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Abstract. We consider, for a positive integer k, induced subgraphs in which each compo-
nent has order at most k. Such a subgraph is said to be k-divided. We show that finding
large induced subgraphs with this property is NP-complete. We also consider a related
graph-coloring problem: how many colors are required in a vertex coloring in which each
color class induces a k-divided subgraph. We show that the problem of determining whether
some given number of colors suffice is NP-complete, even for 2-coloring a planar triangle-
free graph. Lastly, we consider Ramsey-type problems where graphs or their complements
with large enough order must contain a large k-divided subgraph. We study the asymptotic
behavior of “k-divided Ramsey numbers”. We conclude by mentioning a number of open
problems.
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1. k-divided colorings: basic results

All graphs will be finite, simple, and undirected. A coloring of a graph is a par-

tition of the vertex set. We will informally say that a set of vertices of a graph has

a particular property if the subgraph induced by those vertices has the property.

For undefined terms and concepts, the reader is referred to Chartrand, Lesniak, and

Zhang [9].

A previously studied generalization of independence is as follows. A set of ver-

tices is k-dependent if it induces a graph with maximum degree at most k. So an

independent set is precisely a 0-dependent set. We can similarly generalize the con-

cept of a proper coloring. A coloring of a graph is k-defective if each color class is

k-dependent. By χk(G) we denote the minimum number of colors in a k-defective

coloring of G. Clearly, χ0(G) = χ(G), the ordinary chromatic number. The concepts
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of k-dependence and k-defective coloring have been studied by a number of authors,

e.g., [11], [12], [13], [15], [21].

In this paper we study the notion of a k-divided subgraph. For a positive inte-

ger k an induced subgraph in which each component has order at most k is said

to be k-divided. This concept also generalizes independence, as a set of vertices is

independent precisely if it is 1-divided.

A number of works consider the idea of partitioning the vertex set of a graph

into k-divided subgraphs for some k. This study seems to have been begun by

Kleinberg, Motwani, Raghavan, and Venkatasubramanian [27] and by Alon, Ding,

Oporoski, and Vertigan [2]. For example, the latter [2], Corollary 1.1, showed that

if a graph G has maximum degree at most 4, then the vertex set of G can be

partitioned into two 57-divided induced subgraphs. Haxell, Szabó, and Tardos [26],

Theorem 2.7, improved this to two 6-divided induced subgraphs. They also showed

that allowing maximum degree 5 gives two 17617-divided induced subgraphs (see

their Theorem 2.1, along with the remark after Claim 2.5). Berke [3], Theorem 4.5,

has improved this to 1908-divided. On the other hand, Alon et al. [2], Section 2,

found, for each k, a graph H of maximum degree 6 such that V (H) cannot be

partitioned into two k-divided induced subgraphs. Various other authors, e.g., [18],

[28], [31], have also obtained results in this area.

We consider this partition as a graph-coloring parameter. We say a coloring is

k-divided if each color class is k-divided. By χ∗

k(G) we denote the minimum number

of colors in a k-divided coloring of G. Note that χ∗

1(G) = χ(G). Thus, for example,

the first result of Haxell, Szabó, and Tardos mentioned above may be restated as

saying that, if a graph G has maximum degree at most 4, then χ∗

6(G) 6 2.

By definition, we have the following.

R em a r k 1.1. For each graph G and each k for which the parameters are de-

fined, the following hold:

χk+1(G) 6 χk(G),

χ∗

k+1(G) 6 χ∗

k(G).

The disjoint union of a collection of k-cliques shows that both inequalities in the

above remark can be satisfied with equality. On the other hand, if H is the disjoint

union of a collection of cliques, each of order k(k + 1)m, then χ∗

k+1(H) = mk and

χ∗

k(H) = m(k + 1). Thus, χ∗

k+1 and χ∗

k can be arbitrarily far apart (as can χk+1

and χk).

Our next result shows that, while the difference between χ∗

a and χ∗

b may be arbi-

trarily large for fixed a, b, we can bound the ratio of these two quantities.
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Proposition 1.2. If j > k > 1, then for every graph G,

χ∗

j (G) 6 χ∗

k(G) 6
⌈ j

k

⌉

χ∗

j (G).

P r o o f. The first inequality follows from Remark 1.1.

For the second inequality, let G be a graph, and let j > k > 1. Suppose we

have a j-divided coloring of G using χ∗

j (G) colors. Each component of each color

class has at most j vertices; these vertices can be partitioned into ⌈j/k⌉ sets, each
of cardinality at most k. Thus the vertex set of each color class can be partitioned

into ⌈j/k⌉ sets, each of which is k-divided. Using these sets as color classes for a new
coloring, we obtain a k-divided coloring of G using ⌈j/k⌉χ∗

j(G) colors. �

We note that a k-divided subgraph has maximum degree at most k − 1. Hence

the following.

Proposition 1.3. For each graph G and each k > 1,

χk−1(G) 6 χ∗

k(G).

The above is sharp in the sense that any union of complete graphs gives equality

between these two parameters. Now let k > 2, and let H be the complete 2k-partite

graph where each part contains k − 1 vertices. Then χk−1(H) = k (each color class

is the union of two partite sets), while χ∗

k(H) = 2k − 2 (each color class is a partite

set together with one vertex from a different partite set). Thus, for large values of k

we can push χk−1 and χ∗

k far apart. However, we will soon see that if k and χk are

fixed, then χ∗

k cannot be arbitrarily large.

We will make use of the following easy result. This follows, for example, from

a result of Lovász [30], Theorem 1; we provide a direct proof.

R em a r k 1.4. If a graph G has maximum degree ∆, then χ∗

2(G) 6 ⌊ 1

2
∆+ 1⌋.

P r o o f. Our proof uses a well known technique of unknown origin. Given G

a graph of maximum degree ∆, let t = ⌊ 1

2
∆+1⌋. Now color the vertices of G with t

colors so that the number of monochromatic edges is minimized. If the color on some

vertex v is found on two of its neighbors, then, since 2t > ∆, some other color is

used on at most one neighbor of v. So switch the color of v and further reduce the

number of monochromatic edges. Thus we may assume that each vertex is adjacent

with at most one other vertex of the same color. And the desired result follows. �
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Finding a k-defective coloring of G with the minimum number of colors and then

applying Remark 1.4 to each color class yields the following.

Corollary 1.5. For each graph G and each k > 1,

χ∗

2(G) 6
⌊k

2
+ 1

⌋

χk(G).

Here is a related bound.

Proposition 1.6. There exists a constant p such that for sufficiently large k,

χ∗

p(G) <
k

3
χk(G)

for every graph G.

P r o o f. A result of Haxell, Szabó, and Tardos [26], Theorem 3.5, states that

there exist positive constants p and ε such that for sufficiently large k, if H is a

graph of maximum degree k, then H has a p-divided coloring with at most k(1
3
− ε)

colors. So given G, consider a k-defective coloring of G using χk(G) colors. Apply

the Haxell-Szabó-Tardos result to each color class to obtain a p-divided coloring of G

with the required number of colors. �

We close this section with an open problem.

Q u e s t i o n 1.7. Is the following true?

For each fixedm > 1 there exists km such that if k > km, then χ
∗

k(G) 6 χk(G)k/m

for every graph G.

Note that, by Proposition 1.6, the answer to the above question is “yes” for

m = 1, 2, 3.

2. k-divided colorings: graphs on surfaces

By Remark 1.1, χ∗

k(G) 6 χ∗

2(G) for all k > 2. By definition, χ∗

2(G) = χ1(G)

for every graph G. Cowen, Cowen, and Woodall [11], Theorem 6, showed that if G

is planar, then χ1(G) 6 4. Their proof does not invoke the Four-Color Theorem.

Hence, the following can be proved without use of this theorem.

Theorem 2.1. If G is a planar graph and k > 2, then χ∗

k(G) 6 4.

We shall see that this is best possible.
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We remark on a constructive technique that we will use in two proofs below.

Suppose G is a graph with χ∗

k(G) = m. Form a new graph G′ by taking k disjoint

copies of G and then adding a new vertex v that is adjacent to all other vertices.

This G′ cannot be given a k-divided coloring with m colors. However, if v is given

a new color and m colors are used on the remaining vertices, then we can form

a k-divided coloring of G′ with m+ 1 colors, showing that χ∗

k(G
′) = m+ 1.

We note that if G is outerplanar then χ∗

k(G) 6 3 for every k. By the following

result (also given without proof by Berke [3], page 16), this is best possible.

Theorem 2.2. For each k > 1, there exists an outerplanar graph G with

χ∗

k(G) = 3.

P r o o f. Fix k > 1. Let H be the disjoint union of k paths, each having k + 1

vertices. Note that χ∗

k(H) = 2. Form a graph G by joining a new vertex v to each

vertex of H , as in the above construction. Graph G is outerplanar, and χ∗

k(G) = 3.

�

We will use the following in a later proof.

O b s e r v a t i o n 2.3. Let k > 1, and let G be the outerplanar graph with

χ∗

k(G) = 3 constructed in the proof of Theorem 2.2. Then G has a k-divided 3-

coloring in which one color class contains exactly one vertex.

The above ideas give a simple alternate proof of the following result, proven by

Kleinberg, Motwani, Raghavan, and Venkatasubramanian [27], Theorem 4.2, and

also by Alon, Ding, Oporoski, and Vertigan [2], Theorem 6.6.

Theorem 2.4. For each k > 1, there exists a planar graph G with χ∗

k(G) = 4.

P r o o f. Fix k. By Theorem 2.2 there exists a graph, say H , such that H is

outerplanar and χ∗

k(H) = 3. The union of k copies ofH is also outerplanar. Applying

the above constructive technique, we join a single vertex to k copies of H to form

a planar graph G with χ∗

k(G) = 4. �

On the other hand, Esperet and Joret [18], Theorem 2, showed that for planar

graphs we can limit χ∗

k to 3 if we bound k below by a function of the maximum

degree of the graph. (We have restated the following result using our notation.)

Theorem 2.5 (Esperet, Joret [18]). For each ∆ > 0, there exists k∆ such that

if G is a planar graph with maximum degree at most ∆ and k > k∆, then

χ∗

k(G) 6 3.
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We may also place limits on χ∗

k based on the girth of a planar graph.

Theorem 2.6. Let G be a planar graph with girth at least 11. Then χ∗

2(G) 6 2.

P r o o f. Let G be a planar graph with girth at least 11. We proceed by induction

on the order of G. If G has order at most 2, then the required coloring obviously

exists. Suppose G has order 3 or more.

If G has a vertex v of degree 0 or 1, then we may remove v from G, color the

resulting graph by the induction hypothesis, and finally color v using a color not

used on its neighbor (if any); this is the required coloring. We may thus assume

that G has minimum degree at least 2.

Nešetřil, Raspaud, and Sopena [32], Lemma 5, showed that, for d > 1, if a planar

graph has minimum degree at least 2 and girth at least 5d+1, then the graph contains

a path of length d + 1, each of whose internal vertices has degree 2. Applying this

result to graph G with d = 2, we see that G must contain two adjacent vertices of

degree 2. Call these vertices x and y. Remove x and y from G, color the resulting

graph by the induction hypothesis, and finally color each of x and y using the color

that is not used on its already-colored neighbor. This is the required coloring. �

Relationships between girth and k-divided coloring seem worthy of further study.

Grötzsch [25] showed that every triangle-free planar graph has a proper 3-coloring

(also see Thomassen [35]); thus, no planar graph G with girth greater than 3 has

χ∗

2(G) = 4. However, we do not know the maximum girth of a planar graph with

χ∗

2(G) = 3.

Q u e s t i o n 2.7. What is the greatest girth of a planar graphG with χ∗

2(G) = 3?

Next we consider graphs on other surfaces.

Theorem 2.8. For every surface S there is a k such that if G embeds on S, then

χ∗

k(G) 6 6.

P r o o f. Thomassen [34], Theorem 5.7, showed that, given a surface S, there is

a number w such that if a graph H embeds on S with every noncontractible cycle

having length at least w, then χ(H) 6 5.

By induction on the genus of S, we can prove the following corollary: for each

surface S there is a k such that, if G embeds on S, then there is a set of k vertices

of G whose removal forms a graph G′ with χ(G′) 6 5. Color these removed vertices

with a single color. Then use five more colors to give the remaining vertices a proper

coloring. Each of the six sets of vertices is k-divided. Hence, χ∗

k(G) 6 6, our desired

result. �
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We conjecture that the right-hand side of the inequality in Theorem 2.8 can be

replaced by a smaller value.

C o n j e c t u r e 2.9. For every surface S there is a k such that if G embeds on S,

then χ∗

k(G) 6 5.

The so-called Albertson Four-Color Conjecture [1] states that given any surface S

there is a q such that if G embeds on S, then the removal of at most q vertices

from G leaves a 4-colorable graph. By an argument much like that in the proof of

Theorem 2.8, if the Albertson Conjecture is true, then Conjecture 2.9 holds.

It seems likely that the right-hand side can be reduced even further.

C o n j e c t u r e 2.10. For every surface S there is a k such that if G embeds on S,

then χ∗

k(G) 6 4.

The right-hand side of the above inequality cannot be reduced to 3, by Theo-

rem 2.4.

3. k-divided colorings: computation

Next we consider the complexity of various problems involving k-divided sets.

Theorem 3.1. The problem of determining whether χ∗

2(G) 6 2, for a given

graph G, is NP-complete even when restricted to planar triangle-free graphs with

maximum degree 4.

P r o o f. Note that χ∗

2(G) = χ1(G) for every graph G. Gimbel and Hartman [24],

Theorem 9, show the problem χ1(G) 6 2 to be NP-complete for planar triangle-free

graphs with maximum degree 4. �

If “maximum degree 4” is replaced by “maximum degree 3” in the above theorem,

then the problem becomes trivial; from Remark 1.4 we see that every graph G with

maximum degree 3 has χ∗

2(G) 6 2.

Increasing the required girth can also result in a trivial problem. By Theorem 2.6

every planar graph G with girth at least 11 has χ∗

2(G) 6 2. However, we know

nothing about planar graphs with girth from 5 to 10.

Q u e s t i o n 3.2. For each fixed g with 5 6 g 6 10, is it NP-complete to deter-

mine whether χ∗

2(G) 6 2 for a given planar graph G of girth g?

Now we consider χ∗

k for other values of k. Note that the order of the components

of a graph can be determined in polynomial time. Thus, for fixed k, m, the following

problem lies in NP: for a given graph G, determine whether χ∗

k(G) 6 m.
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Theorem 3.3. For fixed k > 2, the problem of determining whether χ∗

k(G) 6 2,

for a given graph G, is NP-complete even when restricted to planar triangle-free

graphs.

P r o o f. By Theorem 3.1 we may assume that k > 3. Given such a fixed k and

a planar triangle-free graph H , we construct a graph G as follows. Let P be a path

on k + 1 vertices, with the vertices of P numbered 1 to k + 1. For each pair u, v of

adjacent vertices in H , create k − 2 copies of P . Join one of the adjacent vertices

(say u) with an edge to each odd-numbered vertex of each copy of P , and similarly

join the other (v in this case) to each even-numbered vertex. Call the resulting

graph G. (See Figure 1 for an illustration of the construction of G.)

u v

u v

1

2

3

4

5

1

2

3

4

5

H

G

Figure 1. Illustration of the construction of graph G from graph H in the proof of Theo-
rem 3.3. Here k = 4. Shown are a single edge uv of H and the corresponding
portion of G. For each edge of H we create k − 2 = 2 new paths, each with
k + 1 = 5 vertices.

We note that G is planar and triangle-free and can be constructed in polynomial

time from H . Further, G can be given a k-divided coloring with two colors if and

only if χ∗

2(H) 6 2. The desired result then follows from Theorem 3.1. �

Theorem 3.4. For fixed k > 1, the problem of determining whether χ∗

k(G) 6 3,

for a given graph G, is NP-complete even when restricted to planar graphs.

P r o o f. Fix k > 1. By Observation 2.3 there is an outerplanar graph P such

that P has no k-divided 2-coloring, and P has a k-divided 3-coloring in which one

color class contains a single vertex.

Now suppose H is a planar graph. For each vertex v in H create k− 1 copies of P

and attach v with an edge to each vertex of each copy of P . Call the resulting planar
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graph G. Note that χ(H) 6 3 if and only if χ∗

k(G) 6 3. But deciding if χ(H) 6 3 for

planar graphs is NP-complete by Garey, Johnson, and Stockmeyer [23], Theorem 2.1

and Theorem 2.2. And as the conversion from H to G can be done in polynomial

time, the desired result is established. �

Computation of χ∗

k seems to be difficult in general, as the following result suggests.

This theorem follows from a result of Farrugia [20], Theorem 2; we provide a short

alternate proof.

Theorem 3.5. For fixed numbers k,m > 2, the problem of determining whether

χ∗

k(G) 6 m, for a given graph G, is NP-complete.

P r o o f. From Theorem 3.3 we may assume m > 3. Given a graph H , form G

by joining each vertex of H to a complete graph of order km− 1. Then χ∗

k(G) 6 m

if and only if χ(H) 6 m. As we can form G in polynomial steps, and determining

whether χ(H) 6 m is NP-complete for m > 3, the desired result follows. �

Now consider the problem of determining whether a given graph contains a large

k-divided set.

Theorem 3.6. For fixed k > 1, the problem of determining whether G contains

a k-divided set ofm vertices, for given G andm, is NP-complete even when restricted

to planar graphs with maximum degree 3 and arbitrarily large girth.

P r o o f. Let g and k be fixed. (The number g will be the girth of the graph we

construct.) Given a graph H with e edges, construct a related graph in the following

manner. Let j be the least even number with j > g. Subdivide each edge of H with j

additional vertices. Attach to each additional vertex a pendant path of length k− 1.

Thus, we have added ejk vertices to H ; let us refer to these as new vertices. Call

the resulting graph H ′.

Let S be a maximum k-divided set in H ′ that also maximizes the number of new

vertices. If some new vertex of degree one or two is not in S, then we can replace

some new vertex of degree three with a new vertex of degree one or two. So we may

assume all new vertices of degrees one and two are in S. Let u and v be adjacent

vertices in H . Consider the uv-path in H ′ that consists entirely of new vertices of

degree three. If this path contains fewer than 1

2
j vertices of S, then we did not

maximize the number of new vertices in S. Thus, for each edge of H , the set S

contains j(k − 1) + 1

2
j = j(k − 1

2
) new vertices. Hence we may assume that S

contains exactly ej(k − 1

2
) new vertices. Further, the vertices of S that are not new

form an independent set in H .

Clearly the girth of H ′ is greater than g. Further, given a set of independent

vertices ofH we can add them to ej(k− 1

2
) new vertices to make a k-divided set in H ′.
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We see that H contains an independent set of m vertices if and only if H ′ contains

a k-divided set of ej(k− 1

2
)+m vertices. Now, let s be the cardinality of a maximum

k-divided set in the g-cycle Cg. Let G be the disjoint union of H
′ with Cg. (See

Figure 2 for an illustration of the construction of G.)

u v

u v

Cg

H

G

Figure 2. Illustration of the construction of graph G from graph H in the proof of Theo-
rem 3.6. Here k = 4 and g = 5; therefore j = 6. Shown are a single edge of H
and the corresponding portion of G, along with the added cycle Cg. Vertices
designated in the proof as “new” are shown as non-open.

Then H contains an independent set of m vertices if and only if G contains a k-

divided set of ej(k − 1

2
) +m+ s vertices.

If graph H is planar with maximum degree 3, then G is planar with maximum

degree 3 and girth exactly g. Further, the transformation from H to G can be

done in polynomial time. It is known that the problem of determining whether

the independence number of a graph is at least some given value is NP-complete

for planar graphs of maximum degree 3 (this follows from a result of Garey and

Johnson [22], Lemma 1, on vertex covers). The desired result follows. �

While finding large k-divided sets is, as the preceding theorem suggests, difficult,

we will see in the next section that if the order of a graph is sufficiently large, then

either the graph or its complement must contain a large k-divided set.

4. k-divided Ramsey numbers: basic results

Let R(a, b) denote the ordinary 2-color Ramsey number.

In a previous work [8] we studied k-defective Ramsey numbers, a generalization of

ordinary Ramsey numbers based on the idea of k-dependent sets. Following Ekim

and Gimbel [14], for k, a, b > 0 we defined Rk(a, b) to be the least n such that for

each n-vertex graph G, either G contains a k-dependent set of a vertices, or its

complement G contains a k-dependent set of b vertices.

Now we consider a similar generalization of ordinary Ramsey numbers, based on

the idea of k-divided sets. For k > 1 and a, b > 0, let R∗

k(a, b) be the least n such
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that for each n-vertex graph G, either G contains a k-divided set of a vertices, or G

contains a k-divided set of b vertices.

We observe that both Rk and R∗

k are well defined; in particular, both Rk(a, b)

and R∗

k(a, b) are bounded above by R(a, b) for all values of k, a, b meeting the

requirements in the definitions. We also note that Rk and R
∗

k generalize the ordinary

Ramsey numbers, as R0(a, b) = R∗

1(a, b) = R(a, b) for all a, b > 0.

Below we show known values of R∗

k. It appears that R
∗

k has only been previously

studied for k = 1, 2. When k = 1 these are, as noted above, the ordinary 2-color

Ramsey numbers. When k = 2 these are defective Ramsey numbers, as R∗

2 = R1

(see Lemma 4.1 (b)).

The table below contains known values of R∗

2(a, b) for 2 6 a, b 6 10. The nontrivial

values are from Cockayne and Mynhardt [10]. We also use the facts that R∗

2(2, b) = 2

and R∗

2(3, b) = b (see Lemma 4.2 (c) and (d)).

R∗

2 2 3 4 5 6 7 8 9 10
2 2 2 2 2 2 2 2 2 2
3 2 3 4 5 6 7 8 9 10
4 2 4 6 9 11 16 17
5 2 5 9 15
6 2 6 11
7 2 7 16
8 2 8 17
9 2 9
10 2 10

It should be noted that the values of R∗

2(4, 7) and R∗

2(4, 8) listed above are not

in error. These do indeed only differ by 1; see Cockayne and Mynhardt [10], Corol-

lary 18, Section 5.

In the remainder of this section we will concentrate on R∗

k for k > 3; we will

compute no new values in the above table.

We begin our results with a lemma giving relationships between Rk and R∗

k+1.

Lemma 4.1. The following all hold.

(a) If k, a, b > 0, then R∗

k+1(a, b) > Rk(a, b).

(b) If k = 0, 1 and a, b > 0, then R∗

k+1(a, b) = Rk(a, b).

(c) There exist k, a, b > 0 such that R∗

k+1(a, b) > Rk(a, b).

P r o o f. (a) This follows from the fact that every (k + 1)-divided set is k-

dependent.

(b) This follows from the fact that, for k = 0, 1, the properties of being (k + 1)-

divided and k-dependent are identical.
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(c) Let k = 2, a = 4, and b = 4. It is not hard to see that Rk(a, b) = R2(4, 4) = 4.

However, if G is a 4-vertex path, then |V (G)| = 4, but V (G) is 3-divided in neither G

nor G. Thus, R∗

k+1(a, b) = R∗

3(4, 4) > 4. �

The following lemma gives elementary properties of k-divided Ramsey numbers.

Lemma 4.2. Let k be a positive integer, and let a, b be nonnegative integers.

Then the following all hold.

(a) R∗

k(a, b) = R∗

k(b, a).

(b) R∗

k+1(a, b) 6 R∗

k(a, b).

(c) If a 6 k or b 6 k, then R∗

k(a, b) = min{a, b}.
(d) If k = 1, 2, then R∗

k(k + 1, b) = b.

P r o o f. (a) Obvious.

(b) This follows from the fact that every k-divided set is also (k + 1)-divided.

(c) This follows from the fact that if an induced subgraph has order at most k,

then that subgraph is k-divided.

(d) Suppose k is 1 or 2. Then an induced subgraph of order k + 1 is k-divided

precisely when it contains an isolated vertex: a vertex with k nonneighbors in the

subgraph.

Thus, if a graph G contains no (k + 1)-vertex k-divided subset, then no vertex

of G has k nonneighbors. In that case, no vertex of G has k neighbors in G, and

so G is k-divided. Hence G contains a k-divided b-set if and only if the order of G is

at least b. �

The statement of part (d) above fails to hold when k > 3. An example showing

that the statement does not hold for k = 3 can be found in our earlier proof of

Lemma 4.1 (c).

On the other hand, for defective Ramsey numbers, we have Rk(k + 2, b) = b for

all k, b (see Chappell and Gimbel [8], Lemma 3.1 (g)). Thus Lemma 4.2 (d) follows

from Lemma 4.1 (b).

The following lemma gives simple bounds for R∗

k. Part (b) generalizes a result of

Burr, Erdős, Faudree, and Shelp [6], Theorem 2, who proved it for k = 1—ordinary

Ramsey numbers.

Lemma 4.3. Let k, a, b, c be positive integers. Then the following hold.

(a) If a > k + 1, then R∗

k(a, b) > R∗

k(a, b − 1) + 1.

(b) If a > k + 1, then R∗

k(a, b+ c− 1) > R∗

k(a, b) +R∗

k(a, c)− 1.

(c) R∗

k(a, b) 6 R∗

k(a− 1, b) +R∗

k(a, b − 1).

P r o o f. (a) If b = 1, then the statement follows from Lemma 4.2 (c).
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Suppose b > 2. Let n = R∗

k(a, b − 1) − 1. Note that n > 0. Let G be a graph of

order n, such that G contains no a-vertex k-divided set, and G contains no (b − 1)-

vertex k-divided set.

Let G′ be obtained from G by adding an additional vertex x, along with an edge

from x to each vertex of G. So G′ has order n+ 1 = R∗

k(a, b− 1). Now, G′ contains

no a-vertex k-divided set, since every set containing x induces a connected subgraph

of G′, and a > k. Furthermore, G′ contains no b-vertex k-divided set, since b − 1

vertices of such a set would constitute a (b − 1)-vertex k-divided set in G.

We conclude that R∗

k(a, b) is greater than the order of G
′. The statement follows.

(b) Let G1 be a graph of order R
∗

k(a, b)− 1 such that G1 has no k-divided a-set,

and G1 has no k-divided b-set. Similarly, let G2 be a graph of order R
∗

k(a, c) − 1

such that G2 has no k-divided a-set, and G2 has no k-divided c-set. Let G be the

graph formed by taking the disjoint union of G1 and G2 and adding all edges between

vertices in G1 and vertices in G2.

Graph G has order R∗

k(a, b) + R∗

k(a, c) − 2. Also G has no k-divided a-set. To

see this, let S ⊆ V (G) with |S| = a. If S lies entirely in either G1 or G2, then S is

not k-divided. But if S contains vertices of both G1, G2, then the subgraph of G

induced by S is connected. Since a > k + 1, the set S cannot be k-divided.

Further, G has no k-divided (b+ c− 1)-set, since any (b+ c− 1)-set in V (G) must

contain either b vertices ofG1 or c vertices ofG2, in which case it is not k-divided inG.

(c) Let n = R∗

k(a − 1, b) + R∗

k(a, b − 1), and let G be a graph of order n. Let

x ∈ V (G). Then either x has at least R∗

k(a − 1, b) nonneighbors or x has at least

R∗

k(a, b− 1) neighbors. We consider the former case; the other is handled similarly.

Let T be the set of nonneighbors of x. If T has a b-vertex subset that is k-divided

in G, then we are done. Otherwise, T must have an (a− 1)-vertex subset U that is

k-divided in G. Then U ∪ {x} is an a-vertex set that is k-divided in G. �

Using inductive arguments based on Lemma 4.3, we can find nontrivial bounds

on R∗

k.

Proposition 4.4. Let k > 1, and let a, b > 0. Then the following hold.

(a) If a, b > 1, then R∗

k(k + a, k + b) > k + a+ b− 1.

(b) R∗

k(k + a, k + b) 6
(

a+b
a

)

k.

P r o o f. (a) We proceed by induction, first on a, and then on b. If a = b = 1,

then
R∗

k(k + a, k + b) = R∗

k(k + 1, k + 1)

> R∗

k(k, k + 1) + 1 by Lemma 4.3 (a)

= k + 1 by Lemma 4.2 (c)

= k + a+ b− 1.
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If a = 1 and b > 2, then

R∗

k(k + a, k + b) > R∗

k(k + a, k + b− 1) + 1 by Lemma 4.3 (a)

> (k + a+ [b− 1]− 1) + 1 by the induction hypothesis

= k + a+ b − 1.

The statement similarly holds when a > 2.

(b) We proceed by induction, first on a, and then on b. If a = 0, then we need

to show that R∗

k(k, k + b) 6 k. This follows from Lemma 4.2 (c). The statement

similarly holds when b = 0.

Now assume that a, b > 1, and that the statement holds for all smaller values of a

and, with the given value of a for all smaller values of b. Apply Lemma 4.3 (c) to

obtain

R∗

k(k + a, k + b) 6 R∗

k(k + a− 1, k + b) +R∗

k(k + a, k + b − 1)

6

(

a+ b − 1

a− 1

)

k +

(

a+ b− 1

a

)

k

=

(

a+ b

a

)

k.

�

5. k-divided Ramsey numbers: asymptotics

In this section, we study the asymptotic behavior of the values of R∗

k in three

ways.

(i) First, we consider R∗

k(k + a, k + b) for fixed a, b and increasing k.

(ii) Second, we consider R∗

k(a, a) for fixed k and increasing a.

(iii) Third, we consider R∗

k(a, b) for fixed k, a and increasing b.

We will see that, in the first situation above, the values are Θ(k), while in the

second, they are exponential in a. In the third situation, the values are polynomial

in b, although in general we have not determined the degree of this polynomial.

Along the way, we will compute the exact values of two infinite families of our

Ramsey numbers.

We begin with the first asymptotic situation: R∗

k(k + a, k + b) for fixed a, b and

increasing k.

It follows from Proposition 4.4 that R∗

k(k + a, k + b) is Θ(k) for fixed a, b. In

a previous work [8] we proved this also for Rk. We were actually able to prove ([8],

Corollary 4.3) a stronger bound: Rk(k+ a, k+ b) is k+O(1) for fixed a, b. However,

as we will see, this does not hold for R∗

k.
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This fact will follow immediately from our next proposition, in which we determine

some diagonal values of R∗

k. We will make use of a theorem on circulant graphs due

to Boesch and Tindell [4], Theorem 1.

Let n be a positive integer, and let S be a set of positive integers, each of which is

less than n. The circulant graph of order n with distance set S is defined to be the

simple graph G with vertex set {1, 2, . . . , n} and an edge between distinct vertices i, j
if there exists some a ∈ S with |i− j| ≡ a (mod n).

Theorem 5.1 (Boesch, Tindell [4]). Let G be a circulant graph with order n

and distance set S = {a1, a2, . . . , at}. Say each vertex of G has degree d. Then

the connectivity of G is less than d if and only if there is some proper divisor r

of n so that the number of distinct positive residues modulo r of the numbers

a1, a2, . . . , at, n− a1, n− a2, . . . , n− at is less than the minimum of r − 1 and dr/n.

We use the above result to determine some diagonal values of R∗

k.

Theorem 5.2. Let k > 1. Then

R∗

k(k + 1, k + 1) =

{

2k − 1, if k is even,

2k, if k is odd.

P r o o f. If k 6 2, then the result is easily checked. Therefore, suppose that k > 3.

We consider two cases: when k is even, and when k is odd.

Case I. Suppose k is even—For the lower bound, let G be Kk−1,k−1 with a perfect

matching removed. Denote the partite sets of G by A, B. Let S be a (k + 1)-subset

of V (G). We wish to show that S is k-divided in neither G nor G. Since |S| = k+1,

it suffices to show that S induces a connected subgraph in both G and G.

Based on the cardinalities of A, B, and S, we see that S intersects each of A, B in

at least 2 vertices. Because k > 3 and k is even, we have k+1 > 4, and so S intersects

one of A, B in at least 3 vertices. Without loss of generality, say |S ∩ A| > 3, while

|S ∩ B| > 2. Then, in the subgraph of G induced by S, any two vertices in S ∩ B

must have at least one common neighbor in S ∩ A; thus these two vertices must lie

in the same component. Further, each vertex in S ∩A has a neighbor in S ∩B, and

so it is also in this same component. We see that the subgraph of G induced by S is

connected.

Now consider G. The set S ∩A induces a complete subgraph of G, and so all the

vertices in S ∩A lie in the same component of the subgraph of G induced by S, and

similarly for S ∩B. The edges between A, B in G form a (perfect) matching having

size k − 1. Since |V (G) − S| = k − 3, there exists at least one edge between S ∩ A

and S ∩B. We see that the subgraph of G induced by S is connected.
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Since |V (G)| = 2k − 2, we have R∗

k(k + 1, k + 1) > 2k − 1 for even k.

For the upper bound when k is even, let H be a graph of order 2k − 1 with no

k-divided set of order k + 1. Then H has no K1,k subgraph, and so the maximum

degree of H is at most k − 1. Since H has odd order, it cannot be regular of odd

degree; there must be x ∈ V (H) with degree at most k − 2 in H . Then x has at

least (2k − 1)− 1− (k − 2) = k nonneighbors in H . Vertex x, together with k of its

nonneighbors, forms a k-divided set of order k + 1 in H .

Thus, R∗

k(k + 1, k + 1) = 2k − 1 for even k.

Case II. Suppose k is odd—Now suppose that k > 3 is an odd integer.

We first consider the lower bound. Since k is odd, we can find t such that k = 2t+1.

Let n = 2k − 1, and let G be a circulant graph on n vertices with distance set

{1, . . . , t}. (For example, when k = 3, we have t = 1 and n = 5; graph G is

a 5-cycle.) We wish to show that for each T ⊆ V (G) with |T | = k + 1, the set T is

k-divided in neither G nor G. Such a set fails to be k-divided if and only if it induces

a connected subgraph. Thus, we wish to show that both G and G have connectivity

at least n− (k + 1) + 1 = k − 1 = 2t. Since G is regular of degree 2t, we may make

use of Theorem 5.1 to prove this.

If n is prime, then the required connectivity follows immediately from Theorem 5.1.

Otherwise, let r be a proper divisor of n. Because n = 2k − 1 is odd, we have

r 6 1

3
n 6 k−1. The integers n− t, n− (t−1), . . . , n−1, 0, 1, 2, . . . , t form a sequence

of 2t + 1 = k consecutive values modulo n. Since r 6 k − 1, all residues modulo r

must be represented in this sequence. The set of distances between adjacent vertices

in G is {1, 2, . . . , t, n − 1, n − 2, . . . , n − t}. These values are the same as those in
the above sequence, with the exception of zero, and so all r − 1 positive residues

modulo r are represented in the set. Hence, by Theorem 5.1, the connectivity of G

is its vertex degree: 2t = k − 1.

We handle G similarly. The set of distances between adjacent vertices in G is

{t + 1, . . . , n − (t + 1)}, a set of 2t = k − 1 consecutive values. Since r 6 k − 1,

all r − 1 positive residues modulo r must be represented in this set. Hence, by

Theorem 5.1, the connectivity of G is its vertex degree: 2t = k − 1.

For the upper bound when k is odd, let H be a graph of order 2k with no k-divided

set of order k+1. Then H has no K1,k subgraph, and so the maximum degree of H

is at most k−1. Let x ∈ V (H). Then x has at least 2k−1−(k−1) = k nonneighbors

in H. Vertex x, together with k of its nonneighbors, forms a k-divided set of order

k + 1 in H .

Thus, R∗

k(k + 1, k + 1) = 2k for odd k. �

By Theorem 5.2, it is not the case that R∗

k(k+a, k+b) is k+O(1) for all fixed a, b.
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Now we turn to our second asymptotic situation: R∗

k(a, a) for fixed k and increas-

ing a.

The following theorem generalizes a result of Erdős [16], Theorem 1, who proved

it for k = 1—ordinary Ramsey numbers—with t =
√
2 for a > 3. (Erdős attributes

the special case of part (b) when k = 1 to Szekeres, citing a paper of Erdős and

Szekeres [17].)

Theorem 5.3. Let k be a positive integer.

(a) There exists a constant t = t(k) such that if a > 2, then R∗

k(a, a) > ta.

(b) If a > k + 1, then R∗

k(a, a) < 4a−kk.

P r o o f. (a) In a previous work we proved the same bound for Rk (see [8], Theo-

rem 6.4 (a)). The required statement then follows from Lemma 4.1 (a).

(b) We can apply Proposition 4.4 (b) to show that

R∗

k(a, a) 6

(

2a− 2k

a− k

)

k.

The statement then follows from the fact that
(

2s

s

)

< 4s when s > 1 (this bound can

be proven using a simple inductive argument). �

We see that, for fixed k, the values of R∗

k(a, a)—and R∗

k(k + a, k + a)—grow

exponentially, as is also true for Rk (see Chappell and Gimbel [8], Theorem 6.4,

Corollary 6.5).

Corollary 5.4. For fixed k, the value of logR∗

k(a, a) is Θ(a).

Next we study our third asymptotic situation: R∗

k(a, b) for fixed k, a and increas-

ing b.

It follows from Proposition 4.4 (b) that b 6 R∗

k(k + 1, b) 6 kb + k − k2 for all

k, b > 1; thus these values are Θ(b) for each fixed k. For some k we can compute

the values exactly. For example, it follows from Lemma 4.2 (d) that R∗

2(3, b) = b

for all b. We have also been able to determine these values for k = 3, although the

computation is rather less trivial.

Theorem 5.5. Let b be a nonnegative integer. Then

R∗

3(4, b) =

{

0, if b = 0,

b+ 2
⌊

1

3
(b− 1)

⌋

, otherwise.
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P r o o f. We proceed by induction on b. If b 6 3, then the result follows from

Lemma 4.2 (c). Suppose that b > 4, and write b = 3s+ t+1, where s, t are integers

with s > 1 and 0 6 t 6 2. It is not hard to show that b + 2⌊ 1

3
(b − 1)⌋ = 5s+ t+ 1.

It suffices, therefore, to prove that R∗

3(4, b) = 5s+ t+ 1.

We first consider the lower bound. If t = 0, then b = 3s + 1 with s > 1. Let G

be a graph such that G is the disjoint union of s copies of C5. Then G has order 5s.

This graph G contains no 4-vertex 3-divided set, since the subgraph of G induced

by such a set would have a subgraph isomorphic either to C4 or to K1,3, which is

impossible. Now consider a 3-divided set T in G. Set T contains at most 3 vertices

of each copy of C5, and so |T | 6 3s < b. Thus, G contains no b-vertex 3-divided set.

We see that, when t = 0, R∗

3(4, b) is greater than the order of G; that is, R
∗

3(4, b) >

5s+ t+ 1.

Now, consider the lower bound when t = 1, 2. We have

R∗

3(4, b) > R∗

3(4, b− 1) + 1 by Lemma 4.3 (a)

= R∗

3(4, 3s+ [t− 1] + 1) + 1

= (5s+ [t− 1] + 1) + 1 by the induction hypothesis, since t > 0

= 5s+ t+ 1.

Next we consider the upper bound. Let H be a graph of order 5s+t+1 containing

no 4-vertex 3-divided set. We show that H contains a 3-divided set with at least

3s+ t+ 1 vertices.

Note that we can always form a 3-divided set by taking 3 vertices from each

component of order at least 3, and all vertices from all smaller components. Thus,

if every component of H has order 4 or less, then H contains a 3-divided set of

cardinality at least

⌈3

4
(5s+ t+ 1)

⌉

> 3s+
⌈3

4
t+

3

4

⌉

= 3s+ t+ 1, 0 6 t 6 2.

We therefore assume that H has a component of order at least 5. Thus, s > 1.

The graph H contains no 4-vertex 3-divided set, and so H has no K1,3 subgraph.

Thus the maximum degree of H is at most 2, and so H is a disjoint union of paths

and cycles. Let v1, v2, v3, v4, v5 be consecutive vertices along some path or cycle

with at least 5 vertices. Remove these five vertices from H , note that the resulting

graph has order 5(s− 1)+ t+1, with s− 1 > 0, and apply the induction hypothesis.

We obtain a 3-divided set in H having order 3(s− 1) + t+ 1. Add v2, v3, and v4 to

this set, to obtain a 3-divided set in G with order 3s+ t+ 1. Thus,

R∗

3(4, b) = R∗

3(4, 3s+ t+ 1) 6 5s+ t+ 1.

By induction, the result is proven. �
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In general we can show, using Proposition 4.4, that for fixed k, a > 1, the values

of R∗

k(k+ a, b) are Ω(b) and O(ba). These values are thus polynomial in b. But that

allows for quite a wide range of possibilities, particularly for large values of a.

P r o b l e m 5.6. For fixed k, a, determine the asymptotic behavior of R∗

k(a, b).

6. k-divided Ramsey numbers: individual values

Next we consider values of individual k-divided Ramsey numbers. We will also

look at relationships between these and certain graph Ramsey numbers involving

sets of complete multipartite graphs.

We have been able to compute two otherwise unknown values of R∗

4 using a com-

puter program.

Proposition 6.1. The following both hold.

(a) R∗

4(5, 6) = 9, with exactly 12 isomorphism classes of extremal graphs.

(b) R∗

4(5, 7) = 11, with exactly 14 isomorphism classes of extremal graphs.

The upper bounds and the enumerations of extremal graphs were all verified using

a computer program [7]. We give proofs for the lower bounds.

P r o o f of lower bounds. (a) [To show: R∗

4(5, 6) > 9] For the lower bound, we can

use the following 8-vertex graph G, which is an extremal graph for R∗

4(6, 5). Begin

with a 5-cycle, with vertices numbered 1 through 5. Add three additional vertices

a, b, c, forming an induced 3-vertex path in that order. Make vertex a adjacent

to 1 and 2, vertex b adjacent to 3, and vertex c adjacent to 4 and 5. Let G be the

resulting graph. (See Figure 3.)

1

2

3

4

5

a
b

c

Figure 3. Graph G from the proof of Proposition 6.1 (a). Graph G has order 8, G contains
no 4-divided 6-set, and G contains no 4-divided 5-set. Thus R∗

4(6, 5) > 9.

Graph G has no 6-vertex 4-divided set, and G has no 5-vertex 4-divided set; we

conclude that R∗

4(6, 5) > 9.
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(b) [To show: R∗

4(5, 7) > 11] For the lower bound, we can use the following 10-

vertex graph G, which is an extremal graph for R∗

4(7, 5). Begin with a 10-cycle, with

vertices numbered 1 through 10. Add five additional edges: between vertices 1 and 4,

vertices 3 and 6, vertices 5 and 8, vertices 7 and 10, and vertices 2 and 9. Let G be

the resulting graph. (See Figure 4.)

1

2

3

4

56

7

8

9

10

Figure 4. Graph G from the proof of Proposition 6.1 (b). Graph G has order 10, G contains
no 4-divided 7-set, and G contains no 4-divided 5-set. Thus R∗

4(7, 5) > 11.

Graph G has no 7-vertex 4-divided set, and G has no 5-vertex 4-divided set; we

conclude that R∗

4(7, 5) > 11. �

Another method for determining individual values makes use of a correspondence

between k-divided Ramsey numbers and certain graph Ramsey numbers involving

collections of complete multipartite graphs.

Observe that a graph G contains a k-divided set of cardinality a if and only if G

has a (not necessarily induced) subgraph isomorphic to some complete multipartite

graph Kp1,p2,..., where p1 + p2 + . . . = a is a partition of the integer a in which no

part is greater than k.

For example, suppose we are interested in whether a graph G has a 3-divided set

of cardinality 4. Set k = 3 and a = 4 in the previous paragraph. There are four

partitions of the integer 4 in which no part is greater than 3: 1+ 3, 2+ 2, 1 + 1+ 2,

and 1+1+1+1. Look at the first such partition: 1+3 = 4. If graph G has a set of 4

vertices inducing a subgraph with a component of order 1 and another component of

order 3, then these same 4 vertices form the vertex set of a (not necessarily induced)

K1,3 subgraph in G; the converse holds as well. Similarly, for the second partition

(2 + 2 = 4), G has a set of 4 vertices inducing a subgraph with two components of

order 2 if and only if G has a subgraph isomorphic to K2,2, and so on for the other

partitions of the integer 4.

Similar reasoning holds for other values of k, a; our observation above is correct.

In fact, a stronger statement holds: the observation remains true if we restrict our

attention to those partitions that are not refinements of other partitions under con-

sideration. For example, the partition 1 + 1 + 2 is a refinement of 1 + 3. We need
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not consider the former when looking for subgraphs of G, since, if G has a K1,1,2

subgraph, then it necessarily has a K1,3 subgraph. The partition 1+1+1+1 is also

a refinement of 1 + 3; again, we need not consider the former.

We see that, if we wish to determine whether a graph G contains a 3-divided set

of cardinality 4, then we need consider only two partitions: 1+ 3 = 4 and 2+ 2 = 4.

We conclude that a graph G contains a 3-divided set of 4 vertices if and only if G

has a subgraph isomorphic to either K1,3 or K2,2.

Using such reasoning, we can show that each k-divided Ramsey number is equal

to some graph Ramsey number, for two collections of complete multipartite graphs.

For example, for R∗

3(4, 5), the partitions of the integer 4 are 1+3 = 4 and 2 + 2 = 4,

as above, and the partition of the integer 5 is 2 + 3 = 5. Thus, R∗

3(4, 5) =

R({K1,3,K2,2},K2,3).

Applying this idea to various of the k-divided Ramsey numbers from Theorem 5.2,

Theorem 5.5, and Proposition 6.1, we obtain values for the following graph Ramsey

numbers, all of which we believe to be previously unknown.

Proposition 6.2. The following all hold.

(a) R({K1,3,K2,2}, {K1,3,K2,2}) = R∗

3(4, 4) = 6.

(b) R({K1,4,K2,3}, {K1,4,K2,3}) = R∗

4(5, 5) = 7.

(c) R({K1,5,K2,4,K3,3}, {K1,5,K2,4,K3,3}) = R∗

5(6, 6) = 10.

(d) R({K1,6,K2,5,K3,4}, {K1,6,K2,5,K3,4}) = R∗

6(7, 7) = 11.

(e) R({K1,3,K2,2},K2,3) = R∗

3(4, 5) = 7.

(f) R({K1,3,K2,2}, {K3,3,K2,2,2}) = R∗

3(4, 6) = 8.

(g) R({K1,3,K2,2}, {K1,3,3,K2,2,3}) = R∗

3(4, 7) = 11.

(h) R({K1,4,K2,3}, {K2,4,K3,3}) = R∗

4(5, 6) = 9.

(i) R({K1,4,K2,3},K3,4) = R∗

4(5, 7) = 11.

We can also reverse the above idea, determining values of k-divided Ramsey num-

bers, or bounds on these, using known values or bounds for graph Ramsey numbers.

Few of the relevant graph Ramsey numbers are known, but we do have the following.

Proposition 6.3. The following both hold.

(a) R∗

3(5, 5) = R(K2,3,K2,3) = 10.

(b) R∗

4(7, 7) = R(K3,4,K3,4) 6 30.

P r o o f. (a) The first equality follows from reasoning much like that discussed

earlier, before Proposition 6.2. The second equality was proven by Burr [5], Item 50;

also see Radziszowski [33], Section 3.3.1.
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(b) Once again, the equality follows from reasoning like that discussed earlier. The

inequality is due to Lortz and Mengersen [29], Theorem 6; also see Radziszowski [33],

Section 3.3.1. �

The following table shows the values of R∗

3(a, b) that we have found for 3 6

a, b 6 10. These are from Lemma 4.2 (c), Theorem 5.5, and Proposition 6.3.

R∗

3 3 4 5 6 7 8 9 10
3 3 3 3 3 3 3 3 3
4 3 6 7 8 11 12 13 16
5 3 7 10
6 3 8
7 3 11
8 3 12
9 3 13
10 3 16

The following table shows the values ofR∗

4(a, b) that we have found for 4 6 a, b 6 8.

These are from Lemma 4.2 (c), Theorem 5.2, and Proposition 6.1.

R∗

4 4 5 6 7 8
4 4 4 4 4 4
5 4 7 9 11
6 4 9
7 4 11
8 4

The following table shows the values ofR∗

5(a, b) that we have found for 5 6 a, b 6 8.

These are from Lemma 4.2 (c) and Theorem 5.2.

R∗

5 5 6 7 8
5 5 5 5 5
6 5 10
7 5
8 5
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7. k-divided Ramsey numbers: lower bounds

The following theorem allows us to compute lower bounds for R∗

k based on lower

bounds for ordinary Ramsey numbers, by “blowing up” graphs in a manner we will

describe.

Theorem 7.1. Let k > 1 and a, b > 0. Then

R∗

k(ka+ 1, kb+ 1)− 1 > k[R(a+ 1, b+ 1)− 1].

P r o o f. This result is easier to state if we use different notation. Let S∗

k(a, b)

be the greatest order of a graph G such that each k-divided set in G contains at

most a vertices, and each k-divided set in G contains at most b vertices. Then, for

all k, a, b > 0, we have

S∗

k(a, b) + 1 = R∗

k(a+ 1, b+ 1).

Our desired result becomes

S∗

k(ka, kb) > kS∗

1(a, b).

Let G be a graph of order S∗

1 (a, b), such that no set of more than a vertices is

1-divided (i.e., independent) in G, and no set of more than b vertices is 1-divided

in G.

Let H , H ′ be graphs defined as follows. For each vertex x of G, let Vx be a set

of k vertices, so that the sets Vx are all pairwise disjoint. Let V (H) = V (H ′) be the

union of all the Vx sets, so that H and H ′ both have order kS∗

1(a, b). If u ∈ Vx and

v ∈ Vy , with x 6= y, then u, v are adjacent in H (and similarly in H ′) if and only if

x, y are adjacent in G. If u, v ∈ Vx, with u 6= v, then u, v are nonadjacent in H and

are adjacent in H ′.

Let T ⊆ V (H) be k-divided in H . We claim that T is k-divided in H ′. If T is

not k-divided in H ′, then the subgraph of H ′ induced by T must have a component

with more than k vertices. This component must therefore include vertices in more

than one Vx set, and it is not hard to show that its vertex set induces a connected

subgraph of H with more than k vertices. By contradiction, the claim is proven.

Let U ⊆ T include one vertex from each component of the subgraph of H ′ induced

by T . Then U is an independent set containing at most one vertex from each Vx set.

The set of all x such that U meets Vx forms an independent set in G; thus, |U | 6 a,

and so |T | 6 ka.

We have shown than each k-divided set in H contains at most ka vertices. We

can similarly show than each k-divided set in H contains at most kb vertices. We

conclude that S∗

k(ka, kb) is at least the order of H , and the result is proven. �
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Since R∗

2 has been previously studied (in the form of R1; see Cockayne and Myn-

hardt [10], and Ekim and Gimbel [14]), the special case of Theorem 7.1 with k = 2

is of particular interest. We close with a table of the lower bounds on values of R∗

2

obtained from Theorem 7.1. Note that R∗

2(5, 5) is known to be 15; the other bounds

shown below are for unknown values of R∗

2.

R∗

2 = R1 > 5 7 9 11 13 15 17
5 11 17 27 35 45 55 71
7 17 35 49
9 27 49
11 35
13 45
15 55
17 71

8. Future work

A number of open questions were brought up in earlier sections.

Q u e s t i o n 1.7. Is the following true?

For each fixedm > 1 there exists km such that if k > km, then χ
∗

k(G) 6 χk(G)k/m

for every graph G.

By Proposition 1.6, the answer to the above question is “yes” for m = 1, 2, 3.

In Theorem 2.6 we established that every planar graph with girth at least 11 has

χ∗

2 6 2. On the other hand, a construction of Gimbel and Hartman [24], Theorem 9,

gives planar graphs with girth 4 and χ∗

2 = 3. We do not know the status of planar

graphs with girth strictly between 5 and 11.

Q u e s t i o n 2.7. What is the greatest girth of a planar graphG with χ∗

2(G) = 3?

By the earlier comments, the answer must be in the range 4 to 10, inclusive.

For an integer g which allows for a planar graph of girth g to have χ∗

2 = 3, we

considered the problem of determining whether χ∗

2 6 2; we ask whether this problem

is NP-complete.

Q u e s t i o n 3.2. For each fixed g with 5 6 g 6 10, is it NP-complete to deter-

mine whether χ∗

2(G) 6 2 for a given planar graph G of girth g?

In Theorem 2.8 we showed that, if a graph G embeds on a surface S, then there

is k—depending only on S—such that χ∗

k(G) 6 6. We conjecture that this “6” can

be reduced.
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C o n j e c t u r e 2.9. For every surface S there is a k such that if G embeds on S,

then χ∗

k(G) 6 5.

C o n j e c t u r e 2.10. For every surface S there is a k such that if G embeds on S,

then χ∗

k(G) 6 4.

By Theorem 2.4, the above value cannot be reduced to 3.

We determined the asymptotic behavior of k-divided Ramsey numbers in vari-

ous situations. It follows from Proposition 4.4 that, for fixed a, b, the value of

R∗

k(k + a, k+b) is Θ(k). Corollary 5.4 states that, for fixed k, the value of logR∗

k(a, a)

is Θ(a), so R∗

k(a, a) is exponential in a for fixed k.

An apparently more difficult problem is to determine the asymptotic behavior of

R∗

k(a, b) for fixed k, a. It follows from Proposition 4.4 that, for fixed k, a > 1, the

value of R∗

k(k + a, b) is Ω(b) and O(ba). It thus seems likely that, for fixed k, a, the

value of R∗

k(a, b) is Θ(bt), where t depends on k and a.

P r o b l e m 5.6. For fixed k, a, determine the asymptotic behavior of R∗

k(a, b).

As for specific values of R∗

k(a, b), various values of R
∗

1(a, b)—ordinary Ramsey

numbers—are known. Cockayne and Mynhardt [10] computed a number of values of

R∗

2(a, b) (see Section 4). And in Theorem 5.5 and Proposition 6.3 (a), we determined

values of R∗

3(a, b).

However, much less is known about R∗

k(a, b) for k > 4. From Theorem 5.2 we

know the value of R∗

k(k + 1, k + 1) for all k, but other than that, we have just two

nontrivial values: R∗

4(5, 6) = 9 and R∗

4(5, 7) = 11 (Proposition 6.1).

P r o b l e m 8.1. Compute R∗

k(a, b) for other values of k, a, b.

A c k n ow l e d g em e n t. The authors would like to thank Jing Huang for sug-

gesting the technique used in the proof of Theorem 2.6.

N o t e a d d e d i n P r o o f. After this paper was accepted for publication, the

authors learned that Conjecture 2.9 has been proven by Esperet and Ochem [19],

Theorem 2.
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[6] S.A. Burr, P. Erdős, R. J. Faudree, R.H. Schelp: On the difference between consecutive
Ramsey numbers. Util. Math. 35 (1989), 115–118. zbl MR

[7] G.G.Chappell: GraphR [computer software]. August 26, 2016. Available at https://
www.cs.uaf.edu/users/chappell/public html/papers/graphr/.

[8] G.G.Chappell, J. Gimbel: On defective Ramsey numbers. Avaible at https://www.cs.
uaf.edu/users/chappell/public html/papers/defram/.

[9] G.Chartrand, L. Lesniak, P. Zhang: Graphs & Digraphs. CRC Press, Boca Raton, 2011. zbl MR
[10] E. J. Cockayne, C.M.Mynhardt: On 1-dependent Ramsey numbers for graphs. Discuss.

Math., Graph Theory 19 (1999), 93–110. zbl MR doi
[11] L. J. Cowen, R.H. Cowen, D.R.Woodall: Defective colorings of graphs in surfaces: par-

titions into subgraphs of bounded valency. J. Graph Theory 10 (1986), 187–195. zbl MR doi
[12] L.Cowen, W.Goddard, C.E. Jesurum: Defective coloring revisited. J. Graph Theory 24

(1997), 205–219. zbl MR doi
[13] N.Eaton, T.Hull: Defective list colorings of planar graphs. Bull. Inst. Combin. Appl. 25

(1999), 79–87. zbl MR
[14] T.Ekim, J.Gimbel: Some defective parameters in graphs. Graphs Combin. 29 (2013),

213–224. zbl MR doi
[15] H.Era, M.Urabe: On the k-independent sets of graphs. Proc. Fac. Sci. Tokai Univ. 26

(1991), 1–4. zbl MR
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