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About G-rings

Najib Mahdou

Abstract. In this paper, we are concerned with G-rings. We generalize the Kap-
lansky’s theorem to rings with zero-divisors. Also, we assert that if R ⊆ T

is a ring extension such that mT ⊆ R for some regular element m of T , then
T is a G-ring if and only if so is R. Also, we examine the transfer of the G-
ring property to trivial ring extensions. Finally, we conclude the paper with
illustrative examples discussing the utility and limits of our results.
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1. Introduction

All rings considered below are commutative with unit and all modules are
unital. Let R be a commutative ring and let Q(R) denote the total quotient ring
of R. We call R a G-ring if Q(R) = R[u−1] for some regular element u ∈ R
(equivalently, if Q(R) is finitely generated as a ring over R) [1]. This generalizes
Kaplansky’s definition of G-domain [12]. Also, he shows that if R ⊆ T are domains
and if T is algebraic over R and finitely generated as a ring over R, then R is a
G-domain if and only if so is T [12, Theorem 22].

In this paper, we are concerned with G-rings. Our main result of Section 2
is to generalize the above Kaplansky’s theorem to rings with zero-divisors. Also,
we assert that if R ⊆ T is a ring extension such that mT ⊆ R for some regular
element m of T , then T is a G-ring if and only if so is R. As an immediate
consequence, we get a corollary on the transfer of the G-ring property to pullbacks
issued from domains. Our main result of Section 3 examines the transfer of the
G-ring property to trivial ring extensions; precisely, it states that if A is a ring,
E is an A-module such that Z(E) ⊆ Z(A) (where Z(E) := {a ∈ A; ae = 0 for
some e ∈ E − {0}} is the set of zero-divisors on E), then the trivial extension of
A by E is a G-ring if and only if A is a G-ring. In Section 4, we conclude the
paper with illustrative examples discussing the utility and limits of our results.

2. The G-ring property in a pullback

Let R be a ring and Ru := R[1/u], where u is regular in R. We first give
a zero-divisor extension of Kaplansky’s theorem [12, Theorem 22].
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Theorem 2.1. Let R be a subring of T such that each regular element of R is

regular in T (consequently, K := Q(R) ⊆ L := Q(T )). Assume that L is integral

over K. Then:

(1) if R is a G-ring, then T is a G-ring;

(2) if T is a finitely generated R-algebra, then T is a G-ring if and only if R
is a G-ring.

Proof: (1) Assume that R is a G-ring. Hence, K := Q(R) = Ru for some regular
element u ∈ R. But, K := Ru ⊆ Tu ⊆ L := Q(T ). Hence, L is integral over Tu

since L is integral over K. Therefore, L = Tu since L is a fraction ring of Tu and
so T is a G-ring.

(2) If R is a G-ring, then T is a G-ring by (1). Conversely, assume that T is
a G-ring. Hence, L = Tv for some regular element v ∈ T and T = R[w1, . . . , wk]
for some wi ∈ T and for a positive integer k (since T is a finitely generated R-
algebra). Then, the elements v−1, w1, . . . , wk are integral over K. So, we get
Kaplansky’s equations (see proof of [12, Theorem 22]) with a, bi being regular
elements of R. Let R1 := R[a−1, b−1

1 , . . . , b−1
k ]. As argued by [12, Theorem 22],

L = R1[w1, . . . , wk, v−1] and L is integral over R1. Then, K is integral over R1

and so K = R1 since K is a fraction ring of R1. Hence, R is a G-ring and this
completes the proof of Theorem 2.1. �

Now, we provide a somewhat analogue of a zero-divisor extension of Kaplan-
sky’s result mentioned above. Precisely, we have:

Theorem 2.2. Let R ⊆ T be a ring extension such that mT ⊆ R, for some

regular element m ∈ T . Then T is a G-ring if and only if R is a G-ring.

The proof of this theorem requires the following lemma.

Lemma 2.3. Let R be a ring and Rf = R[1/f ], where f is regular in R. Then

R is a G-ring if and only if Rf is a G-ring.

Proof: It is clear that Rf = {af−n; a ∈ R and n ∈ N}. Hence, Q(Rf ) = Q(R)
since af−n is regular in Rf if and only if a is regular in R (because f is invertible
in Rf ).

Assume that R is a G-ring. Hence, Q(R) = Ru for some regular element u ∈ R.
But, Q(Rf ) = Q(R) = Ru ⊆ (Rf )u ⊆ Q(Rf ). Therefore, Q(Rf ) = (Rf )u and so
Rf is a G-ring.

Conversely, assume that Rf is a G-ring, that is, Q(Rf ) = (Rf )u for some
regular element u ∈ Rf . We may assume that u ∈ R since u = af−n for some
regular element a ∈ R and n ∈ N, and since f−n is invertible in Rf . It is well-
known and easy to see that (Rf )u = Rfu. Therefore, Q(R) = Q(Rf ) = (Rf )u ⊆
Rfu ⊆ Q(R) and so Q(R) = Rfu and this completes the proof of Lemma 2.3. �
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Proof of Theorem 2.2: Let R ⊆ T be a ring extension such that mT ⊆ R, for
some regular element m of T . Clearly, m ∈ R and m is regular element of R. But
Rm = Tm since Rm ⊆ Tm = {am−n; a ∈ T and n ∈ N} = {(am)m−(n+1); (am) ∈
R and n ∈ N} ⊆ Rm. Therefore, R is a G-ring if and only if T is a G-ring by
Lemma 2.3 since Tm = Rm. �

The above result generates new families of examples of G-domains not covered
by Kaplansky’s result [12, Theorem 22] mentioned above. It also denies any
similitude with this result as shown by the following corollary.

Corollary 2.4. Let D be a domain which is not a G-domain, K = Q(D) and

T a domain such that T/M = K for some nozero maximal ideal M of T . Let

f : T → K be the canonical surjection and R = f−1(D). Then:

(1) T is a G-domain if and only if R is a G-domain;

(2) T is not finitely generated as a ring over R.

Proof: (1) Results by Theorem 2.2 because mT ⊆ M ⊆ kerf ⊆ R and Rm = Tm

for each nonzero m in M .
(2) Assume that T is finitely generated as a ring over R. Then T =

R[x1, . . . , xn], for some xi ∈ T , where n is a positive integer. Hence, K = T/M =
(R/M)[x̄1, . . . , x̄n] = D[x̄1, . . . , x̄n], a contradiction since D is not a G-domain.
Therefore, T is not finitely generated as a ring over R. �

Remark 2.5. Part (1) of Corollary 2.4 generalizes [9, Theorem 2.7 (a), p. 341].

A pair of rings A ⊆ B is called a G-ring pair if D is a G-ring for each ring D
such that A ⊆ D ⊆ B. In [6, Theorem 2.1], Dobbs gives necessary and sufficient
conditions to have a G-domain pair. In the context of Theorem 2.2, we obtain:

Corollary 2.6. Let T , R, and m be as in Theorem 2.2. Then (R, T ) is a G-ring

pair if and only if T (resp., R) is a G-ring.

Proof: Let S be a ring such that R ⊆ S ⊆ T . Hence, mS ⊆ mT ⊆ R and m is
regular in S. Therefore, Theorem 2.2 completes the proof of Corollary 2.6. �

Remark 2.7. In Theorem 2.2, the hypothesis “m is a regular element of T ” is
necessary (see Example 4.4).

3. G-ring property in trivial extension

Let A be a ring, E be an A-module and R = A ∝ E be the set of pairs
(a, e) with pairwise addition and multiplication given by: (a, e)(b, f) = (ab, af +
be). R is called the trivial ring extension of A by E. Recall that a maximal
ideal of R has always the form M ∝ E, where M is a maximal ideal of A [11,
Theorem 25.1(3)]. The author of [11] also confirms by a private communication
that [11, Theorem 25.1] is not true, that is, an ideal J of R has not always

the form: J = I ∝ E
′

, where I = {a ∈ A | (a, e) ∈ J for some e ∈ E} and

E
′

= {e ∈ E | (a, e) ∈ J for some a ∈ A}. We only have that J ⊆ I ∝ E
′
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(see [14]). Nevertheless, it is easily seen that J = I ∝ E
′

if and only if 0 ∝ E
′

⊆ J
if and only if I ∝ 0 ⊆ J .

In this section, we study the possible transfer of the G-ring property for various
trivial extension contexts.

Theorem 3.1. Let A be a ring, E be an A-module such that Z(E) ⊆ Z(A)
(where Z(E) denotes the set of zero-divisors on E), and R := A ∝ E be the

trivial ring extension of A by E. Then R is a G-ring if and only if A is a G-ring.

Proof: Set S = A − Z(A). Then Z(R) = Z(A) ∝ E and Q(R) = Q(A) ∝ ES

by [11, p. 164–165]. Assume that A is a G-ring. Hence, Q(A) = Aa for some
a ∈ S. Then, (a, 0) /∈ Z(R) and Ea := E ⊗A Aa = E ⊗A Q(A) = ES . So,
Q(R) = Q(A) ∝ ES = Aa ∝ Ea = {(xa−n, ea−m); (x, e) ∈ R and n, m ∈ N} =
{(xap−n, eap−m)(a, 0)−p; (x, e) ∈ R, n, m ∈ N and p = sup(n, m)} ⊆ R(a,0) ⊆
Q(R). Therefore, Q(R) = R(a,0) and then R is a G-ring.

Conversely, assume that R is a G-ring. Hence, Q(R) = R(a,e) for some (a, e) /∈
Z(R). If Q(R) := Q(A) ∝ ES and p : Q(R) → Q(A) is the map p(x, y) = x,
we claim that Q(A)(= p(R(a,e))) = Aa. Indeed, let (x, y)(a, e)−n ∈ R(a,e), where

(x, y) ∈ R and n ∈ N. Hence, anp((x, y)(a, e)−n) = p((a, 0)n(x, y)(a, e)−n) =
p((x, y)((a−n, 0)(a, e)n)−1) = p((x, y)((a−n, 0)(an, en))−1) where en ∈ E. This is
equal to p((x, y)(1, a−nen)−1) = p((x, y)(1,−a−nen)) = p(x, y−xa−nen) = x ∈ A,
so p((x, y)(a, e)−n) = xa−n ∈ Aa. Therefore, Q(A) = Aa and then A is a G-
ring. �

If A is a domain and E is a torsion-free A-module, we obtain by Theorem 3.1:

Corollary 3.2. Let A be a domain, E be a torsion-free A-module, and R := A ∝
E be the trivial ring extension of A by E. Then R is a G-ring if and only if A is

a G-domain.

If R := A ∝ E is a trivial extension of a ring A by an A-module E, we do not
have in general that R is a G-ring if and only if A is a G-ring, as shown by the
following result.

Proposition 3.3. Let (A, M) be a local ring and E an A-module such that

ME = 0. Then the trivial ring extension of A by E is a G-ring.

Proof: The result holds since the trivial ring extension of A by E is a total
ring (since (M ∝ E)(0, 1) = (0, 0) and M ∝ E is a maximal ideal of a local ring
A ∝ E). �

4. Examples

In this section, we exhibit a non-Noetherian coherent G-domain (Example 4.1).
Then, we give non-coherent G-rings (Examples 4.2 and 4.3). We also show that
if f : R → S is a faithfully flat ring extension such that S is a G-ring, then R is
not a G-ring, in general (Examples 4.1(4) and 4.2(3)). Finally, we give a counter-
example showing that the hypothesis “m is a regular element of T ” is necessary
in Theorem 2.1 (Example 4.4).
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Example 4.1. Let T = Q[[X ]] = Q + XT be the formal power series ring over
the field Q and let R = Z + XT . Then:

(1) R is a G-domain by Theorem 2.2 since T is a local G-domain and XT ⊆ R;
(2) R is a coherent domain by [8, Theorem 3] and is not Noetherian by [4,

Theorem 4];
(3) T is not finitely generated as a ring over R by Corollary 2.4;
(4) Z → R is a faithfully flat ring extension and Z is not a G-domain.

Example 4.2. Let T = R[X ](X) = R+XT , where X is an indeterminate over R,
and let R = Z + XT . Then:

(1) R is a G-domain by Theorem 2.2 since T is a local G-domain and XT ⊆ R;
(2) R is not a coherent domain ([8, Theorem 3]);
(3) Z → R is a faithfully flat ring extension and Z is not a G-domain.

Example 4.3. Let A be a G-domain which is not a field, K = qf(A), and let
R := A ∝ K be the trivial ring extension of A by K. Then:

(1) R is a G-ring by Corollary 3.2 since A is a G-domain;
(2) R is not a coherent ring since R(0, 1) is a finitely generated ideal which is

not finitely presented as shown by the exact sequence of R-modules:

0 → 0 ∝ K → R
u
→ R(0, 1) → 0

where u(a, e) = (a, e)(0, 1) = (0, a) (since 0 ∝ K is not a finitely generated
ideal of R).

Example 4.4. Let A be a non G-domain, K = qf(A), T = K ∝ K be the trivial
ring extension of K by K, and let R := A ∝ K be the trivial ring extension of A
by K. Then:

(1) T is a G-ring since it is a total ring;
(2) R is not a G-ring by Corollary 3.2 since A is not a G-domain;
(3) (0, 1)T = 0 ∝ K ⊆ R.

Acknowledgment. I would like to thank the referee for a careful reading of this
manuscript.
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[6] Dobbs D.E., G-Domain pairs, Internat. J. Commutative Rings 1 (2002), no. 2, 71–75.
[7] Dobbs D.E., Ishikawa T., On seminormal underrings, Tokyo J. Math. 10 (1987), 157–159.



18 Mahdou N.

[8] Dobbs D.E., Papick I., When is D + M coherent? , Proc. Amer. Math. Soc. 56 (1976),
51–54.

[9] Fontana M., Topologically defined classes of commutative rings, Ann. Mat. Pura Appl. 123

(1980), 331–355.
[10] Gilmer R., The pseudo-radical of a commutative ring, Pacific J. Math. 19 (1966), 275–284.
[11] Huckaba J.A., Commutative Rings with Zero Divisors, Marcel Dekker, New York-Basel,

1988.
[12] Kaplansky I., Commutative Rings, revised edition, University of Chicago Press, Chicago,

1974.
[13] Kabbaj S., Mahdou N., Trivial extensions of local rings and a conjecture of Costa, Lecture

Notes in Pure and Appl. Math., 231, Dekker, New York, 2003, pp. 301–311.
[14] Kabbaj S., Mahdou N., Trivial extensions defined by coherent-like conditions, Comm. Al-

gebra 32 (2004), no. 10, 3937-3953.
[15] Mahdou N., Mimouni A, Moutui M.A., On almost valuation and almost Bézout rings,

Comm. Algebra 43 (2015), no. 1, 297–308.

Department of Mathematics, Faculty of Science and Technology of Fez,

Box 2202, University S.M. Ben Abdellah Fez, Morocco

E-mail: mahdou@hotmail.com

(Received December 20, 2015, revised July 25, 2016)


		webmaster@dml.cz
	2018-01-10T10:24:20+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




