}} \triangleq I_{0}, I_{t} \triangleq \bigcap_{I_{\alpha} \in \widetilde{\Omega}_{t}} I_{\alpha}, t \in F_{q}$ and $\widetilde{Q}_{1} \triangleq\left\{I_{\overline{0}}\right\} \cup\left\{I_{t}: t \in F_{q}\right\}$.
Theorem 5.2. Let $F_{q}$ be a finite field of characteristic 2. Suppose that $O_{n}\left(F_{q}, R\right)$ acts on the $F_{q}$-vector space $F_{q}^{(n)}$. Then every $O_{n}\left(F_{q}, R\right)$-invariant ideal $I$ of $K\left[F_{q}^{(n)}\right]$ is an intersection of finitely many ideals in the set $\widetilde{Q}_{1}$ (the same notation as in Remark 5), i.e., $I=\bigcap_{I^{\prime} \in \widetilde{Q}_{1}^{\prime}} I^{\prime}$ where $\widetilde{Q}_{1}^{\prime}$ is a subset of $\widetilde{Q}_{1}$.

Proposition 5.3. Let $F_{q}$ be a field with $q$ elements and char $F_{q}=2$. Suppose that

$$
\widetilde{G}=\left\{(A)=\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right): A \in O_{n}\left(F_{q}, R\right)\right\}
$$

acts on the vector space $F_{q}^{(n)} \oplus F_{q}^{(n)}$. Then there are $\left(q^{3}+q^{2}+q+1\right) \widetilde{G}$-orbits of maximal ideals of $K\left[F_{q}^{(n)} \oplus F_{q}^{(n)}\right]$, i.e.,

$$
\begin{aligned}
\widetilde{\Psi}^{0}= & \left\{I_{(0,0)}\right\} ; \\
\widetilde{\Psi}_{t}^{0_{r}}= & \left\{I_{(\alpha, 0)}: 0 \neq \alpha \in F_{q}^{(n)}, \alpha R \alpha^{\mathrm{T}} \equiv t\right\}, \quad t \in F_{q} ; \\
\widetilde{\Psi}_{t}^{0_{l}}= & \left\{I_{(0, \beta)}: 0 \neq \beta \in F_{q}^{(n)}, \beta R \beta^{\mathrm{T}} \equiv t\right\}, \quad t \in F_{q} ; \\
\widetilde{\Psi}_{t, k}= & \left\{I_{(\alpha, \beta)}: 0 \neq \alpha \in F_{q}^{(n)}, \beta=k \alpha, \alpha R \alpha^{\mathrm{T}} \equiv t\right\}, \quad t \in F_{q}, k \in F_{q}^{*} ; \\
\widetilde{\Psi}_{t, t^{\prime}, t^{\prime \prime}}= & \left\{I_{(\alpha, \beta)}: 0 \neq \alpha \in F_{q}^{(n)}, \beta \neq k \alpha, k \in F_{q}, \alpha\left(R+R^{\mathrm{T}}\right) \beta^{\mathrm{T}} \equiv t, \alpha R \alpha^{\mathrm{T}} \equiv t^{\prime},\right. \\
& \left.\beta R \beta^{\mathrm{T}} \equiv t^{\prime \prime}\right\}, \quad t, t^{\prime}, t^{\prime \prime} \in F_{q} .
\end{aligned}
$$

Remark 6. For convenience, we define

$$
\begin{aligned}
& I^{0} \triangleq I_{(0,0)} ; \\
& I_{t}^{0_{r}} \triangleq \bigcap_{I_{(\alpha, \beta)} \in \widetilde{\Psi}_{t}^{0}} I_{(\alpha, \beta)}, t \in F_{q} ; \quad I_{t, k} \triangleq \bigcap_{I_{(\alpha, \beta)} \in \widetilde{\Psi}_{t, k}} I_{(\alpha, \beta)}, t \in F_{q}, k \in F_{q}^{*} ; \\
& I_{t}^{0_{l}} \triangleq \bigcap_{\left.I_{(\alpha, \beta)}\right)} I_{(\alpha, \beta)}, t \in \widetilde{\Psi}_{q} ; \quad I_{t, t^{\prime}, t^{\prime \prime}} \triangleq \bigcap_{I_{(\alpha, \beta)} \in \widetilde{\Psi}_{t, t^{\prime}, t^{\prime \prime}}} I_{(\alpha, \beta)}, t, t^{\prime}, t^{\prime \prime} \in F_{q} ; \\
& \widetilde{Q}_{2} \triangleq\left\{I^{0}, I_{t}^{0_{r}}, t \in F_{q}, I_{t}^{0_{l}}, t \in F_{q}, I_{t, k}, t \in F_{q}, k \in F_{q}^{*}, I_{t, t^{\prime}, t^{\prime \prime}}, t, t^{\prime}, t^{\prime \prime} \in F_{q}\right\} .
\end{aligned}
$$

Theorem 5.4. Let $F_{q}$ be a field with $q$ elements and char $F_{q}=2$. Suppose that

$$
\widetilde{G}=\left\{(A)=\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right): A \in O_{n}\left(F_{q}, R\right)\right\}
$$

acts on the vector space $F_{q}^{(n)} \oplus F_{q}^{(n)}$. Then every $\widetilde{G}$-invariant ideal I of $K\left[F_{q}^{(n)} \oplus F_{q}^{(n)}\right]$ is an intersection of finitely many ideals in the set $\widetilde{Q}_{2}$ (the same notation as in Remark 6), i.e., $I=\bigcap_{I^{\prime} \in \widetilde{Q}_{2}^{\prime}} I^{\prime}$ where $\widetilde{Q}_{2}^{\prime}$ is a subset of $\widetilde{Q}_{2}$.

Theorem 5.5. Let $F_{q}$ be a finite field of characteristic 2. Suppose that $O_{n}\left(F_{q}, R\right)$ acts on the $F_{q}$-vector space $F_{q}^{(n)}$ and

$$
\widetilde{G}=\left\{(A)=\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right): A \in O_{n}\left(F_{q}, R\right)\right\}
$$

acts on the vector space $F_{q}^{(n)} \oplus F_{q}^{(n)}$. Then the invariant ideals of $K\left[F_{q}^{(n)}\right]$ are precisely the intersections of the natural projections of some vector invariant ideals of $K\left[F_{q}^{(n)} \oplus F_{q}^{(n)}\right]$.

Acknowledgement. The authors are grateful to the anonymous referees for their valuable comments and suggestions. The authors also thank Dr. Miaomiao Ren for helping with the preparation of the final version of this article.

## References

[1] C.J. B. Brookes, D. M. Evans: Augmentation modules for affine groups. Math. Proc. Camb. Philos. Soc. 130 (2001), 287-294.
[2] J. Nan, L. Zeng: Vector invariant ideals of abelian group algebras under the action of the symplectic groups. J. Algebra Appl. 12 (2013), Article ID 1350046, 12 pages.
[3] J. M. Osterburg, D.S. Passman, A.E.Zalesskii: Invariant ideals of abelian group algebras under the multiplicative action of a field II. Proc. Am. Math. Soc. 130 (2002), 951-957.
[4] D. S. Passman: Invariant ideals of abelian group algebras under the action of simple linear groups. Resen. Inst. Mat. Estat. Univ. São Paulo 5 (2002), 377-390.
[5] D. S. Passman: Finitary actions and invariant ideals. Turk. J. Math. 31, Suppl., (2007), 113-130.
[6] D. S. Passman: Invariant ideals of abelian group algebras under the torus action of a field I. J. Algebra 324 (2010), 3035-3043.
[7] D.S. Passman: Invariant ideals of abelian group algebras under the torus action of a field II. J. Algebra 331 (2011), 362-377.
[8] D. S. Passman, A. E. Zalesskiu: Invariant ideals of abelian group algebras under the multiplicative action of a field I. Proc. Am. Math. Soc. 130 (2002), 939-949.
[9] D. R. Richman: On vector invariants over finite fields. Adv. Math. 81 (1990), 30-65.
[10] D. R. Richman: Explicit generators of the invariants of finite groups. Adv. Math. 124 (1996), 49-76.
[11] D. R. Richman: Invariants of finite groups over fields of characteristic $p$. Adv. Math. 124 (1996), 25-48.
[12] Z. Wan: Geometry of classical groups over finite fields and its applications. Discrete Math. 174 (1997), 365-381.

Authors' addresses: Lingli Zeng (corresponding author), Department of Mathematics, Northwest University, 229 North Taibai Road, Xi'an 710127, Shaanxi, P. R. China (current address), and School of Mathematical Sciences, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, Ganjingzi, Liaoning P. R. China (primary address), e-mail: zengll929@163. com; Jizhu N an, School of Mathematical Sciences, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, Ganjingzi, Liaoning, P. R. China, e-mail: jznan@163.com.

