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Abstract. The concept of a 0-ideal in 0-distributive posets is introduced. Several prop-
erties of 0-ideals in 0-distributive posets are established. Further, the interrelationships
between 0-ideals and α-ideals in 0-distributive posets are investigated. Moreover, a char-
acterization of prime ideals to be 0-ideals in 0-distributive posets is obtained in terms of
non-dense ideals. It is shown that every 0-ideal of a 0-distributive meet semilattice is
semiprime. Several counterexamples are discussed.
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1. Introduction

Ideals play a major role in the theory of lattices, in particular distributive lat-

tices. This fact gives the reason why some mathematicians have tried to study some

types of ideals and establish their properties. Cornish [1] introduced the concept

of 0-ideals in distributive lattices and obtained their properties in [2] using congru-

ences. Jayaram [6] generalized the concept of 0-ideals in semilattices and studied

their properties in [7] in the case of quasicomplemented 0-distributive semilattices.

In this paper we introduce the concept of 0-ideals for more general structures,

namely the posets. In Section 2 of this paper, we will show that many of the classical

results of the lattice theory can be extended to posets. In particular, we investigate

the interrelationships between 0-ideals and α-ideals in 0-distributive posets. In Sec-

tion 3, we establish the relations between 0-ideals and prime ideals and also between

0-ideals and semiprime ideals.

We begin with the necessary concepts and terminology. For undefined notation

and terminology the reader is referred to Grätzer [3].
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Let P be a poset and A ⊆ P . The set Au = {x ∈ P : x > a for every a ∈ A}

is called the upper cone of A. Dually, we have the concept of the lower cone Al

of A. We shall write Aul instead of {Au}l and dually. The upper cone {a}u is simply

denoted by au and {a, b}u is denoted by (a, b)u. Similar notation is used for lower

cones. Further, for A,B ⊆ P , {A ∪ B}u is denoted by {A,B}u and for x ∈ P , the

set {A ∪ {x}}u is denoted by {A, x}u. Similar notation is used for lower cones. We

note that A ⊆ Aul and A ⊆ Alu. If A ⊆ B, then Bl ⊆ Al and Bu ⊆ Au. Moreover,

Alul = Al, Aulu = Au and {au}l = {a}l = al.

A nonempty subset I of a poset P is called an ideal if a, b ∈ I implies (a, b)ul ⊆ I,

see Halaš [4]. Dually, we have the concept of a filter. Given a ∈ P , the subset

al = {x ∈ P : x 6 a} is an ideal of P generated by a, denoted by (a]; we shall call (a]

a principal ideal. Dually, a filter [a) = au = {x ∈ P : x 6 a} generated by a is

called a principal filter. A nonempty subset Q of P is called an up directed set, if

Q∩ (x, y)u 6= ϕ for any x, y ∈ Q. Dually, we have the concept of a down directed set.

If an ideal I (filter F ) is an up (down) directed set of P , then it is called a u-ideal

(l-filter). An ideal or filter is called proper if it does not coincide with P .

A proper ideal I is called prime if (a, b)l ⊆ I implies that a ∈ I or b ∈ I, see Halaš

and Rach̊unek [5]. An ideal I of a poset P is called semiprime if (a, b)l ⊆ I and

(a, c)l ⊆ I together imply {a, (b, c)u}l ⊆ I, see Kharat and Mokbel [9]. Dually, we

have the concepts of a prime filter and semiprime filter.

A poset P with 0 is called 0-distributive if (x, y)l = {0} = (x, z)l implies

{x, (y, z)u}l = {0} for x, y, z ∈ P , see Joshi and Waphare [8]. Evidently, a poset P

with 0 is 0-distributive if and only if (0] is a semiprime ideal.

For a nonempty subset A of a poset P with 0, define a subset A⊥ of P as

A⊥ = {z ∈ P : (a, z)l = {0} for all a ∈ A};

if A = {a}, then we write a⊥ instead of {a}⊥. We note that A ⊆ A⊥⊥ and a ∈ a⊥⊥.

Further, A⊥ =
⋂

a∈A

a⊥ and A ∩ A⊥ = {0}. Moreover, if A ⊆ B then B⊥ ⊆ A⊥.

An ideal I of a poset P is said to be an α-ideal if x⊥⊥ ⊆ I for all x ∈ I, see

Mokbel [10]. An ideal I of a poset P is said to be dense if I⊥ = {0}.

For a nonempty subset A of a poset P with 0, consider the set

0(A) = {x ∈ P : (a, x)l = {0} for some a ∈ A}.

A proper ideal I of a poset P with 0 is said to be a 0-ideal if I = 0(F ) for some

proper filter F of P .

Note that, for a given proper filter F of a poset P , if 0(F ) is a 0-ideal, then

0(F ) ∩ F = ϕ. In fact, if there exists x ∈ P such that x ∈ 0(F ) ∩ F , then exists
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y ∈ F such that (x, y)l = {0}. Since x, y ∈ F , we have (x, y)lu = {0}u = P ⊆ F ,

a contradiction to the fact that F is a proper filter.

If P is a lattice then each of the above concepts coincides with the corresponding

concept for lattices. Throughout this paper, P denotes a poset with 0.

2. 0-ideals and α-ideals

In this section, we will study the relation between 0-ideals and α-ideals in posets.

We begin by proving the following result in a general poset.

Theorem 2.1. Every 0-ideal of a poset is an α-ideal.

P r o o f. Let I be a 0-ideal of a poset P . Then there exists a proper filter F such

that I = 0(F ). Let us show that I is an α-ideal. To this aim, let x ∈ I and a ∈ x⊥⊥.

We have to show that a ∈ I. Since x ∈ I = 0(F ), there exists an element y ∈ F

such that (x, y)l = {0}, that is y ∈ x⊥. Now, because a ∈ x⊥⊥ and y ∈ x⊥, we have

(a, y)l = {0}. Hence by definition of 0(F ), we have a ∈ 0(F ) = I. �

R em a r k 2.2. The converse of Theorem 2.1 does not hold in general. Let N be

the set of natural numbers. Consider the set P = {ϕ}∪{N}∪{X : X is a finite subset

of N}. It is easy to observe that P is a poset under set inclusion. Let I = P − {N}.

Then I is an α-ideal but not a 0-ideal. Indeed, {N} is the only filter disjoint with I

and 0({N}) = {ϕ}. In Theorem 2.13 of this paper, we answer the question “Under

which conditions, the converse of Theorem 2.1 will be true?”. Before that, let us

extrapolate some properties of 0-ideals.

Lemma 2.3. Let F be a proper l-filter of a 0-distributive poset P . Then 0(F ) is

a 0-ideal.

P r o o f. Let x, y ∈ 0(F ). To show that 0(F ) is an ideal, we have to show that

(x, y)ul ⊆ 0(F ). Since x, y ∈ 0(F ), there exist f1, f2 ∈ F such that (x, f1)
l = {0} =

(y, f2)
l. Since F is an l-filter and f1, f2 ∈ F , there exists an element f ∈ (f1, f2)

l∩F .

Evidently (x, f)l = {0} = (y, f)l. By 0-distributivity, {f, (x, y)u}l = {0}. Let

z ∈ (x, y)ul. So (f, z)l ⊆ {f, (x, y)u}l = {0} which gives (f, z)l = {0}. This implies

z ∈ 0(F ), as f ∈ F . Thus (x, y)ul ⊆ 0(F ). Therefore 0(F ) is an ideal. Now, we

claim that 0(F ) is a proper ideal. On the contrary, suppose that 0(F ) = P . Then

clearly F ⊂ 0(F ). So for any a ∈ F there exists b ∈ F such that (a, b)l = {0}. As

a, b ∈ F and F is a filter, we get that P = {0}u = (a, b)lu ⊆ F , a contradiction with

the properness of F . �
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R em a r k 2.4. Note that the condition on a filter being an l-filter is necessary in

the statement of Lemma 2.3. Indeed, consider the 0-distributive poset P depicted

in Figure 1. Observe that the set F = {a, b, c, 1} is a proper filter but not an l-filter

and 0(F ) = {0} ∪ {xi} ∪ {yi} ∪ {zi}, where i = 1, 2, . . . But 0(F ) is not an ideal, as

x1, y1 ∈ 0(F ) and (x1, y1)
ul = al 6⊆ 0(F ).

0

1

x1 y1 z1

x2 y2 z2

a b c

Figure 1.

Lemma 2.5 (Joshi and Waphare [8]). A poset P is 0-distributive if and only if

x⊥ is an ideal for every x ∈ P .

Theorem 2.6. Let x be a nonzero element of a 0-distributive poset P . Then x⊥

is a 0-ideal.

P r o o f. Let x be a nonzero element of P , that means x⊥ 6= P . So x⊥ is a proper

ideal by Lemma 2.5. We claim that x⊥ = 0([x)). Suppose that a ∈ x⊥. Then

clearly, (a, x)l = {0} and x ∈ [x). Thus a ∈ 0([x)), and hence x⊥ ⊆ 0([x)). For the

converse inclusion, let a ∈ 0([x)). Then there exists z ∈ [x) such that (a, z)l = {0}.

Since x 6 z, we obtain (a, x)l = {0}. This implies a ∈ x⊥, and hence 0([x)) ⊆ x⊥.

Combining both the inclusions, we get x⊥ = 0([x)). Thus x⊥ is a 0-ideal. �

Lemma 2.7. Let P be a poset with 0. The following statements for b, x, y ∈ P

are equivalent: (1) b ∈ (x, y)l⊥, (2) (b, x, y)l = {0}, (3) (b, x)l ⊆ y⊥.

P r o o f. (1) ⇒ (2). Suppose b ∈ (x, y)l⊥. Let z ∈ (b, x, y)l. Clearly, z 6 b and

z ∈ (x, y)l. Since z ∈ (x, y)l and b ∈ (x, y)l⊥, we get (b, z)l = {0}. But z 6 b,

therefore z = 0. Thus (b, x, y)l = {0}.

(2) ⇒ (3). Suppose that (b, x, y)l = {0}. Let z ∈ (b, x)l. Then (z, y)l ⊆

(b, x, y)l = {0}. Hence z ∈ y⊥.

(3) ⇒ (1). Let (b, x)l ⊆ y⊥ and z ∈ (x, y)l. To prove that b ∈ (x, y)l⊥ it

is sufficient to show that (b, z)l = {0}. Since z 6 x and (b, x)l ⊆ y⊥, we have

(b, z)l ⊆ y⊥. Further, if a ∈ (b, z)l, then a ∈ y⊥ and a 6 z 6 y. Consequently, a = 0

and hence (b, z)l = {0} as required. �
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Lemma 2.8. Let x and y be elements of a poset P with 0. Then

x⊥⊥ ∩ y⊥⊥ = (x, y)l⊥⊥.

P r o o f. It is enough to show that x⊥⊥ ∩ y⊥⊥ ⊆ (x, y)l⊥⊥, as the converse in-

clusion is always true. Suppose that a ∈ x⊥⊥ ∩ y⊥⊥ and b ∈ (x, y)l⊥. We have to

show that (a, b)l = {0}. Evidently a ∈ x⊥⊥ and a ∈ y⊥⊥, so we have x⊥ ⊆ a⊥ and

y⊥ ⊆ a⊥. Now, since b ∈ (x, y)l⊥, by Lemma 2.7 we have (b, x)l ⊆ y⊥. This implies

(b, x)l ⊆ a⊥. Again by the assertion of Lemma 2.7, (b, x)l ⊆ a⊥ implies (a, b)l ⊆ x⊥.

Hence (a, b)l ⊆ x⊥ ⊆ a⊥. Now, it is clear that (a, b)l = {0}. Indeed, if z ∈ (a, b)l,

then z ∈ (a] ∩ a⊥ = {0}. Therefore z = 0, as we need. �

For an ideal I of a poset P , let I ′ and I⊥ denote the following subsets of P :

I ′ = {x ∈ P : z⊥ ⊆ x⊥ for some z ∈ I},

I⊥ = {x ∈ P : z⊥ ⊆ x⊥⊥ for some z ∈ I}.

In the next result, we establish some properties of I⊥.

Lemma 2.9. Let I be a proper u-ideal of a 0-distributive poset P . Then I⊥ is

a filter. Moreover, if I is an α-ideal, then I⊥ is a proper filter.

P r o o f. Let I be a proper u-ideal of P . We show that I⊥ is a filter. For this

assume that x, y ∈ I⊥. We have to show that (x, y)
lu ⊆ I⊥. Since x, y ∈ I⊥, there

exist z1, z2 ∈ I such that z⊥1 ⊆ x⊥⊥ and z⊥2 ⊆ y⊥⊥, and thus z⊥1 ∩ z⊥2 ⊆ x⊥⊥ ∩ y⊥⊥.

This implies z⊥
1
∩ z⊥

2
⊆ (x, y)l⊥⊥ by Lemma 2.8. Since I is a u-ideal and z1, z2 ∈ I,

there exists an element z ∈ P such that z ∈ (z1, z2)
u ∩ I. Now, z ∈ (z1, z2)

u gives

z⊥ ⊆ z⊥
1
∩ z⊥

2
, hence z⊥ ⊆ (x, y)l⊥⊥. Now, let a ∈ (x, y)lu. Then clearly (x, y)l ⊆ al,

thus (x, y)l⊥⊥ ⊆ a⊥⊥. This implies z⊥ ⊆ (x, y)l⊥⊥ ⊆ a⊥⊥. Since z⊥ ⊆ a⊥⊥ and

z ∈ I by the definition of I⊥, we get a ∈ I⊥. Consequently, (x, y)
lu ⊆ I⊥.

Further, let I be an α-ideal. We claim that I⊥ 6= P . Suppose on the contrary that

I⊥ = P . Observe that 0 ∈ I⊥. Hence by the definition of I⊥, there exists z ∈ I such

that z⊥ ⊆ 0⊥⊥ = {0}, that is, z⊥ = {0}. Since I is an α-ideal and z ∈ I, we have

P = {0}⊥ = z⊥⊥ ⊆ I, a contradiction to the fact that I is a proper ideal. �

R em a r k 2.10. (1) In Lemma 2.9, the condition on I of being a u-ideal is nec-

essary. For example in the 0-distributive poset P depicted in Figure 2, the ideal

I = {0, a, b} is not a u-ideal and I⊥ = {yi} ∪ {xi} ∪ {a, b}, where i = 1, 2, . . . , is not

a filter. In fact, a, b ∈ I⊥ but (a, b)
lu = P 6⊆ I⊥.

(2) The assertion of Lemma 2.9 is not true if we remove the condition that I is an

α-ideal. For this, consider the three elements poset P = {0, a, 1}, where 0 < a < 1.
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Figures 2 and 3.

It can be easily seen that P is 0-distributive. Observe that the set I = {0, a} is

a proper u-ideal but not an α-ideal. Note that I⊥ is a filter but not proper.

We say that a poset P satisfies the condition (Q) if the following assertion is true.

(Q) For any x ∈ P , there exists y ∈ P such that x⊥⊥ = y⊥.

R em a r k 2.11. The poset P depicted in Figure 3 is an example of a 0-distributive

one which does not satisfy (Q). In fact, x ∈ P but there is no element y ∈ P for

which x⊥⊥ = y⊥.

Lemma 2.12 (Mokbel [10]). Let I be a u-ideal of a 0-distributive poset P .

Then I ′ is the smallest α-ideal containing I. Moreover, an ideal I of P is an α-ideal

if and only if I = I ′.

Theorem 2.13. Let I be a proper u-ideal of a 0-distributive poset P satisfying

the condition (Q). If I is an α-ideal, then I is a 0-ideal.

P r o o f. Let I be an α-ideal of P . By Lemma 2.9, I⊥ is a proper filter. To show

that I is a 0-ideal, it is enough to show that I = 0(I⊥). Let x ∈ I. Since I = I ′ by

Lemma 2.12, we have x ∈ I ′. Hence there exists z ∈ I such that z⊥ ⊆ x⊥. Therefore

x⊥⊥ ⊆ z⊥⊥. Since x ∈ P , by (Q) there exists y ∈ P such that x⊥⊥ = y⊥. Using

x⊥⊥ ⊆ z⊥⊥, we get y⊥ ⊆ z⊥⊥. This yields z⊥ ⊆ y⊥⊥. Now, z⊥ ⊆ y⊥⊥ and z ∈ I

together imply that y ∈ I⊥. Since y ∈ I⊥ and x ∈ x⊥⊥ = y⊥, that is, (x, y)l = {0},

we have x ∈ 0(I⊥). Therefore I ⊆ 0(I⊥).

For the converse inclusion, let x ∈ 0(I⊥). Then there is an element b ∈ I⊥ such

that (x, b)l = {0}. This gives b⊥⊥ ⊆ x⊥. Since b ∈ I⊥, there exists an element z ∈ I

such that z⊥ ⊆ b⊥⊥. This means that z⊥ ⊆ b⊥⊥ ⊆ x⊥. Since z⊥ ⊆ x⊥ and z ∈ I,
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we have x ∈ I ′ = I. Thus 0(I⊥) ⊆ I. By combining both the inclusions, we have

I = 0(I⊥). �

R em a r k 2.14. (1) The condition on I of being a u-ideal cannot be dropped in

the statement of Theorem 2.13. The 0-distributive poset P shown in Figure 4 clearly

satisfies the condition (Q). Now, consider the proper α-ideal I = {0, a, b} which is

not a u-ideal. Observe that there does not exist a filter F of P for which I = 0(F ).

(2) Also, consider the 0-distributive poset P depicted in Figure 3 which does not

satisfy (Q). Observe that the proper u-ideal I = (x] is an α-ideal but there does

not exist a filter F in P for which I = 0(F ). Therefore the condition (Q) cannot be

dropped out in Theorem 2.13.

0

1

a b

c d

Figure 4.

An immediate consequence of Theorem 2.1 and Theorem 2.13 is

Corollary 2.15. Let I be a proper u-ideal of a 0-distributive poset P satisfying

the condition (Q). Then I is an α-ideal if and only if I is a 0-ideal.

3. 0-ideals and primeness

Lemma 3.1. Every non-dense prime ideal of a 0-distributive poset P is of the

form x⊥ for some nonzero x of P .

P r o o f. Let I be a non-dense prime ideal of P , that is, I⊥ 6= {0}. Then there

exists an element x ∈ I⊥ such that x 6= 0. Using the fact that I ∩ I⊥ = {0}, we get

that x /∈ I. We claim that I = x⊥. Since x ∈ I⊥, we obtain I ⊆ I⊥⊥ ⊆ x⊥. Hence

I ⊆ x⊥. For the converse inclusion, suppose z ∈ x⊥. We have (z, x)l = {0} ⊆ I and

x /∈ I; by primeness of I, we get z ∈ I. Thus x⊥ ⊆ I, as we need. �

By Theorem 2.6 and Lemma 3.1, the following corollary follows.
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Corollary 3.2. If a prime ideal I of a 0-distributive poset P is non-dense, then I

is a 0-ideal.

An element q of a poset P with 0 is called an atom if there is no c ∈ P for which

0 < c < q.

Lemma 3.3 (Kharat and Mokbel [9]). Every l-filter of a finite poset P is principal.

Theorem 3.4. Let F be an l-filter of a finite 0-distributive poset P . Then 0(F )

is a semiprime ideal.

P r o o f. If F = P , then 0(F ) = P is a semiprime ideal. Suppose that F 6= P .

By Lemma 3.3, F is principal, say F = [f). In view of Lemma 2.3, it is enough to

show that 0([f)) is semiprime. Suppose that (x, y)l ⊆ 0([f)) and (x, z)l ⊆ 0([f)).

We have to show that {x, (y, z)u}l ⊆ 0([f)). Let a ∈ {x, (y, z)u}l. Suppose on

the contrary that a /∈ 0([f)). Therefore (a, f)l 6= {0}, and so there is a nonzero

element b ∈ P such that b ∈ (a, f)l. Since P is finite and b 6= 0, there exists an

atom q ∈ P such that q 6 b. Observe that (q, y)l = {0}. Indeed, if (q, y)l 6= {0},

then q 6 y. Since q 6 a 6 x and q 6 y, we get that q ∈ (x, y)l ⊆ 0([f)), thus

(q, f)l = {0}, a contradiction to the fact that q 6 f . Similarly, (q, z)l = {0}. Now, by

0-distributivity, we get {q, (y, z)u}l = {0}. Since a ∈ (y, z)ul, we have (q, a)l = {0},

a contradiction to the fact that q 6 a. Thus a ∈ 0([f)). �

0

1

a b c d

d′ c′ b′ a′

Figure 5.

R em a r k 3.5. In the finite 0-distributive poset P depicted in Figure 5, consider

the filter F = {1, a′, b′, c′} which is not an l-filter. Observe that 0(F ) = {0, a, b, c}

is an ideal but not a semiprime one. In fact, (d′, b′)l ⊆ 0(F ) and (d′, c′)l ⊆ 0(F ),

but d′l = {d′, (b′, c′)u}l 6⊆ 0(F ). Hence the condition of the filter being an l-filter is

essential in Theorem 3.4.

516



However, in the case of meet semilattices we have

Theorem 3.6. Every 0-ideal of a 0-distributive meet semilattice S is semiprime.

P r o o f. Suppose that 0(F ) is a 0-ideal of S. Let x ∧ y ∈ 0(F ) and x ∧ z ∈ 0(F ).

We have to show that {x, (y, z)u}l ⊆ 0(F ). Since x ∧ y, x ∧ z ∈ 0(F ), there exist

f1, f2 ∈ F such that (x∧y)∧f1 = 0 and (x∧z)∧f2 = 0. Since S is a meet semilattice

and f1, f2 ∈ F , hence f1 ∧ f2 exists, say f1 ∧ f2 = f , and f ∈ F . As f 6 f1 and

(x∧y)∧f1 = 0, we get that (x∧y)∧f = (x∧f)∧y = 0. Similarly, (x∧f)∧z = 0. By

0-distributivity, we have {x∧ f, (y, z)u}l = {0}. This implies f l ∩{x, (y, z)u}l = {0}.

Now, let a ∈ {x, (y, z)u}l. Then we have (f, a)l = {0}. Observe that (f, a)l = {0}

and f ∈ F together imply that a ∈ 0(F ). Therefore {x, (y, z)u}l ⊆ 0(F ) as required.

�
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