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OF GENERALIZED DIHEDRAL GROUPS
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Abstract. Let H be a finite abelian group of odd order, D be its generalized dihedral
group, i.e., the semidirect product of C2 acting on H by inverting elements, where C2 is the
cyclic group of order two. Let Ω(D) be the Burnside ring of D, ∆(D) be the augmentation
ideal of Ω(D). Denote by ∆n(D) and Qn(D) the nth power of ∆(D) and the nth consecutive
quotient group ∆n(D)/∆n+1(D), respectively. This paper provides an explicit Z-basis for
∆n(D) and determines the isomorphism class of Qn(D) for each positive integer n.
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1. Introduction

Let G be a finite group. A G-set is a finite set X together with an action of G

on X :

(1.1) G×X → X, (g, x) 7→ gx.

Two G-sets X and Y are said to be isomorphic (denoted by X ∼= Y ), if there exists

a bijective map f : X → Y such that

(1.2) f(gx) = gf(x), g ∈ G, x ∈ X.

It is easy to verify that isomorphism of G-sets is an equivalence relation. The equiv-

alence classes are called isomorphism classes. The isomorphism class of X is denoted

The research has been supported by the NSFC (Nos. 11226066, 11401155) and Anhui
Provincial Natural Science Foundation (No. 1308085QA01).
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by [X ]. The sum [X ] + [Y ] of two isomorphism classes [X ] and [Y ] is defined by

(1.3) [X ] + [Y ] = [X ⊔ Y ],

where X ⊔Y is the disjoint union of X and Y , which is also a G-set in the canonical

way.

The Burnside ring Ω(G) is the group completion of the monoid (under addition) of

isomorphism classes of G-sets. Its multiplication is induced by the Cartesian product

of finite sets. Note that the Cartesian product X × Y is a G-set via coordinating

action. By [6], Ω(G) is a commutative ring with an identity element. Its underlying

group is a finitely generated free abelian group with the isomorphism classes of

transitive G-sets as basis. Hence, by [6], its free rank is equal to the number of

conjugacy classes of subgroups of G.

The number of fixed points of a G-set induces a ring homomorphism

(1.4) ϕ : Ω(G) → Z.

This homomorphism is called the augmentation map. Its kernel ∆(G) is called the

augmentation ideal of Ω(G). Let ∆n(G) and Qn(G) denote the nth power of ∆(G)

and the nth consecutive quotient group∆n(G)/∆n+1(G), respectively. Wu and Tang

in [11] determined the isomorphism class of Qn(G) for all finite abelian groups and

for any positive integer n. In particular, they showed that for any finite abelian

group G, the isomorphism class of Qn(G) does not depend on n when n is large

enough.

Despite these efforts, the isomorphism class of Qn(G) remained unclear for non-

abelian groups. Let H be a finite abelian group of odd order, D be its generalized

dihedral group. The goal of this article is to give an explicit Z-basis for ∆n(D) and

determine the isomorphism class of Qn(D) for each positive integer n.

The result also yields Tor
Ω(D)
1 (Ω(D)/∆n(D),Ω(D)/∆(D)) because for any finite

group G, Qn(G) ∼= Tor
Ω(G)
1 (Ω(G)/∆n(G),Ω(G)/∆(G)).

Two related problems of recent interest have been to investigate the augmentation

ideals and their consecutive quotients for integral group rings and representation rings

of finite groups. These problems have been well studied in [1]–[5], [7]–[10].
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2. Preliminaries

In this section, we provide some useful results about Ω(G), ∆n(G), Qn(G) and

finitely generated free abelian groups.

Let X be a G-set. There is an equivalence relation on X given by saying that x

is related to y if there exists g ∈ G with gx = y. The equivalence classes are called

orbits. It is easy to see that the orbit of x is

(2.1) Gx = {gx : g ∈ G}.

A G-set is transitive if it has only one orbit. For instance, if x ∈ X , the orbit Gx is

a transitive G-set. As another example, if K is a subgroup of G, the set G/K of left

cosets of K is a transitive G-set under g(hK) = (gh)K.

Lemma 2.1. Except for the order of terms, each isomorphism class of a G-set

has a unique expression as a sum of isomorphic classes of transitive G-sets. Indeed,

if X has orbits X1, . . . , Xr, then [X ] = [X1] + . . .+ [Xr].

There is a standard form for each transitive G-set. The stabilizer of an element

x ∈ X is the set

(2.2) Gx = {g ∈ G : gx = x}.

It is easy to verify that the stabilizer Gx is a subgroup of G. The following lemma

shows that every transitive G-set is isomorphic to G/K for some subgroup K of G.

Lemma 2.2. For any G-set X and x ∈ X ,

(2.3) Gx ∼= G/Gx, gx 7→ gGx.

For each x ∈ X and g ∈ G, Ggx = gGxg
−1. Any isomorphism of G-sets f : X → Y

preserves stabilizers: Gx = Gf(x). From these two facts we get the following lemma.

Lemma 2.3. Let K and L be two subgroups of G. Then G/K ∼= G/L if and only

if K and L are conjugate in G.

Assembling the above facts, we have proved the following theorems.

Theorem 2.4. Let K be a set of subgroups of G, one from each conjugacy class

of subgroups of G. Each isomorphism class [X ] of a G-set has a unique expression

(2.4)
∑

K∈K

dK [G/K],

where dK is the number of orbits in X that are isomorphic to G/K.
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Theorem 2.5. For each finite group G, Ω(G) is, additively, the free abelian group

based on the isomorphism classes [G/K] as K ranges through the set K of represen-

tatives of the conjugacy classes of subgroups of G.

Recall that ∆(G) is the kernel of ϕ : Ω(G) → Z which sends [X ] to the number

#(X) of fixed points of X . Brief calculations show that

(2.5) #(G/K) =

{

1 if K = G,

0 if K < G.

From this we get the following corollary.

Corollary 2.6. For each finite group G, the underlying group of ∆(G) is the free

abelian group based on the isomorphism classes [G/K] as K ranges through a set of

representatives of the conjugacy classes of proper subgroups of G.

The multiplication in Ω(G) is completely determined by the product

(2.6) [G/K][G/L] = [(G/K)× (G/L)],

where K,L are subgroups of G. The following lemma tackles this product.

Lemma 2.7. Let K be a subgroup of G, L be a normal subgroup of G. Then

(2.7) [G/K][G/L] =
|G|

|KL|
[G/(K ∩ L)].

P r o o f. Let (gK, hL) be an element of the Cartesian product (G/K) × (G/L),

where g, h ∈ G. A short calculation shows that

(2.8) G(gK,hL) = gKg−1 ∩ hLh−1 = gKg−1 ∩ L = g(K ∩ L)g−1.

Hence each orbit in (G/K) × (G/L) is isomorphic to G/(K ∩ L). Then the lemma

follows from the cardinalities of [G/K], [G/L] and [G/(K ∩ L)]. �

Thanks to the above results, we get two useful properties of Qn(G) and ∆n(G).

Theorem 2.8. Qn(G) is a finite abelian group for any positive integer n.
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P r o o f. Note that ∆(G) is finitely generated as a free abelian group. Thus we

only need to show Qn(G) is torsion, which is equivalent to showing that for each

proper subgroup K of G, there is a positive integer m such that

(2.9) m[G/K] ∈ ∆2(G).

We prove this by induction on |K|. If |K| = 1, then K = {1}. By Lemma 2.7, we

get [G/{1}]2 = |G|[G/{1}], which implies |G|[G/{1}] ∈ ∆2(G). Assume (2.9) holds

for all proper subgroups of G whose orders are less than |K|.

To finish the proof, we need the following assertion.

Assertion 2.9. Regarding the square of [G/K], we have

(2.10) [G/K]2 = d[G/K] +
r

∑

i=1

[G/Li],

where d is a positive integer, L1, . . . , Lr are proper subgroups of K.

P r o o f. Let (gK, hK) ∈ (G/K) × (G/K), where g, h ∈ G. Short calculations

show

(2.11) G(gK,hK) = gKg−1 ∩ hKh−1 = g(K ∩ g−1hKh−1g)g−1.

Thus each orbit in (G/K)× (G/K) is isomorphic to G/L for some subgroup L of K.

To finish the proof, we just need to show that there is an orbit in (G/K) × (G/K)

which is isomorphic to G/K itself. This is obviously true since G(K,K) = K. �

We return now to the proof of Theorem 2.8. By Assertion 2.9, we get

(2.12) d[G/K] = [G/K]2 −
r

∑

i=1

[G/Li].

Due to the induction assumption, there are r positive integers m1, . . . ,mr such that

(2.13) mi[G/Li] ∈ ∆2(G), i = 1, . . . , r.

From these it follows that

(2.14) m1 . . .mrd[G/K] = m1 . . .mr[G/K]2 −m1 . . .mr

r
∑

i=1

[G/Li] ∈ ∆2(G),

as required. �
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Corollary 2.10. For each positive integer n, ∆n(G) has free rank s(G)−1, where

s(G) is the number of conjugacy classes of subgroups of G.

P r o o f. It follows from the fact that∆(G) has free rank s(G)−1 and the quotient

∆(G)/∆n(G) is torsion. �

At last, we recall a classical result about finitely generated free abelian groups.

Lemma 2.11. Let K be a finitely generated free abelian group of rank r. If the

r elements g1, . . . , gr generate K, then they form a basis of K.

3. Necessary tools

In this section, we construct a basis of ∆(D) as a finitely generated free abelian

group. Then we determine the multiplication in Ω(D).

Let H be a finite abelian group of odd order. Recall that the generalized dihedral

group D of H is the semidirect product of C2 acting on H by inverting elements,

where C2 is the cyclic group of order two. Denote by σ the generate of C2. Then D

can be partitioned into H and σH . Its multiplication is determined by

(3.1) σ−1hσ = h−1, h ∈ H.

The following lemma provides a set of representatives of the conjugacy classes of

subgroups of D.

Lemma 3.1. Let K be a subgroup of D.

(i) If K ⊂ H , then K is normal in D.

(ii) If K 6⊂ H , then K is conjugate to N ∪ σN in D, where N = K ∩H .

P r o o f. It is easy to see that (i) is a direct corollary of (3.1). For (ii), since

K 6⊂ H , there is g ∈ H such that σg ∈ K. We claim that

(3.2) K = N ∪ σgN.

Suppose (3.2) has been proved. Since H has odd order, there exists an integer k

such that g2k+1 = 1. Then the lemma follows from

(3.3) g−k(N ∪ σgN)gk = N ∪ σg2k+1N = N ∪ σN.
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To show (3.2), we just need to prove that K ∩ σH is contained in σgN . Suppose

σh ∈ K, where h ∈ H . Short calculations show that

(3.4) (σg)−1(σh) = g−1h ∈ K ∩H = N.

From this it follows that

(3.5) σh = σg(g−1h) ∈ σgN,

as required. �

Thanks to Lemma 3.1, we get a basis of Ω(D), hence a basis of ∆(D). For

convenience, we fix the following notation.

⊲ For any subgroup N of H , denote [D/N ] and [D/(N ∪ σN)] by αN and βN ,

respectively.

⊲ For any subset Γ ⊂ Ω(D), denote by ZΓ the set of all Z-linear combinations of

elements of Γ.

Theorem 3.2. The underlying group of Ω(D) is the free abelian group with basis

(3.6) {αN : N 6 H} ∪ {βN : N 6 H}.

P r o o f. Note that for each subgroup N of H , N ∪ σN is a subgroup of D. Then

the theorem follows from Lemma 3.1 and the fact that all subgroups appearing

in (3.6) are pairwise non-conjugate. �

Corollary 3.3. ∆(D) is, additively, the free abelian group based on

(3.7) {αN : N 6 H} ∪ {βN : N < H}.

Now we determine the multiplication in Ω(D).

Lemma 3.4. Let M,N be two subgroups of H . Then

αMαN =
2|H |

|MN |
αM∩N ,(3.8)

αMβN =
|H |

|MN |
αM∩N ,(3.9)

βMβN ∈ Z
{

αM∩N , βM∩N

}

.(3.10)
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P r o o f. The first two identities are direct corollaries of Lemma 2.7 since each

subgroup of H is normal in D. Now consider the last identity. Note that for any

x ∈
(

D/(M ∪ σM)
)

×
(

D/(N ∪ σN)
)

, there exist g, h ∈ H such that

(3.11) x =
(

g(M ∪ σM), h(N ∪ σN)
)

.

Short calculations show

Dx ∩H = g(M ∪ σM)g−1 ∩ h(N ∪ σN)h−1 ∩H(3.12)

= (M ∪ σg−2M) ∩ (N ∪ σh−2N) ∩H

= M ∩N,

where Dx is the stabilizer of x. So by Lemma 3.1, we get

⊲ Dx = M ∩N , if Dx ⊂ H ,

⊲ Dx is conjugate to (M ∩N) ∪ σ(M ∩N) in D, if Dx 6⊂ H .

From this it follows that

(3.13) [Dx] =

{

αM∩N if Dx ⊂ H,

βM∩N if Dx 6⊂ H,

where Dx is the orbit of x. Then the last identity is clear. �

Lemma 3.5. For any subgroup N of H , we have

(3.14) β2
N = βN + dNαN ,

where dN is a natural number.

P r o o f. Let H/N = {h1N, . . . , hrN}, where h1, . . . , hr ∈ H . It is easy to verify

that

(3.15) D/(N ∪ σN) =
{

h1(N ∪ σN), . . . , hr(N ∪ σN)
}

.

Denote
(

hi(N ∪ σN), hj(N ∪ σN)
)

by xij . Then brief calculations show

Dxij
= hi(N ∪ σN)h−1

i ∩ hj(N ∪ σN)h−1
j(3.16)

= (N ∪ σh−2
i N) ∩ (N ∪ σh−2

j N)

= N ∪ σ(h−2
i N ∩ h−2

j N).
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Note that

(3.17) h−2
i N ∩ h−2

j N =

{

h−2
i N if h2

ih
−2
j ∈ N,

∅ if h2
ih

−2
j /∈ N.

So by the proof of Lemma 3.4, we get

(3.18) [Dxij ] =

{

βN , h2
ih

−2
j ∈ N,

αN , h2
ih

−2
j /∈ N.

Regarding h2
ih

−2
j , we have the following assertion.

Assertion 3.6. h2
ih

−2
j ∈ N if and only if i = j.

P r o o f. We just need to show that h2
ih

−2
j ∈ N implies i = j. Recall that H has

odd order, so there exists an integer l such that (hih
−1
j )2l−1 = 1. A short calculation

shows

(3.19) hih
−1
j = (hih

−1
j )2l = (h2

ih
−2
j )l ∈ N.

This implies hiN = hjN , hence i = j. �

We return now to the proof of Lemma 3.5. Due to Assertion 3.6, there are exactly

r elements x11, . . . , xrr whose orbits are isomorphic to D/(N ∪ σN). Note that

D/(N ∪ σN) has r elements. Thus there is exactly one orbit in
(

D/(N ∪ σN)
)

×
(

D/(N ∪ σN)
)

which is isomorphic to D/(N ∪ σN). From this it follows that

(3.20) β2
N = βN + dNαN ,

where dN is the number of orbits in
(

D/(N ∪ σN)
)

×
(

D/(N ∪ σN)
)

that are iso-

morphic to D/N , as required. �

4. Main results

In this section, we give an explicit Z-basis for ∆n(D) and determine the isomor-

phism class of Qn(D) for each positive integer n.

Theorem 4.1. For each positive integer n, ∆n(D) is, additively, the free abelian

group based on

(4.1) {2n−1αH} ∪ {αN : N < H} ∪ {βN : N < H}.
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P r o o f. We prove the theorem by induction on n. The case n = 1 is clear.

Assume the theorem holds for n−1. Note that (4.1) has the same cardinality as (3.7),

so due to Corollary 2.10 and Lemma 2.11, we only need to show it generates ∆n(D).

Recall that ∆(D) has basis

(4.2) {αH} ∪ {αM : M < H} ∪ {βM : M < H}.

So by the induction assumption, ∆n(D) = ∆n−1(D)∆(D) is generated by

{2n−2α2
H} ∪ {αHαN : N < H} ∪ {αHβN : N < H}(4.3)

∪ {αMαN : M < H, N < H} ∪ {αMβN : M < H, N < H}

∪ {βMβN : M < H, N < H}.

Due to the first two identities in Lemma 3.4, we get for any two subgroups M , N

of H ,

(4.4) αMαN = 2αMβN ,

which implies that {αHαN : N < H} and {αMαN : M,N < H} are redundant

in (4.3). Hence, by a short calculation, ∆n(D) is generated by

(4.5) {2n−1αH} ∪ {αN : N < H} ∪ {αMβN : M,N < H} ∪ {βMβN : M,N < H}.

Moreover, it is easy to see that {αMβN : M,N < H} is redundant too since, by the

second identity of Lemma 3.4, it is a subset of Z{αN : N < H}. To finish the proof,

we need to show that the last subset of (4.5) can be replaced by {βN : N < H}.

Note that the last formula in Lemma 3.4 implies

(4.6) {βMβN : M < H, N < H} ⊂ Z{αN : N < H}+ Z{βN : N < H}.

Thus we just need to show that {βN : N < H} is contained in∆n(D). By Lemma 3.5,

we have for any subgroup N of H ,

(4.7) βN = β2
N − dNαN .

Then the theorem follows from the fact that either β2
N or αN belongs to ∆

n(D). �

Theorem 4.2. For any positive integer n,

(4.8) Qn(D) ∼= C2.
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P r o o f. This is a direct corollary of Theorem 4.1. �
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