
Kybernetika

Morteza Kimiaei; Majid Rostami
Impulse noise removal based on new hybrid conjugate gradient approach

Kybernetika, Vol. 52 (2016), No. 5, 791–823

Persistent URL: http://dml.cz/dmlcz/145969

Terms of use:
© Institute of Information Theory and Automation AS CR, 2016

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://dml.cz

http://dml.cz/dmlcz/145969
http://dml.cz

KYBER NET IKA — VOLUM E 5 2 (2 0 1 6) , NUMBE R 5 , P AGES 7 9 1 – 8 2 3

IMPULSE NOISE REMOVAL BASED ON NEW HYBRID
CONJUGATE GRADIENT APPROACH

Morteza Kimiaei and Majid Rostami

Image denoising is a fundamental problem in image processing operations. In this paper, we
present a two-phase scheme for the impulse noise removal. In the first phase, noise candidates
are identified by the adaptive median filter (AMF) for salt-and-pepper noise. In the second
phase, a new hybrid conjugate gradient method is used to minimize an edge-preserving regu-
larization functional. The second phase of our algorithm inherits advantages of both Dai–Yuan
(DY) and Hager–Zhang (HZ) conjugate gradient methods to produce the new direction. The
descent property of new direction in each iteration and the global convergence results are estab-
lished under some standard assumptions. Furthermore, we investigate some conjugate gradient
algorithms and the complexity analysis of theirs. Numerical experiments are given to illustrate
the efficiency of the new hybrid conjugate gradient (HCGN) method for impulse noise removal.

Keywords: image processing, impulse noise, unconstrained optimization, conjugate gradi-
ent method, Wolfe conditions, complexity analysis

Classification: 90C30, 90C25, 90C90, 68U10, 03D15

1. INTRODUCTION

Images are often corrupted by impulse noise due to noisy sensors or communication
channels. There are two main models to represent impulse noise. One is the salt-
and-pepper noise in which the noisy pixels can take only the maximal and minimal
pixel values in dynamic range [smin, smax] of original image. Other impulse noise is the
random-valued noise in which the noisy pixels can take any random values between
the maximal and minimal pixel values of dynamic range. Removing above both noise
is one of the most important problems in image processing. For this purpose, there are
two popular types of methods for removing impulse noise: (1) The median filter and
its variants [10] which can detect the noisy pixels but restore them poorly when the
noise ratio is high. The gray levels of uncorrupted pixels are unchanged. The recovered
image may loose its details and be distorted. (2) The variational approach is capable
for retaining the details and the edges well but the gray level of every pixel is changed
including uncorrupted ones, cf. [21].

DOI: 10.14736/kyb-2016-5-0791

http://doi.org/10.14736/kyb-2016-5-0791

792 M. KIMIAEI AND M. ROSTAMI

1.1. Review of Two-Phase Methods

Recently, a two-phase procedure has been proposed in [4] to remove impulse noise.
The first phase of this approach is the detection of the noisy pixels by using the adaptive
median filter (AMF) [19] for salt-and-pepper noise while for random-valued noise, it
is prepared by using the adaptive center–weighted median filter (ACWMF) [10],
which is first ameliorated by employing the variable window technique to improve its
detection ability in highly corrupted images. In this paper, we only use the salt-and-
pepper noise.

Let x denote the original image with M -by-N pixels and

A := {(i, j) | i = 1, 2, 3, · · · ,M and j = 1, 2, 3, · · · , N},

be the index set of x. In addition, the observed noisy image of x contaminated by the
salt-and-pepper noise is considered by y, the set of the four closest neighbours of the
pixel at position (i, j) ∈ A is showed by Vi,j and the gray level of x at pixel location (i, j)
is denoted by xi,j . Hence, the gray level of y at pixel location (i, j) can be considered as

yi,j :=

 smin with probability p,
smax with probability q,
xi,j with probability 1− p− q.

Let us denote the image obtained by applying AMF to the noisy image y by ỹ. Based
on this fact that noisy pixels take the value either smin or smax, we define the noise
candidate set as

N := {(i, j) ∈ A | ỹi,j 6= yi,j and yi,j = smin or smax},

which denotes the set of indices of the noisy pixels detected in the first phase and take
N c := {(i, j) ∈ A | (i, j) 6∈ N} as complementary of N . The success of this two-phase
approach relies on the accurate detection of N c by AMF to detect salt-and-pepper
impulse noise in the first phase.

The goal of the second phase is the recovering of the noisy pixels obtained by the first
phase. For each pixel location (i, j), which belongs to N , it is detected as uncorrupted
and hence we naturally keep its original value, i. e., u∗i,j := yi,j . But for each pixel
location (i, j), which does not belong to N , we must restore yi,j . Moreover, if (m,n) ∈
Vi,j \ N , then we set u∗m,n := ym,n and if (m,n) ∈ Vi,j ∩ N , then we restore ym,n.
Therefore, similar to [2, 4, 5, 6, 7, 9], the second phase is the restoring of all yi,j by
minimization the following regular image inpainting problem :

min
∑

(i,j)∈N

{
| ui,j − yi,j |︸ ︷︷ ︸
nonsmooth term

+β
2 Ψ(ui,j)

}
u ∈ R|N| ,

(1)

where |N | is the cardinal of N and

Ψ(ui,j) := 2
∑

(m,n)∈Vi,j\N

ϕα(ui,j − ym,n) +
∑

(m,n)∈Vi,j∩N

ϕα(ui,j − um,n),

Impulse noise removal based on new hybrid conjugate gradient approach 793

β is the regularization parameter, u := [ui,j](i,j)∈N is a column vector of length |N |
ordered lexicographically and ϕα is an edge-preserving function, which must be: (a)
twice continuously differentiable, (b) ϕ

′′

α > 0 and (c) even. Example of such edge-
preserving function is ϕα(t) :=

√
t2 + α where α > 0 is a parameter. For more examples

of these functions, cf. [21]. From the above properties, we can conclude that ϕα(t) is
strictly increasing with |t| and coercive, i. e., ϕα(t)→∞ as t→∞.

However, because of the |ui,j−yi,j | term, the functional of problem (1) is nonsmooth.
It is generally believed that this nonsmooth term can remove from (1) because on the one
hand it keeps the minimizer u near the original image y so that the pixels, uncorrupted in
the original image, are not altered. However, in the two-phase method, the functional of
problem (1) is cleaning only the noise pixels while the uncorrupted pixels are unchanged.
Hence, the nonsmooth term is not required. On the other hand, removing the nonsmooth
term will convert the functional of problem (1) to a smooth functional which can be
efficiently obtained the optimizer, see [4]. In fact, the nonsmooth data-fitting term is
omitted and only noisy pixels are restored in the minimization. Then, the following
smooth functional is obtained

Fα(u) :=
X

(i,j)∈N

Ψ(ui,j). (2)

Due to ϕα is an even function, similar to [4], we can get the gradient of Fα(u) as

(g(u))(i,j)∈N := (∇Fα(u))(i,j)∈N := 2
“ X

(m,n)∈Vi,j\N

ϕ′α(ui,j−ym,n)+
X

(m,n)∈Vi,j∩N

ϕ′α(ui,j−um,n)
”
.

(3)

Notation: The symbol ‖ ·‖ denotes the Euclidean vector norm. Let us denote n1 := |N |,
n2 := |Vi,j \ N | and n3 := |Vi,j ∩ N|. P[a,b](x) sets a number x ∈ R onto [a, b], which is
defined by

P[a,b](c) :=

 c if a ≤ c ≤ b,
a if c < a,
b if c > b.

1.2. Background of conjugate gradient methods

Conjugate gradient (CG) methods are suitable to solve unconstrained optimiza-
tion problem

min Fα(u)
s.t. u ∈ Rn1 ,

(4)

where Fα : Rn1 −→ R is the smooth function of (2), because these algorithms have low
computational costs and have strong local and global convergence properties. The key
feature of these algorithms is that they require no matrix storage. In 1952, Hestenes and
Stiefel [18] (the CGHS method) have presented a technique to solve the linear system
that is symmetric and positive-definite. The first nonlinear CG method is proposed by
Fletcher and Reeves [14] (the CGFR method). The CGPR method is introduced by
Polak and Ribière [25] which has a high numerical performance but does not have strong
convergence. The global convergence of this method has been established in [25, 26].
By using an example, Powell showed that the global convergence of proposed method is

794 M. KIMIAEI AND M. ROSTAMI

uncertain when the function is not strongly convex, see [27]. To overcome this drawback,
Powell [27] modified the parameter of the CGPR method while Gilbert and Nocedal [15]
proved the convergence of the modified CGPR method. Using the Wolfe conditions, the
CGDY method [12] generated descent directions while its global convergence under
the Lipschitz assumption holds. Hager and Zhang [16] (the CGHZ method) have taken
advantages of the CGHS method to produce an efficient method, independent of the line
search, guarantees the descent property. The mentioned methods produce an iterative
sequence {uk} in the form uk+1 := uk+αkdk where αk is a step-size and dk is a direction
defined by

dk :=

{
−gk if k = 0,
−gk + βkdk−1 if k ≥ 1,

(5)

where βk is a scalar and gk := ∇Fα(uk). These methods have been presented several
famous formula for βk as

β
HS

k :=
gTk yk−1

dTk−1yk−1
, (6)

β
F R

k :=
‖gk‖2

‖gk−1‖2
, (7)

β
P R

k :=
gTk yk−1

‖gk−1‖2
, (8)

β
DY

k :=
‖gk‖2

dTk−1yk−1
, (9)

β
HZ

k := β
HS

k − 2‖yk−1‖2
dTk−1gk

(dTk−1yk−1)2
, (10)

where yk−1 := gk − gk−1. The global convergence of the CG methods have been studied
in [14, 16, 18, 24, 25, 26, 27]. These methods usually require that the step-size αk
should be obtained by exact or inexact line search technique in order to establish the
convergence results. The Strong Wolfe conditions are the main inexact line search
conditions which find a step-size αk satisfying the following conditions

Armijo condition: Fα(uk + αkdk)− Fα(uk) ≤ αkη1gTk dk, (11)

Curvature condition: |g(uk + αkdk)T dk| ≤ −η2gTk dk, (12)

where 0 < η1 < η2 < 1. To simplify notation, we set ψ(αk) := Fα(uk + αkdk), which
gives ψ(0) := Fα(uk), ψ′(0) := gTk dk and ψ′(αk) := g(uk + αkdk)T dk. Therefore, by
rewriting (11) and (12) we have

ψ(αk)− ψ(0) ≤ αkη1ψ′(0), (13)
|ψ′(αk)| ≤ −η2ψ′(0). (14)

1.3. CG algorithms and their complexity analysis

In order to present the generalized conjugate gradient algorithm and complexity
analysis of it, we first introduce zoom and Line search algorithms, cf. [23], and then we

Impulse noise removal based on new hybrid conjugate gradient approach 795

compute complexity analysis of them.

Algorithm 1: ZAL (zoom algorithm)
Input: αlo, αhi, ψ(αhi), ψ(αlo), ψ′(αlo);
Output: α∗, jmax;

1 begin
2 j := 0;
3 while not converged do
4 c1 := αhi − αlo;
5 c2 := (ψ(αhi)− ψ(αlo)− c1ψ′(αlo))/c21;
6 if c2 ≤ 0 then
7 αj := αlo + 0.5c1; (bisection)
8 else
9 αj := (αlo − 0.5ψ′(αlo))/c2; (quadratic)

10 end
11 compute ψ(αj);
12 if ψ(αj) > ψ(0) + η1αjψ

′(0) or ψ(αj) ≥ ψ(αlo) then
13 αhi := αj ;
14 end
15 compute ψ′(αj);
16 if |ψ′(αj)| ≤ −η2ψ′(0) then
17 α∗ := αj ;
18 stop;
19 end
20 c3 := ψ′(αj)(αhi − αlo);
21 if c3 ≥ 0 then
22 αhi := αlo;
23 αlo := αj ;
24 end
25 j := j + 1;
26 end
27 jmax := j;
28 end

Let us denote the number of multiplications by Nmult, the number of division
by Ndiv, the number of summations by Nsum and the number of subtractions by
Nsub. We suppose that each type of operation takes the same CPU time. Note that
we overlook the root operation in computing ϕα and ϕ′α. Now, we compute the total
number of arithmetic operations (TNAO) for Algorithm 1 by the following proce-
dure.

796 M. KIMIAEI AND M. ROSTAMI

Procedure 1: Calculation of TNAO for an iteration of Algorithm 1

Step 1 (Line 4): Nsub(c1) = 1 =⇒ TNAO(c1) = 1.
Step 2 (Line 5): Nsub(c2) = 2, Nmult(c2) = 2 and Ndiv(c2) = 1 =⇒ TNAO(c2) = 5.
Step 3 (Line 7): Nmult(αj) = 1 and Nsum(αj) = 1 =⇒ TNAO(αj) = 2.
Step 4 (Line 9): Nsub(αj) = 1, Nmult(αj) = 1 and Ndiv(αj) = 1 =⇒ TNAO(αj) = 3.
Step 5 (Lines 11 and 15): Let u+

k := uk + αjdk. Then
Nsum(u+

k) = n1 and Nmult(u+
k) = n1 =⇒ TNAO(u+

k) = 2n1.
Step 6 (Line 11): To compute ψ(αj), let z1 := (u+

k)i,j − ym,n and z2 := (u+
k)i,j −um,n

then we compute TNAO(Ψi,j) as follows:

(a) Nsub(z1) = n2 =⇒ TNAO(z1) = n2;

(b) Nsub(z2) = n3 =⇒ TNAO(z2) = n3;

(c) Nsum(ϕα) = Nmult(ϕα) = n2 + n3 =⇒ TNAO(ϕα) = 2(n2 + n3);

(d) Nsum(2
∑

(m,n)∈Vi,j\N ϕα) = n2 − 1 and Nmult(2
∑

(m,n)∈Vi,j\N ϕα) = 1
=⇒ TNAO(2

∑
(m,n)∈Vi,j\N ϕα) = n2;

(e) Nsum(
∑

(m,n)∈Vi,j∩N ϕα) = n3 − 1 =⇒ TNAO(
∑

(m,n)∈Vi,j∩N ϕα) = n3 − 1;

(f) Nsum(+) = 1
=⇒ TNAO(+) = 1.

Hence

TNAO(Ψi,j) = n2 + n3 + 2(n2 + n3) + n2 + n3 − 1 + 1 = 4(n2 + n3),

and therefore

TNAO(ψ(αj)) := TNAO(u+
k) + n1(TNAO(Ψi,j))

= 2n1 + n1(4(n2 + n3))
= 2n1 + 4n1(n2 + n3).

Step 7 (Line 12): Nsum(Armijo)=1 and Nmult(Armijo)=2 =⇒ TNAO(Armijo)=3.
Step 8 (Line 15): To compute ψ′(αj),

(a) Nsum(ϕ′α) = Nmult(ϕ′α) = Ndiv(ϕ′α) = n2 + n3 =⇒ TNAO(ϕ′α) = 3(n2 + n3);

(b) Nsum(
∑

(m,n)∈Vi,j\N ϕ
′
α) = n2 − 1 =⇒ TNAO(

∑
(m,n)∈Vi,j\N ϕα) = n2 − 1;

(c) Nsum(
∑

(m,n)∈Vi,j∩N ϕ
′
α) = n3 − 1 =⇒ TNAO(

∑
(m,n)∈Vi,j∩N ϕ

′
α) = n3 − 1;

(d) Let z3 := 2(
∑

(m,n)∈Vi,j\N ϕ
′
α +

∑
(m,n)∈Vi,j∩N ϕ

′
α) then we have

Nmult(z3) = 1 and Nsum(z3) = 1 =⇒ TNAO(z3) = 2;

(e) Nsum(g(u+
k)T dk) = n1−1 and Nmult(g(u+

k)T dk) = n1 =⇒ TNAO(g(u+
k)T dk) =

2n1 − 1.

Impulse noise removal based on new hybrid conjugate gradient approach 797

Hence

TNAO(ψ′(αj)) = 3(n2 + n3) + n2 − 1 + n3 − 1 + 2 + 2n1 − 1 = 4(n2 + n3) + 2n1 − 1.

Step 9 (Line 16): Nmult(curvature) = 1 =⇒ TNAO(curvature) = 1.
Step 10 (Line 20): Nmult(c3) = 1 and Nsub(c3) = 1 =⇒ TNAO(c3) = 2.

Let us define jmax := j1 + j2, in which j1 is the number of iterations of Algorithm 1
with c2 ≤ 0 and j2 is the number of iterations of Algorithm 1 with c2 > 0. Now, by
procedure 1, we compute TNAO of Algorithm 1, for all iterations, as

TNAO(ZAL)

:= (j1 − 1)
(

13 + 4(n2 + n3)(n1 + 1) + 6n1

)
︸ ︷︷ ︸

TNAO for j=1,··· ,jmax−1 and c2≤0

+ 11 + 4(n2 + n3)(n1 + 1) + 6n1︸ ︷︷ ︸
TNAO for j=jmax and c2≤0

+ (j2 − 1)
(

14 + 4(n2 + n3)(n1 + 1) + 6n1

)
︸ ︷︷ ︸

TNAO for j=1,··· ,jmax−1 and c2>0

+ 12 + 4(n2 + n3)(n1 + 1) + 6n1︸ ︷︷ ︸
TNAO for j=jmax and c2>0

= jmax

(
4(n2 + n3)(n1 + 1) + 6n1

)
+ 13j1 + 14j2 − 4 = O(n1 max{n2, n3}).

Here, we describe the line search algorithm that guarantees finding a step-size to satisfy
the strong Wolfe conditions (13) and (14).
Algorithm 2 starts with a trial estimate α1 and keeps increasing it (Line 18) until it
finds either an acceptable step-size (Line 12) or an interval (Line 6 and Line 15) that
brackets the desired step-sizes by calling Algorithm 1, which successively decreases the
size of the interval until an acceptable step-size is identified.

TNAO for Algorithm 2 is computed by the following procedure:

Procedure 2: Calculation of TNAO for an iteration of Algorithm 2

Step 1 (Line 4): TNAO(ψ(αi)) = 2n1 + 4n1(n2 + n3).
Step 2 (Line 5): TNAO(Armijo) = 3.
Step 3 (Line 6): TNAO(α∗) := TNAO(ZAL) = O(n1 max{n2, n3}).
Step 4 (Line 9): TNAO(ψ′(αi)) = 4(n2 + n3) + 2n1 − 1.
Step 5 (Line 10): Nmult(curvature) = 1 =⇒ TNAO(curvature) = 1.
Step 6 (Line 15): TNAO(α∗) := TNAO(ZAL) = O(n1 max{n2, n3}).
Step 7 (Line 18): TNAO(αi+1) = 1.

Note that, in Line 18 of Algorithm 2, we choose αi+1 = min(2αi, αmax). First, we com-
pute the TNAO of Algorithm 2 in each iteration without stop condition as follows

TNAO1(LSAL) := TNAO(ψ(αi)) + TNAO(Armijo) + TNAO(ψ′(αi))
+TNAO(curvature) + TNAO(αi+1)

= 2n1 + 4n1(n2 + n3) + 3 + 4(n2 + n3) + 2n1 − 1 + 1 + 1
= 4(n2 + n3)(n1 + 1) + 4n1 + 4 = O(n1 max{n2, n3}).

798 M. KIMIAEI AND M. ROSTAMI

Algorithm 2: LSAL (Line search algorithm)
Input: An initial point α0 = 0, α1, ψ(0), ψ′(0);
Output: α∗ and imax;

1 begin
2 i := 1;
3 while not converged do
4 compute ψ(αi);
5 if ψ(αi) > ψ(0) + η1αiψ

′(0) or ψ(αi) ≥ ψ(αi−1) and i > 1 then
6 α∗ := ZAL(αi, αi−1, ψ(αi), ψ(αi−1), ψ′(αi−1));
7 stop 1;
8 end
9 compute ψ′(αi);

10 if |ψ′(αi)| ≤ −η2ψ′(0) then
11 α∗ := αi;
12 stop 2;
13 end
14 if ψ′(αi) ≥ 0 then
15 α∗ := ZAL(αi, αi−1, ψ(αi), ψ(αi−1), ψ′(αi−1));
16 stop 3;
17 end
18 αi+1 ∈ (αi, αmax);
19 i := i+ 1;
20 end
21 imax := i;
22 end

Also, the TNAO of Algorithm 2 with first stop condition, second stop condition and
third stop condition are computed, respectively, by

TNAOs1(LSAL) : = TNAO(ψ(αi)) + TNAO(Armijo) + TNAO(ZAL)
= 2n1 + 4n1(n2 + n3) + 3 +O(n1 max{n2, n3}) = O(n1 max{n2, n3}),

TNAOs2(LSAL) : = TNAO(ψ(αi)) + TNAO(Armijo) + TNAO(ψ′(αi)) + TNAO(curvature)
= 2n1 + 4n1(n2 + n3) + 3 + 4(n2 + n3) + 2n1 − 1 + 1 = O(n1 max{n2, n3}),

TNAOs3(LSAL) : = TNAOs2(LSAL) + TNAO(ZAL)
= O(n1 max{n2, n3}) +O(n1 max{n2, n3}) = O(n1 max{n2, n3}).

Impulse noise removal based on new hybrid conjugate gradient approach 799

Now, we compute TNAO of Algorithm 2, for all iterations, as

TNAO(LSAL) :=

(imax − 1)(TNAO1(LSAL)) + TNAOs1(LSAL) if Stop=Stop 1;

(imax − 1)(TNAO1(LSAL)) + TNAOs2(LSAL) if Stop=Stop 2;
(imax − 1)(TNAO1(LSAL)) + TNAOs3(LSAL) if Stop=Stop 3.

Therefore
TNAO(LSAL) := O(n1 max{n2, n3}).

Finally, the generalized conjugate gradient algorithm is presented as follows:

Algorithm 3: GCG (generalized Conjugate Gradient)
Input: An initial point u0 ∈ Rn1 , αmax > 0, α1 ∈ (0, αmax), 0 <η1<η2< 1,

0 < λmin < λmax <∞;
Output: u∗, F ∗α, kmax;

1 begin
2 k := 0;
3 compute Fα(u0);
4 compute g0;
5 d0 := −g0;
6 while not converged do
7 [αk, uk+1, Fα(uk+1), gk+1] = LSAL(Fα(uk), gk, dk, αmax, α1);
8 compute βk+1 by one of the formulas (6)-(10);
9 obtain dk+1 by (5);

10 replace k + 1 by k;
11 end
12 u∗ := uk; F ∗α := Fα(uk); kmax := k;
13 end

By the following procedure, TNAO for Algorithm 3 computes.

Procedure 3: Calculation of TNAO for an iteration of Algorithm 3

Step 1 (Line 3): TNAO(Fα(u0)) = 2n1 + 4n1(n2 + n3).
Step 2 (Line 4): TNAO(g0) = 4(n2 + n3) + 2n1 − 1.
Step 3 (Line 5): Nsub(d0) = n1 =⇒ TNAO(d0) = n1.
Step 4 (Line 7): TNAO(αk) := TNAO(LSAL) = O(n1 max{n2, n3}).
Step 5 (Line 8): For computing βk+1 = β

HS

k+1, β
FR

k+1, β
PR

k+1, β
DY

k+1, β
HZ

k+1,

(a) Nsum(β
HS

k+1) = 2(n1− 1), Nmult(β
HS

k+1) = 2n1, Nsub(β
HS

k+1) = n1 and Ndiv(β
HS

k+1)
= 1 =⇒ TNAO(β

HS

k+1) = 5n1 − 1.

(b) Nsum(β
FR

k+1) = 2(n1 − 1), Nmult(β
FR

k+1) = 2n1 and Ndiv(β
FR

k+1)
= 1 =⇒ TNAO(β

FR

k+1) = 4n1 − 1.

800 M. KIMIAEI AND M. ROSTAMI

(c) Nsum(β
PR

k+1) = 2(n1− 1), Nmult(β
PR

k+1) = 2n1, Nsub(β
PR

k+1) = n1 and Ndiv(β
PR

k+1)
= 1 =⇒ TNAO(β

PR

k+1) = 5n1 − 1.

(d) Nsum(β
DY

k+1) = 2(n1− 1), Nmult(β
DY

k+1) = 2n1, Nsub(β
DY

k+1) = n1 and Ndiv(β
DY

k+1)
= 1 =⇒ TNAO(β

DY

k+1) = 5n1 − 1.

(e) Nsum(β
HZ

k+1) = 3(n1−1), Nmult(β
HZ

k+1) = 4n1+1, Nsub(β
HZ

k+1) = 2n1 and Ndiv(β
HZ

k+1)
= 2 =⇒ TNAO(β

HZ

k+1) = 9n1.

Step 6 (Line 9): Nmult(dk+1) = n1 and Nsub(dk+1) = n1 =⇒ TNAO(dk+1) = 2n1.

As a result of Procedure 3, we can determine TNAO for Algorithms of CGHS, CGFR,
CGPR, CGDY and CGHZ, which are presented by

(a) TNAO(CGHS) =
(

4(n1 + 1)(n2 + n3) + 12n1 − 2 +O(n1 max{n2, n3})
)
kmax

= O(n1 max{n2, n3});

(b) TNAO(CGFR) =
(

4(n1 + 1)(n2 + n3) + 11n1 − 2 +O(n1 max{n2, n3})
)
kmax

= O(n1 max{n2, n3});

(c) TNAO(CGPR) =
(

4(n1 + 1)(n2 + n3) + 12n1 − 2 +O(n1 max{n2, n3})
)
kmax

= O(n1 max{n2, n3});

(d) TNAO(CGDY) =
(

4(n1 + 1)(n2 + n3) + 12n1 − 2 +O(n1 max{n2, n3})
)
kmax

= O(n1 max{n2, n3});

(e) TNAO(CGHZ) =
(

4(n1 + 1)(n2 + n3) + 16n1 − 1 +O(n1 max{n2, n3})
)
kmax

= O(n1 max{n2, n3}).

We see that TNAO of all algorithms is O(n1 max{n2, n3}) operations. In addition,
CGHZ has the greatest amount of TNAO to compute βk+1 among others while CGFR
has the smallest amount for it among others and TNAO to compute βk+1 of CGHS,
CGPR and CGDY are equivalent.

Contribution. In this paper, we present a HCGN method that is a combination
of both the CGDY and CGHZ methods. The parameter of this combination takes
advantages of Barzilai-Borwein (BB) method [1]. The descent property of proposed
method is proved with using the strong Wolfe conditions and numerical results show
that our method has a low computational cost.

Organization. The rest of this paper is organized as follows. In Section 2, we describe
a HCGN algorithm for smooth functional (2). In next section, descent property and
global convergence of new algorithm will be investigated. In Section 4, preliminary
numerical results are reported. Finally, some conclusions are given in Section 5.

Impulse noise removal based on new hybrid conjugate gradient approach 801

2. NEW HYBRID CONJUGATE GRADIENT ALGORITHM

The traditional gradient method for solving unconstrained minimization problems is the
steepest descent method whose exact step-size is computed by

1
λk

:= arg min
λ>0

Fα

(
uk −

1
λ
gk

)
.

The steepest descent direction do not attain the fast convergence of CG methods because
it use the direction −gk and may not produce the very small step-size whenever iterates
are near the optimizer. Hence, to overcome this drawback, several authors dealt with
various step-sizes. One of these methods is the BB method with few storage locations
and inexpensive computations whose step-sizes λk are given by

λ1
k :=

sTk−1yk−1

sTk−1sk−1
and λ2

k :=
yTk−1yk−1

sTk−1yk−1
, (15)

which yk−1 := gk − gk−1 and sk−1 := uk − uk−1. In fact, λ1
k is the solution of the

least-squares problem
min ‖λsk−1 − yk−1‖2
s.t. λ ∈ R,

and λ2
k is obtained by solving

min ‖λyk−1 − sk−1‖2
s.t. λ ∈ R.

At each iteration, in order to take advantages of both λ1
k and λ2

k, we introduce

λk := max
{
λ1
k, λ

2
k

}
. (16)

Since both the CGDY and CGHZ methods have good numerical results for large-
scale unconstrained optimization problems (see [17]), we use a strategy which takes
advantages of both of them with the help of the parameters of the BB method. Hence,
we introduce an efficient method for solving problem (4), which takes advantages of the
following descent direction

d̃k :=

−gk if k = 0,

−λ̂kgk + β
New

k d̃k−1 if k ≥ 1,
(17)

where
λ̂k := P[λmin,λmax]

(1
λk

)
, (18)

and the parameter β
New

k , the convex combination of both the β
DY

k and β
HZ

k , presents as
follows:

β
New

k := λ̂kβ
HZ

k + (1− λ̂k)β
DY

k . (19)

802 M. KIMIAEI AND M. ROSTAMI

Let us choose the safeguard parameters as λmin := 8η2/(7(1 + η2)) + 0.01 and λmax := 1
to guarantee the production of descent direction by (17). Hence the formula (18) implies
that λ̂k ∈ [8η2/(7(1 + η2)) + 0.01, 1].

In finally, the new hybrid conjugate gradient algorithm can be written as follows:

Algorithm 4: HCGN (Hybrid Conjugate Gradient)
Input: An initial point u0 ∈ Rn1 , 0 <η1<η2< 1, αmax > 0, α1 ∈ (0, αmax),

λmin := 8η2/(7(1 + η2)) + 0.01 and λmax := 1;
Output: u∗, F ∗α;

1 begin
2 k := 0;
3 compute Fα(u0);
4 compute g0;
5 d̃0 := −g0;
6 while not converged do
7 [αk, uk+1, Fα(uk+1), gk+1] = LSAL(uk, Fα(uk), gk, αmax, α1);
8 compute the parameters λ1

k+1 and λ2
k+1 using (15);

9 calculate λk+1 by formula (16);
10 compute β

HZ

k+1 by (10);
11 compute β

DY

k+1 by (9);
12 choose λ̂k+1 satisfying (18);
13 compute β

New

k+1 by formula (19);
14 obtain d̃k+1 by (17);
15 replace k + 1 by k;
16 end
17 u∗ := uk; F ∗α := Fα(uk);
18 end

Since the CGHZ method has good numerical results for solving very nonlinear uncon-
strained optimization problems and the CGDY method has strong convergence prop-
erties, cf. [17], the parameter β

New

k , the convex combination of both the β
HZ

k and β
DY

k ,
takes advantages of the BB method. On one hand, Algorithm 4 prevents the production
of very short steps whenever iterations are far away from the optimizer. On the other
hand, for all iterations of near the optimizer, it prevents the generation of very large
steps, which will lead to huge improvements in the object function.

By Procedures 1 – 3, we present the following procedure for computing TNAO of Algo-
rithm 4:

Procedure 4: Calculation of TNAO for an iteration of Algorithm 4

Step 1 (Line 3): TNAO(Fα(u0)) = 2n1 + 4n1(n2 + n3).

Impulse noise removal based on new hybrid conjugate gradient approach 803

Step 2 (Line 4): TNAO(g0) = 4(n2 + n3) + 2n1 − 1.
Step 3 (Line 5): Nsub(d̃0) = n1 =⇒ TNAO(d̃0) = n1.
Step 4 (Line 7): TNAO(αk) := TNAO(LSAL) = O(n1 max{n2, n3}).
Step 5 (Line 8): By computing

(a) Nsub(yk) = n1 and Nsub(sk) = n1;

(b) Nsum(sTk sk) = n1 − 1 and Nmult(sTk sk) = n1;

(c) Nsum(yTk yk) = n1 − 1 and Nmult(yTk yk) = n1;

(d) Nsum(yTk d̃k) = Nsum(sTk yk) = n1 − 1 and Nmult(yTk d̃k) = Nmult(sTk yk) = n1;

(f) Ndiv(λ1
k) = 1 and Ndiv(λ2

k) = 1;

=⇒ TNAO(λ1,2
k) := TNAO(λ1

k) + TNAO(λ2
k) = 10n1 − 2.

Step 6 (Line 10): TNAO(β
HZ

k+1) = 4n1 + 2.
Step 7 (Line 11): TNAO(β

DY

k+1) = 2n1.
Step 8 (Line 12): Ndiv(λ̂k+1) = 1 =⇒ TNAO(λ̂k+1) = 1.
Step 9 (Line 13): Nmult(β

New

k+1) = 2, Nsub(β
New

k+1) = 1 and Nsum(β
New

k+1) = 1 =⇒
TNAO(β

New

k+1) = 4.
Step 10 (Line 14): Nmult(d̃k+1) = 2n1 and Nsub(d̃k+1) = n1 =⇒ TNAO(d̃k+1) = 3n1.

Note that, in process of calculation TNAO of β
DY

k+1, the amount TNAO of yk and yTk d̃k
are zero since they are considered by TNAO of λ1

k and λ2
k. Also, the amount TNAO of

yk, yTk d̃k and yTk yk are zero in process of calculation TNAO of β
HZ

k+1 because they are
considered by TNAO of λ1

k and λ2
k. Hence, TNAO of Algorithm HCGN computes with

the following formula

TNAO(HCGN) :=
(

4(n1 + 1)(n2 + n3) + 24n1 + 4 +O(n1 max{n2, n3})
)
kmax

= O(n1 max{n2, n3}),

which shows that it needs to O(n1 max{n2, n3}) operations.
Table 1 contains the amount of TNAO for each algorithm using the parameters βk and

dk for CGHS, CGFR, CGPR, CGDY and CGHZ and the parameters βk, d̃k, λ̂k, λ1
k and

λ2
k for HCGN. As a result from this table, in each iteration, HCGN has 8n1+5 operations

more than CGHZ, 12n1 + 6 operations more than CGPR, CGHS and CGDY while it
has 13n1 + 6 operations more than CGFR. Nevertheless HCGN produces the efficient
direction by (17), in each iteration, which obtains the optimizer very fast than others
because it produces very small steps or very large steps whenever iterations are near
the optimizer or far away from it. Hence HCGN can truly decrease the total number
of iterations and consequently it will lead to decrease the total number of function
evaluations, gradient evaluations and CPU times while it will increase peak signal to
noise ratio, see Tables 2 – 6 in Section 4.

804 M. KIMIAEI AND M. ROSTAMI

C
G

F
R

C
G

P
R

C
G

H
S

C
G

D
Y

C
G

H
Z

H
C

G
N

TNAO(βk) 4n1 − 1 5n1 − 1 5n1 − 1 5n1 − 1 9n1 6n1 + 6
TNAO(dk) 2n1 2n1 2n1 2n1 2n1 —
TNAO(d̃k) — — — — — 3n1

TNAO(λ1,2
k) — — — — — 10n1 − 2

TNAO(λ̂k) — — — — — 1
Total 6n1 − 1 7n1 − 1 7n1 − 1 7n1 − 1 11n1 19n1 + 5

Tab. 1. A comparison among TNAO of some parameters HCGN with βk and dk
generated by CGHS, CGFR, CGPR, CGDY and CGHZ in an iteration.

3. DESCENT PROPERTY AND GLOBAL CONVERGENCE

In this section, we will investigate descent property and global convergence results of
Algorithm 4. For these goals, the following assumptions are required.

(H1) For any u0 ∈ Rn1 , the level set L(u0) := {u ∈ Rn1 |Fα(u) ≤ Fα(u0)} is bounded.

(H2) The gradient of Fα(u) is Lipschitz continuous over a neighborhood Ω of L(u0),
i. e., there exists constant Lg > 0 such that

‖g(x)− g(y)‖ ≤ Lg‖x− y‖,

for any x, y ∈ Ω.

(H3) The function Fα is uniformly convex, i. e., there exists constant γ > 0 such that

γ‖x− y‖2 ≤ (g(x)− g(y))T (x− y),

for any x, y ∈ Ω.

Lemma 3.1. Suppose that the direction d̃k−1 generated by Algorithm 4 is a descent
direction. Then, d̃k is a descent direction, i. e.,

gTk d̃k < 0.

P r o o f . By (H3), there exists a constant γ > 0 such that

yTk−1d̃k−1 ≥ γ‖d̃k−1‖2. (20)

The proof follows in the following two cases:

Impulse noise removal based on new hybrid conjugate gradient approach 805

Case 1. If gTk d̃k−1 < 0, then

gTk d̃k = −λ̂k‖gk‖2 +
(
λ̂kβ

HZ

k + (1− λ̂k)β
DY

k

)
gTk d̃k−1

= λ̂k

(
−‖gk‖2 + β

HZ

k gTk d̃k−1︸ ︷︷ ︸
:=gT

k
edHZ

k

)
+ (1− λ̂k)β

DY

k gTk d̃k−1︸ ︷︷ ︸
<0

< λ̂kg
T
k d̃

HZ

k .

By choosing

tk :=
1
2

(
yTk−1d̃k−1

)
gk and uk := 2

(
gTk d̃k−1

)
yk−1,

and this fact that
tTk uk ≤

1
2

(
‖tk‖2 + ‖uk‖2

)
,

we have

gTk yk−1

(
gTk d̃k−1

)
yTk−1d̃k−1

=
gTk yk−1

(
yTk−1d̃k−1

)(
gTk d̃k−1

)
(
yTk−1d̃k−1

)2

≤ 1
8
‖gk‖2 + 2

‖yk−1‖2
(
gTk d̃k−1

)2

(
yTk−1d̃k−1

)2 . (21)

The formula (21) gives

gTk d̃
HZ

k

(10)
= −‖gk‖2 +

gTk yk−1

(
gTk d̃k−1

)
yTk−1d̃k−1

− 2
‖yk−1‖2

(
gTk d̃k−1

)2

(
yTk−1d̃k−1

)2 ≤ −7
8
‖gk‖2 < 0. (22)

Setting (22) in (21) leads

gTk d̃k < −
7
8
λ̂k‖gk‖2 < 0.

Case 2: If gTk d̃k−1 > 0, then

gTk d̃k = −λ̂k‖gk‖2 +
(
λ̂kβ

HZ

k + (1− λ̂k)β
DY

k

)
gTk d̃k−1

= λ̂k

(
−‖gk‖2 + β

HZ

k gTk d̃k−1︸ ︷︷ ︸
:=gT

k
edHZ

k

)
+ β

DY

k gTk d̃k−1︸ ︷︷ ︸
>0

− λ̂kβ
DY

k gTk d̃k−1︸ ︷︷ ︸
>0

(9),(22)
< −7

8
λ̂k‖gk‖2 +

‖gk‖2

yTk−1d̃k−1

gTk d̃k−1

=
− 7

8 λ̂k‖gk‖
2yTk−1d̃k−1 + ‖gk‖2gTk d̃k−1

yTk−1d̃k−1

806 M. KIMIAEI AND M. ROSTAMI

= ‖gk‖2
− 7

8 λ̂ky
T
k−1d̃k−1 + gTk d̃k−1

yTk−1d̃k−1

= ‖gk‖2
− 7

8 λ̂k

(
gTk d̃k−1 − gTk−1d̃k−1

)
+ gTk d̃k−1

yTk−1d̃k−1

= ‖gk‖2

(
1− 7

8 λ̂k

)
gTk d̃k−1 + 7

8 λ̂kg
T
k−1d̃k−1

yTk−1d̃k−1

= ‖gk‖2

(
1− 7

8 λ̂k

)∣∣∣gTk d̃k−1

∣∣∣+ 7
8 λ̂kg

T
k−1d̃k−1

yTk−1d̃k−1

(12)

≤ ‖gk‖2

(
1− 7

8 λ̂k

)(
− η2gTk−1d̃k−1

)
+ 7

8 λ̂kg
T
k−1d̃k−1

yTk−1d̃k−1

(18),(20)
= ‖gk‖2

(
(1− 7

8
λ̂k)(−η2) +

7
8
λ̂k︸ ︷︷ ︸

>0

)
gTk−1d̃k−1︸ ︷︷ ︸

<0

yTk−1d̃k−1︸ ︷︷ ︸
>0

< 0.

�

Dai and Ni [11] established that for any conjugate gradient method with the strong
Wolfe line search (11) and (12) under Assumptions (H1) and (H2) there exists a con-
stant ε ≥ 0 such that ‖gk‖ ≤ ε for all uk ∈ L(u0). Hence we have the following result.

Lemma 3.2. Suppose that Assumptions (H1) and (H2) hold and {uk} is the sequence
generated by Algorithm 4. If ∑

k≥1

1

‖d̃k‖2
=∞,

then
lim inf
k→∞

‖gk‖ = 0.

Theorem 3.3. Suppose that Assumptions (H1) – (H3) hold and {uk} is the sequence
generated by Algorithm 4. Also, suppose that there exists ζ > 0 such that ‖gk‖2 ≤
ζ‖d̃k−1‖. Then

lim
k→∞

gk = 0

P r o o f . Assumptions (H1) and (H2) imply that there exists a constant ε ≥ 0 such
that

‖gk‖ ≤ ε.

Impulse noise removal based on new hybrid conjugate gradient approach 807

Since β
New

k is the convex combination of β
DY

k and β
HZ

k , our proof is divided into the
following two cases:

i) If β
DY

k ≤ βHZ

k , then

‖d̃k‖ ≤ λ̂k‖gk‖+ |β
HZ

k |‖d̃k−1‖

≤ ‖gk‖+
(∣∣∣gTk yk−1

∣∣∣ 1

yTk−1d̃k−1

+ (2‖yk−1‖2)
(∣∣∣gTk d̃k−1

∣∣∣ 1

(yTk−1d̃k−1)2

))
‖d̃k−1‖

(20)

≤ ‖gk‖+
(‖gk‖‖yk−1‖
γ‖d̃k−1‖2

+ (2‖yk−1‖2)
‖gk‖‖d̃k−1‖
γ2‖d̃k−1‖4

)
‖d̃k−1‖

(H2)

≤ ‖gk‖+
(‖gk‖Lg‖d̃k−1‖

γ‖d̃k−1‖2
+ (2L2

g‖d̃k−1‖2)
‖gk‖‖d̃k−1‖
γ2‖d̃k−1‖4

)
‖d̃k−1‖

= ‖gk‖+
‖gk‖Lg
γ

+
2‖gk‖L2

g

γ2
≤ δ1,

which δ1 := ε(1 + Lg

γ + 2L2
g

γ2).

ii) If β
HZ

k < β
DY

k , then

‖d̃k‖ < λ̂k‖gk‖+ |β
DY

k |‖d̃k−1‖

≤ ‖gk‖+
‖gk‖2

yTk−1d̃k−1

‖d̃k−1‖

≤ ‖gk‖+
ζ‖d̃k−1‖
γ‖d̃k−1‖2

‖d̃k−1‖

= ‖gk‖+
ζ

γ
≤ δ2,

which δ2 := ε+ ζ
γ .

By taking δ := max{δ1, δ2}, both cases give

‖d̃k‖ ≤ δ.

This fact implies that ∑
k≥1

1

‖d̃k‖2
=∞,

for which Lemma 3.2 leads to
lim inf
k→∞

‖gk‖ = 0,

which for uniformly convex functions is equivalent to

lim
k→∞

gk = 0.

�
Some properties of the edge-preserving regularization functional (4), which have been

established in [4], are as follows:

808 M. KIMIAEI AND M. ROSTAMI

Theorem 3.4. If ϕα is second order Lipschitz continuous, continuously differentiable,
convex, strictly convex, or coercive, then the functional Fα is respectively second order
Lipschitz continuous, continuously differentiable, convex, strictly convex, or coercive.

Theorem 3.5. If ϕα(t) is even, continuous and strictly increasing w.r.t.|t|, then the
global minimum of Fα exists, and any global minimizer u∗ is in the dynamic range, i. e.,
u∗i,j ∈ [smin, smax] for all (i, j) ∈ N .

4. PRELIMINARY NUMERICAL EXPERIMENTS

In this section, we present some numerical results to demonstrate the performance of
HCGN for salt-and-pepper impulse noise removal. In our experiments, we first compare
HCGN with several versions of CG methods which their details are as

• CGHZ: conjugate gradient method proposed by Hager and Zhang [16]

• CGDY: conjugate gradient method proposed by Dai and Yuan [12]

• CGHS: conjugate gradient method proposed by Hestenes and Stiefel [18]

• CGPR: conjugate gradient method proposed by Polak and Ribière [25]

• CGFR: conjugate gradient method proposed by Fletcher and Reeves [14].

The simulations are preformed in Matlab 2015 on a laptop Asus with a 1.7 GHz Intel
Core i3-4010U CPU and 4 GB of memory (2 GB is used) under ubuntu 10.04 Linux
on Oracle VM VirtualBox. The test images are Lena, House, Cameraman and Elaine.
Similar to [4, 29], we use the PSNR (peak signal to noise ratio) in order to assess the
restoration performance qualitatively which is defined as

PSNR := 20 log10

2552

1
MNΣi,j(uri,j − u∗i,j)2

,

where uri,j and u∗i,j denote the pixel values of the restored image and the original image,
respectively. The stopping criterions of all algorithms are

Fα(uk)− Fα(uk−1)
Fα(uk)

< 10−4 and ‖∇Fα(uk)‖ ≤ 10−4(1 + |Fα(uk)|).

The parameters of Wolfe conditions are chosen η1 = 0.0001 and η2 = 0.5 in all algo-
rithms. For HCGN, we choose the parameters λmin = 8η2/(7(1 + η2)) + 0.01 ' 0.39 and
λmax = 1. It should be emphasized that in this paper, we are mainly concerned with
the speed of solving the minimization of the edge-preserving regularization function (4),
in which the potential function is ϕα(t) =

√
t2 + α.

In the first run, we perform all algorithms for 5 different noise samples of each image
in order to test the speed of the algorithm more fairly, for

α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50}.

Impulse noise removal based on new hybrid conjugate gradient approach 809

5 10 15 20 25 30 35 40 45 50

α

(a)

10 1

10 2

10 3

It
er

at
io

n
s

av
er

ag
e

5 10 15 20 25 30 35 40 45 50

α

(b)

10 1

10 2

10 3

F
u

n
ct

io
n

 e
va

lu
at

io
n

s
av

er
ag

e

5 10 15 20 25 30 35 40 45 50

α

(c)

10 1

10 2

10 3

G
ra

d
ie

n
t

ev
al

u
at

io
n

s
av

er
ag

e

5 10 15 20 25 30 35 40 45 50

α

(d)

10 0

10 1

10 2

C
P

U
 t

im
es

 a
ve

ra
g

e

5 10 15 20 25 30 35 40 45 50

α

(e)

29

30

31

32

33

34

35

36

P
S

N
R

 a
ve

ra
g

e

5 10 15 20 25

Iterations
(f)

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

C
o

n
ve

x
co

m
b

in
at

io
n

 p
ar

am
et

er

2 4 6 8 10 12 14

Iterations
(g)

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

C
o

n
ve

x
co

m
b

in
at

io
n

 p
ar

am
et

er

2 4 6 8 10 12 14 16 18

Iterations
(h)

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

C
o

n
ve

x
co

m
b

in
at

io
n

 p
ar

am
et

er

5 10 15 20 25 30

Iterations
(i)

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

C
o

n
ve

x
co

m
b

in
at

io
n

 p
ar

am
et

er

Fig. 1. Comparisons for HCGN: (a) Diagram of Ni versus α; (b) Diagram of Nf versus α;

(c) Diagram of Ng versus α; (d) Diagram of Ct versus α; (e) Diagram of PSNR versus α;

(f) – (i) Diagrams of bλk versus iterations for Lena, House, Cameraman 256× 256 and

Cameraman 512× 512, respectively, with noise ratio 90%.

Then, the average of the total number of iterates (Ni), function evaluations (Nf), gra-
dient evaluations (Ng), CPU times required (Ct) and PSNR have reported in the Ta-
bles 2 – 6. In Tables 2 – 6, we see that HCGN is better than other methods in Ni, Nf , Ng,
Ct and PSNR, respectively. Efficiency comparisons of all codes have been made using
the performance profile introduced by Dolan and Moré in [13] based on Ni, Nf , Ng, Ct
and PSNR in Figures 1 – 7. In these figures, P designates the percentage of problems
which are solved within a factor τ of the best solver. Subfigures (a) – (e) of Figure 1
show that with increasing the amount of α, the average of the total number of iterates,
function evaluations, gradient evaluations and CPU times will increase while PSNR of
them decreases. Therefore, with increasing amount of α the efficiency of HCGN will
decrease. Hence, based on the theory of the performance profile above and to give a
clear view of the behaviour of all algorithms, we depict the contour plot of the obtained
Ni, Nf , Ng, Ct and PSNR for

α ∈ {0.1, 0.2, 0.3, 0.4, 0.5},

in Figures 2 and 3.

810 M. KIMIAEI AND M. ROSTAMI

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

τ
(a)

P
(τ

)

HCGN−0.1
HCGN−0.2
HCGN−0.3
HCGN−0.4
HCGN−0.5

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

τ
(b)

P
(τ

)

HCGN−0.1
HCGN−0.2
HCGN−0.3
HCGN−0.4
HCGN−0.5

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

τ
(c)

P
(τ

)

HCGN−0.1
HCGN−0.2
HCGN−0.3
HCGN−0.4
HCGN−0.5

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(d)

P
(τ

)

HCGN−0.1
HCGN−0.2
HCGN−0.3
HCGN−0.4
HCGN−0.5

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(τ

)

τ
(e)

HCGN−0.1
HCGN−0.2
HCGN−0.3
HCGN−0.4
HCGN−0.5

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(f)

P
(τ

)

CGHZ−0.1
CGHZ−0.2
CGHZ−0.3
CGHZ−0.4
CGHZ−0.5

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(g)

P
(τ

)

CGHZ−0.1
CGHZ−0.2
CGHZ−0.3
CGHZ−0.4
CGHZ−0.5

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(h)

P
(τ

)

CGHZ−0.1
CGHZ−0.2
CGHZ−0.3
CGHZ−0.4
CGHZ−0.5

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(i)

P
(τ

)

CGHZ−0.1
CGHZ−0.2
CGHZ−0.3
CGHZ−0.4
CGHZ−0.5

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(j)

P
(τ

)

CGHZ−0.1
CGHZ−0.2
CGHZ−0.3
CGHZ−0.4
CGHZ−0.5

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(k)

P
(τ

)

CGDY−0.1
CGDY−0.2
CGDY−0.3
CGDY−0.4
CGDY−0.5

1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(l)

P
(τ

)

CGDY−0.1
CGDY−0.2
CGDY−0.3
CGDY−0.4
CGDY−0.5

1 1.5 2 2.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(m)

P
(τ

)

CGDY−0.1
CGDY−0.2
CGDY−0.3
CGDY−0.4
CGDY−0.5

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(n)

P
(τ

)

CGDY−0.1
CGDY−0.2
CGDY−0.3
CGDY−0.4
CGDY−0.5

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(o)

P
(τ

)

CGDY−0.1
CGDY−0.2
CGDY−0.3
CGDY−0.4
CGDY−0.5

Fig. 2. Comparisons for versions of HCGN, CGHZ and CGDY by performance profiles with

the measures Ni, Nf , Ng, Ct and PSNR: (a) – (e) displays the performance profile for

HCGN-0.1, HCGN-0.2, HCGN-0.3, HCGN-0.4 and HCGN-0.5; (f) – (j) displays the

performance profile for CGHZ-0.1, CGHZ-0.2, CGHZ-0.3, CGHZ-0.4 and CGHZ-0.5; (k) – (o)

displays the performance profile for CGDY-0.1, CGDY-0.2, CGDY-0.3, CGDY-0.4 and

CGDY-0.5.

Impulse noise removal based on new hybrid conjugate gradient approach 811

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(a)

P
(τ

)

CGHS−0.1
CGHS−0.2
CGHS−0.3
CGHS−0.4
CGHS−0.5

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(b)

P
(τ

)

CGHS−0.1
CGHS−0.2
CGHS−0.3
CGHS−0.4
CGHS−0.5

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(c)

P
(τ

)

CGHS−0.1
CGHS−0.2
CGHS−0.3
CGHS−0.4
CGHS−0.5

1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(d)

P
(τ

)

CGHS−0.1
CGHS−0.2
CGHS−0.3
CGHS−0.4
CGHS−0.5

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(e)

P
(τ

)

CGHS−0.1
CGHS−0.2
CGHS−0.3
CGHS−0.4
CGHS−0.5

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(f)

P
(τ

)

CGPR−0.1
CGPR−0.2
CGPR−0.3
CGPR−0.4
CGPR−0.5

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(g)

P
(τ

)

CGPR−0.1
CGPR−0.2
CGPR−0.3
CGPR−0.4
CGPR−0.5

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(h)

P
(τ

)

CGPR−0.1
CGPR−0.2
CGPR−0.3
CGPR−0.4
CGPR−0.5

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(i)

P
(τ

)

CGPR−0.1
CGPR−0.2
CGPR−0.3
CGPR−0.4
CGPR−0.5

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(j)

P
(τ

)

CGPR−0.1
CGPR−0.2
CGPR−0.3
CGPR−0.4
CGPR−0.5

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(k)

P
(τ

)

CGFR−0.1
CGFR−0.2
CGFR−0.3
CGFR−0.4
CGFR−0.5

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(l)

P
(τ

)

CGFR−0.1
CGFR−0.2
CGFR−0.3
CGFR−0.4
CGFR−0.5

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(m)

P
(τ

)

CGFR−0.1
CGFR−0.2
CGFR−0.3
CGFR−0.4
CGFR−0.5

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(n)

P
(τ

)

CGFR−0.1
CGFR−0.2
CGFR−0.3
CGFR−0.4
CGFR−0.5

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(o)

P
(τ

)

CGFR−0.1
CGFR−0.2
CGFR−0.3
CGFR−0.4
CGFR−0.5

Fig. 3. Comparisons for versions of CGHS, CGPR and CGFR by performance profiles with

the measures Ni, Nf , Ng, Ct and PSNR: (a) – (e) displays the performance profile for

CGHS-0.1, CGHS-0.2, CGHS-0.3, CGHS-0.4 and CGHS-0.5; (f) – (j) displays the performance

profile for CGPR-0.1, CGPR-0.2, CGPR-0.3, CGPR-0.4 and CGPR-0.5; (k) – (o) displays the

performance profile for CGFR-0.1, CGFR-0.2, CGFR-0.3, CGFR-0.4 and CGFR-0.5.

812 M. KIMIAEI AND M. ROSTAMI

Subfigures (a) – (e) of Figure 2 show that the results of HCGN for α = 0.1 are con-
siderably better than results of this algorithm for other considered values, especially,
Subfigure (e) of Figure 2 confirms the sensible excellence of HCGN in PSNR for this
value. Although, Subfigures (f) – (i) of Figure 2 demonstrate that the results of CGHZ
method for α = 0.5 are competitive with the other values of this parameter in Ni, Nf ,
Ng and Ct, while from Subfigure (j), it is clear that PSNR has the best performance for
α = 0.1. Also, the performance profiles of CGDY method for different values of α are
compared in the sense of Ni, Nf , Ng, Ct and PSNR in Subfigures (k) – (o) of Figure 2,
respectively. In this method, the optimal parameter α for PSNR is similar to the two
earlier methods. In Figure 3, we display the results of CGHS, CGPR and CGFR meth-
ods by using performance profiles for the measures Ni, Nf , Ng, Ct and PSNR. From
Subfigures (e) and (o) of Figure 3, it is quite evident that the best results for PSNR are
achieved by α = 0.5 in CGHS and CGFR methods while the CGPR method has best
performance for PSNR in α = 0.2. Subfigures (a) – (e) of Figure 4 show that HCGN has
best results among others for α = 0.1. For Ni, Nf , Ng, Ct and PSNR, it wins 100%,
100%, 100%, 100% and 88% for most of the test pictures, respectively.

1 2 3 4 5 6 7 8 9 10

τ

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(τ

)

CGFR-0.1
CGPR-0.1
CGHS-0.1
CGDY-0.1
CGHZ-0.1
HCGN-0.1

1 2 3 4 5 6 7 8 9 10

τ

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(τ

)

CGFR-0.1
CGPR-0.1
CGHS-0.1
CGDY-0.1
CGHZ-0.1
HCGN-0.1

1 2 3 4 5 6 7 8 9 10

τ

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(τ

)

CGFR-0.1
CGPR-0.1
CGHS-0.1
CGDY-0.1
CGHZ-0.1
HCGN-0.1

1 2 3 4 5 6 7 8 9 10

τ

(d)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(τ

)

CGFR-0.1
CGPR-0.1
CGHS-0.1
CGDY-0.1
CGHZ-0.1
HCGN-0.1

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

τ

(e)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(τ

)

CGFR-0.1
CGPR-0.1
CGHS-0.1
CGDY-0.1
CGHZ-0.1
HCGN-0.1

Fig. 4.Comparisons for all algorithms by performance profiles with the measures Ni, Nf , Ng,

Ct and PSNR: (a) – (e) displays the performance profile for α = 0.1.

Impulse noise removal based on new hybrid conjugate gradient approach 813

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
0.7

0.75

0.8

0.85

0.9

0.95

1

τ
(a)

P
(τ

)

HCGN−0.05
HCGN−0.1
HCGN−0.15

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
0.7

0.75

0.8

0.85

0.9

0.95

1

τ
(b)

P
(τ

)

HCGN−0.05
HCGN−0.1
HCGN−0.15

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
0.7

0.75

0.8

0.85

0.9

0.95

1

τ
(c)

P
(τ

)

HCGN−0.05
HCGN−0.1
HCGN−0.15

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(d)

P
(τ

)

HCGN−0.05
HCGN−0.1
HCGN−0.15

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(e)

P
(τ

)

HCGN−0.05
HCGN−0.1
HCGN−0.15

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(f)

P
(τ

)

CGHZ−0.05
CGHZ−0.1
CGHZ−0.15

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(g)

P
(τ

)

CGHZ−0.05
CGHZ−0.1
CGHZ−0.15

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(h)

P
(τ

)

CGHZ−0.05
CGHZ−0.1
CGHZ−0.15

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(τ

)

τ
(i)

CGHZ−0.05
CGHZ−0.1
CGHZ−0.15

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(j)

P
(τ

)

CGHZ−0.05
CGHZ−0.1
CGHZ−0.15

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(k)

P
(τ

)

CGDY−0.05
CGDY−0.1
CGDY−0.15

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(l)

P
(τ

)

CGDY−0.05
CGDY−0.1
CGDY−0.15

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(m)

P
(τ

)

CGDY−0.05
CGDY−0.1
CGDY−0.15

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(n)

P
(τ

)

CGDY−0.05
CGDY−0.1
CGDY−0.15

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(o)

P
(τ

)

CGDY−0.05
CGDY−0.1
CGDY−0.15

Fig. 5. Comparisons for versions of HCGN, CGHZ and CGDY by performance profiles with

the measures Ni, Nf , Ng, Ct and PSNR: (a) – (e) displays the performance profile for

HCGN-0.05, HCGN-0.1 and HCGN-0.15; (f) – (j) displays the performance profile for

CGHZ-0.05, CGHZ-0.1 and CGHZ-0.15; (k) – (o) displays the performance profile for

CGDY-0.05, CGDY-0.1 and CGDY-0.15.

814 M. KIMIAEI AND M. ROSTAMI

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(a)

P
(τ

)

CGHS−0.05
CGHS−0.1
CGHS−0.15

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(τ

)

τ
(b)

CGHS−0.05
CGHS−0.1
CGHS−0.15

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(c)

P
(τ

)

CGHS−0.05
CGHS−0.1
CGHS−0.15

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(d)

P
(τ

)

CGHS−0.05
CGHS−0.1
CGHS−0.15

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(e)

P
(τ

)

CGHS−0.05
CGHS−0.1
CGHS−0.15

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(f)

P
(τ

)

CGPR−0.05
CGPR−0.1
CGPR−0.15

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(τ

)

τ
(g)

CGPR−0.05
CGPR−0.1
CGPR−0.15

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(h)

P
(τ

)

CGPR−0.05
CGPR−0.1
CGPR−0.15

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(i)

P
(τ

)

CGPR−0.05
CGPR−0.1
CGPR−0.15

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(j)

P
(τ

)

CGPR−0.05
CGPR−0.1
CGPR−0.15

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(k)

P
(τ

)

CGFR−0.05
CGFR−0.1
CGFR−0.15

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(l)

P
(τ

)

CGFR−0.05
CGFR−0.1
CGFR−0.15

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(m)

P
(τ

)

CGFR−0.05
CGFR−0.1
CGFR−0.15

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(n)

P
(τ

)

CGFR−0.05
CGFR−0.1
CGFR−0.15

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ
(o)

P
(τ

)

CGFR−0.05
CGFR−0.1
CGFR−0.15

Fig. 6. Comparisons for versions of CGHS, CGPR and CGFR by performance profiles with

the measures Ni, Nf , Ng, Ct and PSNR: (a) – (e) displays the performance profile for

CGHS-0.05, CGHS-0.1 and CGHS-0.15; (f) – (j) displays the performance profile for

CGPR-0.05, CGPR-0.1 and CGPR-0.15; (k) – (o) displays the performance profile for

CGFR-0.05, CGFR-0.1 and CGFR-0.15.

Impulse noise removal based on new hybrid conjugate gradient approach 815

1 2 3 4 5 6 7 8 9 10

τ

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(τ

)

CGFR-0.05
CGPR-0.05
CGHS-0.05
CGDY-0.05
CGHZ-0.05
HCGN-0.05

1 2 3 4 5 6 7 8 9 10

τ

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(τ

)

CGFR-0.05
CGPR-0.05
CGHS-0.05
CGDY-0.05
CGHZ-0.05
HCGN-0.05

1 2 3 4 5 6 7 8 9 10

τ

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(τ

)

CGFR-0.05
CGPR-0.05
CGHS-0.05
CGDY-0.05
CGHZ-0.05
HCGN-0.05

1 2 3 4 5 6 7 8 9 10

τ

(d)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(τ

)

CGFR-0.05
CGPR-0.05
CGHS-0.05
CGDY-0.05
CGHZ-0.05
HCGN-0.05

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

τ

(e)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(τ

)

CGFR-0.05
CGPR-0.05
CGHS-0.05
CGDY-0.05
CGHZ-0.05
HCGN-0.05

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

τ

(f)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(τ

)

CGFR-0.15
CGPR-0.15
CGHS-0.15
HCGN-0.05

Fig. 7. Comparisons for all algorithms by performance profiles with the measures Ni, Nf ,

Ng, Ct and PSNR: (a) – (e) displays the performance profile for α = 0.05; (f) display the

performance profile of PSNR for α = 0.05 and α = 0.15.

Note that, if convex combination parameter λ̂k in (19) tends to 1, then β
New

k in-
herits only the advantage of CGHZ method. However, Subfigures (f) – (i) of Figure 1
demonstrate that the convex combination parameter takes values between 0.39 and 1
in different iterations and therefore the parameter β

New

k inherits advantages of both β
HZ

k

and β
DY

k .

Image Size C
G

F
R

C
G

P
R

C
G

H
S

C
G

D
Y

C
G

H
Z

H
C

G
N

Lena 256× 256 226.3822 109.4800 118.1156 219.6000 97.2711 45.8756
House 256× 256 172.4978 84.1467 91.8311 168.5067 76.3733 29.2444
Cameraman 256× 256 284.3644 118.7067 128.9387 277.3689 116.4933 46.4311
Cameraman 512× 512 112.3689 62.2933 69.1511 111.1022 54.3733 24.5289
Elaine 512× 512 170.4756 96.6844 100.4667 163.0311 89.4000 39.0667

Average 193.21778 94.26222 101.70064 187.92178 86.78220 37.02934

Tab. 2. Iterations.

Image Size C
G

F
R

C
G

P
R

C
G

H
S

C
G

D
Y

C
G

H
Z

H
C

G
N

Lena 256× 256 570.0711 222.3111 236.1911 544.7422 202.5289 88.4400
House 256× 256 442.0267 173.6711 185.7156 419.9644 162.6622 55.5289
Cameraman 256× 256 747.7911 246.3022 262.6400 725.1467 247.9111 86.9200
Cameraman 512× 512 275.1600 123.2978 135.2800 264.3867 110.2178 44.6756
Elaine 512× 512 427.5511 200.8444 205.5333 402.6444 192.0267 73.9689

Average 492.52000 193.28532 205.07200 471.37688 183.06934 69.85870

Tab. 3. Function evaluations.

816 M. KIMIAEI AND M. ROSTAMI

Image Size C
G

F
R

C
G

P
R

C
G

H
S

C
G

D
Y

C
G

H
Z

H
C

G
N

Lena 256× 256 252.4133 148.0400 156.9022 236.5733 130.9244 56.0356
House 256× 256 196.6133 110.8978 118.1644 178.1733 101.8978 36.7778
Cameraman 256× 256 316.2978 160.7022 171.9422 297.5111 151.2400 57.6089
Cameraman 512× 512 130.7244 79.7022 86.9778 121.1289 73.4311 29.8356
Elaine 512× 512 194.3022 128.7244 132.4756 177.9556 119.8400 47.4089

Average 218.07014 125.61332 133.29244 202.26844 115.46666 45.53336

Tab. 4. Gradient evaluations.

Image Size C
G

F
R

C
G

P
R

C
G

H
S

C
G

D
Y

C
G

H
Z

H
C

G
N

Lena 256× 256 17.6342 8.4763 9.0299 16.8709 7.6500 3.3616
House 256× 256 13.5885 6.4361 6.8989 12.9039 6.0144 2.1361
Cameraman 256× 256 22.5252 9.2437 9.8946 21.6945 9.1000 3.3935
Cameraman 512× 512 35.4139 17.7439 20.3977 32.8135 16.7664 6.7043
Elaine 512× 512 52.5127 29.5980 30.4606 49.5570 28.3075 10.8813

Average 28.33490 14.29960 15.33634 26.76796 13.56766 5.29536

Tab. 5. CPU times.

Image Size C
G

F
R

C
G

P
R

C
G

H
S

C
G

D
Y

C
G

H
Z

H
C

G
N

Lena 256× 256 26.9977 27.1827 27.0526 27.0002 27.5396 31.3699
House 256× 256 30.5509 30.7321 30.5247 30.5468 31.0894 34.9959
Cameraman 256× 256 24.7873 25.0162 24.8775 24.7871 25.3490 29.8770
Cameraman 512× 512 31.3882 31.4705 31.3481 31.3896 31.6652 32.4783
Elaine 512× 512 30.4517 30.6491 30.4956 30.4518 31.0334 36.1198

Average 28.83516 29.01012 28.8597 28.8351 29.33532 32.96818

Tab. 6. PSNR.

Let us denote ε-machine with εm. According to obtained results form Figures 1 – 4
and Tables 2 – 6, we choose (εm, 0.15] as the interval including the optimal α and run
again all algorithms similar to conditions of the first run for α ∈ {0.05, 0.1, 0.15} of
this interval. In Figure 5, Subfigures (a) – (e) illustrate the performance profiles of the
HCGN for Ni, Nf , Ng, Ct and PSNR with different values of α in optimal interval.
From these subfigures, our method for α = 0.05 has the best results in competitive
with the others values of this parameter. Also, Subfigure (o) of Figure 5 and Subfigures
(e), (j) and (o) of Figure 6 show that CGDY, CGHS, CGPR and CGFR algorithms for
α = 0.15 have the best results for PSNR. Hence, Subfigure (f) of Figure 7 shows that
HCGN Algorithm for α = 0.05 has the best results in competitive with CGFR-0.15,
CGPR-0.15 and CGHS-0.15 for PSNR. Finally, from Subfigures (a) – (e) of Figure 7,
HCGN Algorithm for α = 0.05 wins 100%, 100%, 100%, 100% and 87% in Ni, Nf , Ng,
Ct and PSNR for most of the test pictures in competitive with others.

Impulse noise removal based on new hybrid conjugate gradient approach 817

Salt-and-pepper noise

50 100 150 200 250

r= 50%

50

100

150

200

250

Restored image via AMF

50 100 150 200 250

24.0873 dB

50

100

150

200

250

HCGN-0.05

50 100 150 200 250

36.2465 dB

50

100

150

200

250

Salt-and-pepper noise

50 100 150 200 250

r= 70%

50

100

150

200

250

Restored image via AMF

50 100 150 200 250

21.4687 dB

50

100

150

200

250

HCGN-0.05

50 100 150 200 250

34.0168 dB

50

100

150

200

250

Salt-and-pepper noise

50 100 150 200 250

r= 90%

50

100

150

200

250

Restored image via AMF

50 100 150 200 250

17.8114 dB

50

100

150

200

250

HCGN-0.05

50 100 150 200 250

32.5107 dB

50

100

150

200

250

Fig. 8. The noisy images\the restored images via AMF\the restored images via HCGN-0.05

for 256× 256 Cameraman image.

Figures 8 – 12 show the obtained results by AMF and the two-phase schemes solved by
the HCGN method. These results show that HCGN with α = 0.05 can restore corrupted
image quite well in an efficient manner.

Finally, we compare HCGN (α = 0.05) with the following considered algorithms

• BB1: This is a version of Algorithm 3, using dk := − 1
λ1

k
∇Fα(uk) instead of d̃k

generated by (5) (Line 9) and expect Line 8.

• BB2: This is a version of Algorithm 3, using dk := − 1
λ2

k
∇Fα(uk) instead of d̃k

generated by (5) (Line 9) and expect Line 8.

• LBFGS: This is Algorithm 7.5 in Nocedal and Wright [23] (Chapter 7, Page 198),
using dk := −Hk∇Fα(uk), in which Hk is a quasi-Newton approximation of the
inverse matrix B−1

k generated by the well-known LBFGS approach developed by
Liu and Nocedal in [20] and Nocedal in [22]. Note that Bk is an approximation
of ∇2Fα(uk), which it satisfies in the following condition, known as the secant

818 M. KIMIAEI AND M. ROSTAMI

Salt-and-pepper noise

50 100 150 200 250

r= 50%

50

100

150

200

250

Restored image via AMF

50 100 150 200 250

29.2047 dB

50

100

150

200

250

HCGN-0.05

50 100 150 200 250

39.1823 dB

50

100

150

200

250

Salt-and-pepper noise

50 100 150 200 250

r= 70%

50

100

150

200

250

Restored image via AMF

50 100 150 200 250

26.1252 dB

50

100

150

200

250

HCGN-0.05

50 100 150 200 250

37.6765 dB

50

100

150

200

250

Salt-and-pepper noise

50 100 150 200 250

r= 90%

50

100

150

200

250

Restored image via AMF

50 100 150 200 250

21.5097 dB

50

100

150

200

250

HCGN-0.05

50 100 150 200 250

36.5417 dB

50

100

150

200

250

Fig. 9. The noisy images\the restored images via AMF\the restored images via HCGN-0.05

for 256× 256 House image.

equation,
Bk+1sk = yk,

where sk := uk+1 − uk and yk := ∇Fα(uk+1)−∇Fα(uk). In the LBFGS method,
matrix Hk+1 is defined by

Hk+1 :=
(
V Tk · · ·V Tk−m

)
H0(Vk−m · · ·Vk)

+ θk−m
(
V Tk · · ·V Tk−m+1

)
sk−ms

T
k−m(Vk−m+1 · · ·Vk)

+ θk−m+1

(
V Tk · · ·V Tk−m+2

)
sk−m+1s

T
k−m+1(Vk−m+2 · · ·Vk)

...

+ θksks
T
k ,

(23)

where H0 is a symmetric and positive-definite starting matrix, θk := 1
yT

k sk
, Vk :=

I − θkyksTk and m := min{k, 5}.

Impulse noise removal based on new hybrid conjugate gradient approach 819

Salt-and-pepper noise

50 100 150 200 250 300 350 400 450 500

r= 50%

50

100

150

200

250

300

350

400

450

500

Restored image via AMF

50 100 150 200 250 300 350 400 450 500

29.5918 dB

50

100

150

200

250

300

350

400

450

500

HCGN-0.05

50 100 150 200 250 300 350 400 450 500

43.2943 dB

50

100

150

200

250

300

350

400

450

500

Salt-and-pepper noise

50 100 150 200 250 300 350 400 450 500

r= 70%

50

100

150

200

250

300

350

400

450

500

Restored image via AMF

50 100 150 200 250 300 350 400 450 500

25.5814 dB

50

100

150

200

250

300

350

400

450

500

HCGN-0.05

50 100 150 200 250 300 350 400 450 500

41.0894 dB

50

100

150

200

250

300

350

400

450

500

Salt-and-pepper noise

50 100 150 200 250 300 350 400 450 500

r= 90%

50

100

150

200

250

300

350

400

450

500

Restored image via AMF

50 100 150 200 250 300 350 400 450 500

20.7557 dB

50

100

150

200

250

300

350

400

450

500

HCGN-0.05

50 100 150 200 250 300 350 400 450 500

39.113 dB

50

100

150

200

250

300

350

400

450

500

Fig. 10. The noisy images\the restored images via AMF\the restored images via HCGN-0.05

for 512× 512 Cameraman image.

Note that BB1, BB2 and LBFGS are suitable to solve the smooth problem (2) since
they have low computational costs. In Subfigures of Figure 13, it can be seen that
the HCGN (α = 0.05) is the best solver, in terms of Ni, Nf , Ng and Ct on 100% of
the problems and PSNR on 88% of the problems, while LBFGS, BB1 and BB2 have
approximately the same manner.

5. CONCLUDING REMARKS

In this paper, we introduce an extended CG method to minimize the smooth regular-
ization functional for impulse noise removal. The parameter β

New

k of new method is the
convex combination of both β

HZ

k and β
DY

k such that it takes advantages of BB method.
Numerical results show that the new method has low computational cost and is efficient
to solve signal processing problems.

820 M. KIMIAEI AND M. ROSTAMI

Salt-and-pepper noise

50 100 150 200 250

r= 50%

50

100

150

200

250

Restored image via AMF

50 100 150 200 250

26.4445 dB

50

100

150

200

250

HCGN-0.05

50 100 150 200 250

36.3764 dB

50

100

150

200

250

Salt-and-pepper noise

50 100 150 200 250

r= 70%

50

100

150

200

250

Restored image via AMF

50 100 150 200 250

23.1115 dB

50

100

150

200

250

HCGN-0.05

50 100 150 200 250

35.0418 dB

50

100

150

200

250

Salt-and-pepper noise

50 100 150 200 250

r= 90%

50

100

150

200

250

Restored image via AMF

50 100 150 200 250

19.0123 dB

50

100

150

200

250

HCGN-0.05

50 100 150 200 250

33.9368 dB

50

100

150

200

250

Fig. 11. The noisy images\the restored images via AMF\the restored images via HCGN-0.05

for 256× 256 Lena image.

ACKNOWLEDGEMENT

The authors are grateful to anonymous referees for their valuable comments and suggestions
that improve the paper.

(Received August 17, 2015)

R E F E R E N C E S

[1] J. Barzilai and J. M. Borwein: Two point step size gradient method. IMA J. Numer.
Anal. 8 (1988), 141–148. DOI:10.1093/imanum/8.1.141

[2] M. Bertalmio, L. A. Vese, G. Sapiro, and S. Osher: Simultaneous structure and
texture image inpainting. IEEE Trans. Image Processing. 12 (2003), 8, 882–889.
DOI:10.1109/tip.2003.815261

[3] J. F. Cai, R. H. Chan, and C. D. Fiore: Minimization of a detail-preserving regulariza-
tion functional for impulse noise removal. J. Math. Imaging Vision. 27 (2007), 79–91.
DOI:10.1007/s10851-007-0027-4

http://dx.doi.org/10.1093/imanum/8.1.141
http://dx.doi.org/10.1109/tip.2003.815261
http://dx.doi.org/10.1007/s10851-007-0027-4

Impulse noise removal based on new hybrid conjugate gradient approach 821

Salt-and-pepper noise

50 100 150 200 250 300 350 400 450 500

r= 50%

50

100

150

200

250

300

350

400

450

500

Restored image via AMF

50 100 150 200 250 300 350 400 450 500

30.9591 dB

50

100

150

200

250

300

350

400

450

500

HCGN-0.05

50 100 150 200 250 300 350 400 450 500

33.518 dB

50

100

150

200

250

300

350

400

450

500

Salt-and-pepper noise

50 100 150 200 250 300 350 400 450 500

r= 70%

50

100

150

200

250

300

350

400

450

500

Restored image via AMF

50 100 150 200 250 300 350 400 450 500

28.0672 dB

50

100

150

200

250

300

350

400

450

500

HCGN-0.05

50 100 150 200 250 300 350 400 450 500

32.7246 dB

50

100

150

200

250

300

350

400

450

500

Salt-and-pepper noise

50 100 150 200 250 300 350 400 450 500

r= 90%

50

100

150

200

250

300

350

400

450

500

Restored image via AMF

50 100 150 200 250 300 350 400 450 500

23.166 dB

50

100

150

200

250

300

350

400

450

500

HCGN-0.05

50 100 150 200 250 300 350 400 450 500

32.2162 dB

50

100

150

200

250

300

350

400

450

500

Fig. 12. The noisy images\the restored images via AMF\the restored images via HCGN-0.05

for 512× 512 Elaine image.

[4] J. F. Cai, R. H. Chan, and B. Morini: Minimization of an edge-preserving regularization
functional by conjugate gradient type methods, image processing based on partial differ-
ential equations. In: Mathematics and Visualization, Springer, Berlin Heidelberg 2007,
pp. 109–122. DOI:10.1007/978-3-540-33267-1 7

[5] J. F. Cai, R. H. Chan, and M. Nikolova: Two-phase approach for deblurring images
corrupted by impulse plus Gaussian noise. Inverse Problem and Imaging. 2 (2008), 187–
204. DOI:10.3934/ipi.2008.2.187

[6] J. F. Cai, R. H. Chan, and M. Nikolova: Fast two-phase image deblurring under impulse
noise. J. Math. Imaging and Vision 36 (2010), 46–53. DOI:10.1007/s10851-009-0169-7

[7] R. Chan, C. Hu, and M. Nikolova: Iterative procedure for removing random-
valued impulse noise. IEEE Signal Process. Lett. 11 (2004), 12, 921–924.
DOI:10.1109/lsp.2004.838190

[8] R. H. Chan, C. W. Ho, and M. Nikolova: Salt-and-pepper noise removal by median-
type noise detectors and detail-preserving regularization. IEEE Trans. Image Process. 14
(2005), 1479–1485. DOI:10.1109/tip.2005.852196

http://dx.doi.org/10.1007/978-3-540-33267-1_7
http://dx.doi.org/10.3934/ipi.2008.2.187
http://dx.doi.org/10.1007/s10851-009-0169-7
http://dx.doi.org/10.1109/lsp.2004.838190
http://dx.doi.org/10.1109/tip.2005.852196

822 M. KIMIAEI AND M. ROSTAMI

1 2 3 4 5 6 7 8 9 10

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(τ

)

LBFGS
BB1
BB2
HCGN

1 2 3 4 5 6 7 8 9 10

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(τ

)

LBFGS
BB1
BB2
HCGN

1 2 3 4 5 6 7 8 9 10

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(τ

)

LBFGS
BB2
BB1
HCGN

1 2 3 4 5 6 7 8 9 10

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(τ

)

LBFGS
BB1
BB2
HCGN

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(τ

)

LBFGS
BB1
BB2
HCGN

Fig. 13. Comparisons for LBFGS, BB1, BB2 and HCGN by performance profiles with the

measures Ni, Nf , Ng, Ct and PSNR: (a) – (e) displays the performance profile for α = 0.05.

[9] T. F. Chan, J. Shen, and H. Zhou: Total variation wavelet inpainting. J. Math. Imaging
Vision 25 (2006), 107–125. DOI:10.1007/s10851-006-5257-3

[10] T. Chen and H. R. Wu: Adaptive impulse detection using center-weighted median filters.
IEEE Signal Process. Lett. 8 (2001), 1–3. DOI:10.1109/97.889633

[11] Y. H. Dai and Q. Ni: Testing different conjugate gradient methods for large-scale uncon-
strained optimization. J. Comput. Math. 21 (2003), 311–320.

[12] Y. H. Dai and Y. Yuan: A nonlinear conjugate gradient method with a
strong global convergence property. IEEE SIAM J. Optim. 10 (1999), 177–182.
DOI:10.1137/s1052623497318992

[13] E. D. Dolan and J. J. Moré: Benchmarking optimization software with performance pro-
files. Math. Program. 91 (2002), 2, 201–213. DOI:10.1007/s101070100263

[14] R. Fletcher and C. Reeves: Function minimization by conjugate gradients. Comput. J.
7 (1964), 149–154. DOI:10.1093/comjnl/7.2.149

[15] J. C. Gilbert and J. Nocedal: Global convergence properties of conjugate gradient meth-
ods for optimization. SIAM J. Optim. 2 (1992), 21–42. DOI:10.1137/0802003

[16] W. W. Hager and H. Zhang: A new conjugate gradient method with guaranteed descent
and an efficient line search. SIAM J. Optim. 16 (2005), 170–192. DOI:10.1137/030601880

[17] W. W. Hager and H. Zhang: A survey of nonlinear conjugate gradeint methods.
http://www.math.u.edu/∼ hager, 2005.

http://dx.doi.org/10.1007/s10851-006-5257-3
http://dx.doi.org/10.1109/97.889633
http://dx.doi.org/10.1137/s1052623497318992
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1093/comjnl/7.2.149
http://dx.doi.org/10.1137/0802003
http://dx.doi.org/10.1137/030601880

Impulse noise removal based on new hybrid conjugate gradient approach 823

[18] M. R. Hestenes and E. L. Stiefel: Methods of conjugate gradients for solving linear sys-
tems. J. Research Nat. Bur. Standards 49 (1952), 409–436. DOI:10.6028/jres.049.044

[19] H. Hwang and R. A. Haddad: Adaptive median filters: New algorithms and results. IEEE
Trans. Image Process. 4 (1995), 499–502. DOI:10.1109/83.370679

[20] D. C. Liu and J. Nocedal: On the limited memory BFGS method for large scale opti-
mization. Math. Program. 45 (1989), 503–528. DOI:10.1007/bf01589116

[21] M. Nikolova: A variational approach to remove outliers and impulse noise. J. Math.
Imaging Vision 20 (2004), 1–2, 99–120. Special issue on mathematics and image analysis.
DOI:10.1023/b:jmiv.0000011920.58935.9c

[22] J. Nocedal: Updating quasi-Newton matrices with limited storage. Math. Comput. 35
(1980), 773–782. DOI:10.1090/s0025-5718-1980-0572855-7

[23] J. Nocedal and S. J. Wright: Numerical Optimization. Springer, New York 2006.
DOI:10.1007/978-0-387-40065-5

[24] B. T. Polyak: The conjugate gradient method in extreme problems. USSR Comp. Math.
Math. Phys. 9 (1969), 94–112. DOI:10.1016/0041-5553(69)90035-4

[25] E. Polyak and G. Ribière: Note sur la convergence de directions conjugées. Francaise
Informat Recherche Opertionelle, 3e Année 16 (1969), 35–43.

[26] M. J. D. Powell: Restart procedures of the conjugate gradient method. Math. Prog. 2
(1977), 241–254.

[27] M. J. D. Powell: Nonconvex minimization calculations and the conjugate gradient method.
In: Numerical Analysis (Dundee, 1983), Lecture Notes in Mathematics, Springer-Verlag,
Berlin 1066 (1984), pp. 122–141.

[28] G. Yua, J. Huanga, and Y. Zhou: A descent spectral conjugate gradient method for
impulse noise removal. Appl. Math. Lett. 23 (2010), 555–560.

[29] G. Yu, L. Qi, Y. Sun, and Y. Zhou: Impulse noise removal by a nonmonotone adaptive
gradient method. Signal Process. 90 (2010), 2891–2897.

[30] G. Zoutendijk: Nonlinear programming computational methods. In: Integer and Non-
linear Programming (J. Abadie, ed.), North-Holland, Amsterdam 1970, pp. 37–86.

Morteza Kimiaei, Department of Mathematics, Asadabad Branch, Islamic Azad Uni-
versity, Asadabad, Iran.

e-mail: morteza.kimiaei@gmail.com

Majid Rostami, Young Researchers and Elite Club, Hamedan Branch, Islamic Azad
University, Hamedan, Iran.

e-mail: majid403rostami@yahoo.com

http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.1109/83.370679
http://dx.doi.org/10.1007/bf01589116
http://dx.doi.org/10.1023/b:jmiv.0000011920.58935.9c
http://dx.doi.org/10.1090/s0025-5718-1980-0572855-7
http://dx.doi.org/10.1007/978-0-387-40065-5
http://dx.doi.org/10.1016/0041-5553(69)90035-4

		webmaster@dml.cz
	2018-01-10T14:04:34+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document

