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Abstract

This paper aims to introduce the notions of an almost generalized
weakly symmetric Kenmotsu manifolds and an almost generalized weakly
Ricci-symmetric Kenmotsu manifolds. The existence of an almost gener-
alized weakly symmetric Kenmotsu manifold is ensured by a non-trivial
example.
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1 Introduction

The notion of a weakly symmetric Riemannian manifold has been initiatied by
Taméssy and Binh [22]. In the spirit of [5], a weakly symmetric Riemannian
manifold (M™,g), is said to be an n-dimensional almost weakly pseudo sym-
metric manifold (n > 2), if its curvature tensor R of type (0, 4) is not identically



6 K. K. Baishya, P. R. Chowdhury, J. Mikes, P. Peska

zero and admits the identity

(VxR)(Y,U,V.W) = [Ai(X) + Bi(X)| R(Y,U,V, W)
+ CL(Y)R(X,U,V,W) + C1(U) R(Y, X, V, W)
+ Dy (V)R(Y,U, X, W) + D (W) R(Y,U,V, X), (1.1)

where Ay, B, Ci, D; are non-zero l-forms defined by A;(X) = ¢(X,01),
Bi(X) = g(X,01), C1(X) = g(X,m) and D;(X) = g(X,01), for all X and
R(Y,U,V,W) = g(R(Y,U)V,W), V being the operator of the covariant differ-
entiation with respect to the metric tensor g. An n-dimensional Riemannian
manifold of this kind is denoted by A(W PS),-manifold.

Keeping the tune of Dubey [8], we shall call a Riemannian manifold of dimen-
sion n an almost generalized weakly symmetric (which is abbreviated hereafter
as A(GW S),-manifold) if it admits the equation

(VxR)(Y,U,V,W) = [A1(X) + Bi(X)|R(Y,U,V,W) + C1(Y)R(X,U,V, W)
+ CL({U)R(Y, X, V,W) + Dy (V)R(Y,U, X, W)
+ Dy(W)R(Y,U,V, X) + [A2(X) + Bo(X)|G(Y, U, V, W)
V)G

+C(Y)G(X, U, V,W) + C2(U)G(Y, X, V, W)
+ Do(V) G(Y,U, X, W) + Doa(W)G(Y,U,V, X) (1.2)

where
GY,U,V,W) =g(UV)g(Y, W) —g(Y,V)g(U, W)

and A;, B;, C;, D;, i = 1,2, are non-zero 1-forms defined by
AZ<X) = g(X7 Ui)7 BI(X) = g(Xa Q’L)7 OZ(X) = g(Xvﬂ-l)v Dz(X) = g(Xa 81)

The beauty of such A(GWS),-manifold is that it has the flavour of

(i) locally symmetric space in the sense of Cartan for A; = B; = C; = D; = 0,
(i) recurrent space by Walker [24] for A; #0, B; =C; = D; =0,
(iii) generalized recurrent space by Dubey|[8] for A; # 0 and B; = C; = D; =0,
(iv) pseudo symmetric space by Chaki [4] for Ay = By = C; = Dy # 0 and
AQZBQZCQZDQZO,
(v) semi-pseudo symmetric space in the sense of Tarafder et al. [23]
fOI‘Alz—Bl,Clle andAQZBQZCQZDQZO,
(vi) generalized semi-pseudo symmetric space in the sense of Baishya [1]
for A1 = —Bl, Cl = D1 and Ag = —BQ, CQ = DQ = 0,
(vii) generalized pseudo symmetric space, by Baishya [2]
fOrAl:B1:CZ:D77éO,
(viii) almost pseudo symmetric space in the sprite of Chaki et al. [5]
fOI'Bl#O, A1:C’1:Dl#OandAngQ:C’gzDQ:O,
(ix) almost generalized pseudo symmetric space in the sence of Baishya
fOI‘BZ‘#O, Ai:Ci:Di#O,
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(x) weakly symmetric space by Tamdssy and Binh [22]
fOI'AQZBQZCQZDQZO.

Our work is structured as follows. Section 2 is concerned with Kenmotsu
manifolds and some known results. In section 3, we have investigated an almost
generalized weakly symmetric Kenmotsu manifold and obtained some interest-
ing results. Section 4, is concerned with an almost generalized weakly Ricci-
symmetric Kenmotsu manifold. Finally, we have constructed an example of an
almost generalized weakly symmetric Kenmotsu manifold.

2 Kenmotsu manifolds and some known results

Let M be a n-dimensional connected differentiable manifold of class C'°°-covered
by a system of coordinate neighborhoods (U, ") in which there are given a
tensor field ¢ of type (1,1), a cotravariant vector field £ and a 1—form 7 such
that

X = —X +n(X)¢, (2.1)
nE) =1 ¢-£=0, n(eX)=0, (2.2)
for any vector field X on M. Then the structure (¢,&,7) is called contact
structure and the manifold M™ equipped with such structure is said to be an

almost contact manifold, if there is given a Riemannian compatible metric g
such that

9(eX.Y) = —g(X,¢Y), ¢(X,§) =n(X), (2.3)
9(pX, YY) = g(X,Y) = n(X)n(Y), (2.4)
for all vector fields X and Y, then we say M is an almost contact metric mani-
fold.
An almost contact metric manifold M is called a Kenmotsu manifold if it
satisfies [11]
(Vxe)Y = —g(X, 9Y)§ — n(Y)p(X), (2.5)
for all vector fields X and Y, where V is a Levi-Civita connection of the Rie-
mannian metric. From the above it follows that

Vx§ = X —n(X)g, (2.6)
(Vxn)Y = g(X,Y) —n(X) n(Y), (2.7)
In a Kenmotsu manifold the following relations hold ([7], [10])
R(X,Y)§ = n(X)Y —n(Y)X, (2.8)
S(X,¢) = —(n—1)n(X), (2.9)
R(X, QY = g(X,Y){ = n(Y)X, (2.10)
R(&X)Y = n(Y)X — g(X,Y)¢ (2.11)

for any vector fields X,Y, Z, where R is the Riemannian curvature tensor of the
manifold.
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3 Almost generalized weakly symmetric Kenmotsu man-
ifold

A Kenmotsu manifold (M", g) is said to be an almost generalized weakly sym-
metric if it admits the relation (1.1), (n > 2).
Now, contracting Y over W in both sides of (1.1), we get

(VxS)(U,V) = [A1(X) + B1(X)]S(U, V) + C1(U)S(X,V)
+ CL(R(X,U)V) + D1(R(X,V)U) + D1 (V)S(U, X)

+(n = D[{A2(X) + B2 (X)}g(U, V) + C2(U)g(X, V)
+ Dy (V)g(U, X)] + Co(G(X,U)V) + Da(G(X,V)U).  (3.1)

In consequence of (2.8), (2.9) and (2.10) for V' = £ the above equation yields
(VxS)(U,€) = —(n = D[A1(X) + Bi(X)|n(U) = (n = 2)C1(U)n(X)
+Di(§)S(U, X) = n(U) CL(X) = n(U) D1 (X)
+9(X,U)D1(&) + (n = D[{A2(X) + Bo(X)n(U)
+ Co(U)n(X) + Da(§)g(U, X)] + n(U)C(X)
= n(X)Co(U) +n(U)Dy(X) — g(U, X) Ds(§). (3.2)

Again, replacing V by &, in the following identity
(VxS)(U,V)=VxSUV)-S(VxUV)—-SU,VxV) (3.3)
and then making use of (2.1), (2.6), (2.9), we find
(Vx9)(U,§) = =(n - 1)g(X,U) = 5(U, X). (3-4)
Now, using (3.4) in (3.2), we have
—(n = 1Dg(X,U) = S(U, X) = =(n = [{A1(X) + B:(X) }n(U)]
= (n=2)C1(U)n(X) + D1(§)S(U, X)
—n(U)C1(X) + g(X, U)D1(§) = n(U) D1(X)

+ (n = D{A(X) + Bo(X)}n(U) + Co(U)n(X) + D2(§)g(U, X)]
+0(U)C2(X) = n(X)Ca(U) +n(U)D2(X) — g(U, X) Da(£) (3-5)

which leaves

[A1(€) + B1(§) + C1(§) + D1(&)] = [A2(§) + Ba(§) + Ca(§) + D2(€)] (3.6)

for X =U =¢.
In particular, if A3(§) = Ba(§) = C2(€) = D3(§) = 0, formula (3.6) turns
into

A1(§) + Bi(§) + C1(§) + D1(§) = 0. (3.7)
This leads to the following
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Theorem 1. In an almost generalized weakly symmetric Kenmotsu manifold

(M™,g), n> 2, the relation (3.6) hold good.

In a similar manner, we can have

—(n—-1)g(X,V)—=S(V,X)
= —(n - D[A(X) + B1(X)]n(V |
+ C1(S(X, V) + g(X, V)C1(§) — n(V)C1(X) —n(V)D1(X)
+ (n = 1)[{A2(X) + B2(X)In(V) + C2(§)g(X, V)
+D2(V) (X +0(V)C2(X) — g(X, V)C2(£)
+n(V)D2(X) — n(X)D2(V) (3.8)

Now, putting V' = ¢ in (3.8) and using (2.1), (2.9), we obtain

) = (n = 2)D1(V)n(X)]
(

(n — D[A1(X) + B1(X)] + C1(X) + D1(X)
+ (n = 2)[C1(€) + D1(§)In(X)
= [(n — D){A2(X) + B2(X)} + (n — 2){C2(§) + D2(&) In(X)]

Putting X = ¢ in (3.8) and using (2.1), (2.2), (2.9), we obtain

(n = D[A1(&) + B1(§) + Cr(In(V) + (n — 2)D1(V) + (V) D1 ()
= (n — D[{A2(8) + Ba2(§) + C2()In(V) + D2(V)]
+n(V)D2(§) — D2(V) (3.10)

Replacing V' by X in the above equation and using (3.6), we get
Dy (X) = Di(§)n(X) = D2(X) = Da(§)n(X) (3.11)
In view of (3.6), (3.9) and (3.11), we get
C1(X) = C1(n(X) = Co(X) = Ca(n(X). (3.12)
Subtracting (3.11), (3.12) from (3.9), we get
[A1(X) + B1(X)] + [C1(§) + D1(§)In(X)
={A42(X) + B2(X)} +{C2(§) + D2(&) }n(X))] (3.13)
Again, adding (3.11), (3.12) and (3.13), we get
A1(X) 4+ B1(X) + C1(X) + D1(X)
= [A2(X) 4+ Ba(X) + C2(X) + Do (X)]. (3.14)
Next, in view of Ay = By = Cy = Dy = 0, the relation (3.14) yields
A1(X)+ B1(X)+ C1(X)+ Di(X) =0. (3.15)

This motivates us to state the followings
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Theorem 2. In an almost generalized weakly symmetric Kenmotsu manifold
(M™,g), n > 3, the sum of the associated 1-forms is given by (3.14).

Theorem 3. There does not exist a Kenmotsu manifold which is
(i) recurrent,
(ii) generalized recurrent provided the 1-forms are collinear,
(iii) pseudo symmetric,
(iv) generalized semi-pseudo symmetric provided the 1-forms are collinear,
(v) generalized almost-pseudo symmetric provided the 1-forms are collinear.

4  Almost generalized weakly Ricci-symmetric Kenmotsu
manifold

A Kenmotsumanifold (M™, g)(n > 3), is said to be almost generalized weakly
Ricci-symmetric if there exist 1-forms A;, B;, C; and D; which satisfy the con-
dition
(VxS)(U,V)
= [A1(X) + B1(X)]S(U, V) + C1(U)S(X,V) + D (V)S(U, X)

+[A2(X) + Ba(X)]g(U, V) + Co(U)g(X, V) + D2(V)g(U, X).  (4.1)

Putting V = ¢ in (4.1), we obtain
(VxS)(U,¢)
[A1(X) + Bi(X))(n — 2)n(U) + C1(U)(n — 2)n(X) + D1(€)S(U, X)
+[A2(X) + B2(X)In(U) + Co(U)n(X) + Da2(§)g(U, X).  (4.2)

In view of (3.4), the relation (4.2) becomes

—(n—1)g(X,U)-SU,X)
—(n = D{AL(X) + B1(X)}n(U) + Cr(U)n(X)] + D1 (£)S(U, X)
+ [A2(X) 4 B2(X)|n(U) + C2(U)n(X) + D2(§)g(U, X). (4.3)
Setting X = U = ¢ in (4.3) and using (2.1), (2.2) and (2.9), we get
(n = D[AL(E) + Bi(§) + C1(€) + D1 (€)]
= [A2(§) + B2(&) + C2(8) + D2(8)]. (4.4)
Again, putting X = £ in (4.3), we get
(n = 1)[{A1(8) + B1(€) + D1(§)}n(U) + C1 (V)]
= [A3(&) + Ba(&) + Da(&)n(U) + Ca(U). (4.5)
Setting U = ¢ in (4.3) and then using (2.1), (2.2) and (2.9), we obtain

(n — D{A1(X) + B1(X)} +{C1(§) + D1() }n(X)]
= [A2(X) + B2(X)] + C2(&)n(X) + D2(&)n(X). (4.6)
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Replacing U by X in (4.5) and adding with (4.6), we have

(n = D[A1(X) + Bi(X) + C1(X)] = [A2(X) + B2(X) + C2(X))]
= —(n = D[A1(§) + B1(€) + C1(&) + D1(§)In(X)
+[A2(8) + Ba2(8) + C2(8) + D2(§)n(X)
— (n = 1)D1(E)n(X) + Do (E)n(X).  (4.7)

In consequence of (4.4), the above equation becomes

(n = D[AL(X) + Bi(X) + Co(X)] + (n = D1 (&)n(X).
= [A2(X) + B2(X) + C2(X)] + D2(€)n(X) (4.8)

Next, putting X = U = ¢ in (4.1), we get

1(V)
(V) + Do(V) (4.9)

(n = 1)[A1(§) + B1(&) + CL(OIn(V) + (n = 1)D
= [42(€) + Ba2(§) + C2(&)In

Replacing V' by X in (4.9) and adding with (4.8), we obtain

Da(&)In(V). (4.10)

By virtue of (4.4), the above equation becomes

(n — D[AL(X) + Bi(X) 4+ C1(X) + D1 (X))
= [A3(X) + Ba(X) + Co(X) + D1 (X)]. (4.11)

This leads to the followings

Theorem 4. In an almost generalized weakly Ricci symmetric Kenmotsu man-

ifold

Theorem 5. (M™,g), n > 2, the sum of the associated 1-forms are related by
(4.11).

5 Example of an A(GWS); Kenmotsu manifold

(see [7], page 21-22) Let M3 (i, &, 1, g) be a Kenmotsu manifold (M3, g) with a
p-basis
0

—z —z

%a

€1 =e€
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Then from Koszul’s formula for Riemannian metric g, we can obtain the Levi-
Civita connection as follows

Ve, e3 = e1, Ve, e2 =0, Ve, €1 = —e3,
Ve,€3 = e, Ve,e2 = —e3, Ve,e1 =0,
VeBeg == 0, v6362 = 0, V6361 =0.

Using the above relations, one can easily calculate the non-vanishing components
of the curvature tensor R (up to symmetry and skew-symmetry)

R(61763761763) = R(627€3362763) =1= R(€1,€2,€1,62).

Since {ey, e, e3} forms a basis, any vector field X,Y, U,V € x(M) can be written

as
3 3 3 3
X = e, Y=Y be, U= ce, V=) de,
1 1 1 1

R(X,Y,U,V) = (a1by — asb1)(c1ds — cady) + (a1bs — asby)(c1ds
— c3dy) + (agbs — asbe)(cads — c3ds) = T} (say)
R(e1,Y,U, V) = bs(c1ds — cady) + ba(crda — cady) = A1 (say)
R(es,Y,U, V) = b3(cads — c3d2) — bi(c1da — cady) = Mg (say)
R(es,Y,U, V) = by(cgdi—c1ds) + ba(csda — cads) = A3 (say)
R(X,e1,U,V) = ag(cids — c3di) + az(c1da — cadr) = A4 (say)
R(X,e2,U, V) = ag(cads — c3da) + a1(cads — c1dz) = X5 (say)
R(X,e3,U, V) = ai(cadi—c1ds) + as(czds — cad3) = Ag (say)
R(X,Y,e1,V) = ds(a1bs — asby) + da(a1ba — asby)(= A7 (say)
R(X,Y,e2, V) = ds(azbs — asbe) + di(agby — a1ba) = Ag (say)
R(X,Y,e3,V) = dy(asby — aibs ) + da(asbz — azbs) = Ag (say)
R(X,Y,U,e1) = c3(arbs — aszby) + ca(arbs — asby) = Ao (say)
R(X,Y,U, es) = c3(azbs — asbs ) + c1(azby — a1ba) = Ay1 (say)
R(X,Y,U,e3) = ci(asbi — a1bs) + ca(agbs — azbz) = A1z (say)
G(X,Y,U, V) = (bicy + baca — bzcsz)(ardy + asds — asds)

— (a101 + asco — a303)(b1d1 + bads — b3d3) (say)

G(e1,Y,U,V)
G(es,Y,U,V)
G(es,Y,U,V)
G(X,e1,U,V)
G(X, e, U, V)
G(X,e3,U,V)

bQCQ — bgCg)dl — (bgdg — bgdg)Cl = W1 (say)
bici — bzcz)dy — (bidy — bzdz)ca = wa (say)
)

b1(21 — bQCQ)dg — (b1d1 — deQ)Cg = W3 (say

(

(

(

(agdy — asds)cy — (agea — azes)dy = wy (say)
(ardy — asds)ca — (a1¢1 — azes)da = ws (say)
( (

a1d1 — CLQdQ)Cg — (a101 — a202)d3 = We say)
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G(X,Y,e1,V) = (aady — azds)by — (bady — bsds)ay
G(X,Y,e2,V) = (a1dy — azd3)by — (bydy — bsds)

G(X,Y,e3, V) = (bydy — bads)as — (a1dy — aada)bs = wy (say
G(X,Y,U,e1) = (baca — bscs)ar — (agca — ascs)br, = wio (say)
G(X,Y,U,e3) = (bycy — bses)ag — (a1c1 — ascs)ba = wiy (say)
G(X,Y,U,e3) = (

bic; — —bgCg)ag — (CL101 =+ CLQCg)bg, = W12 (say)

and the components which can be obtained from these by the symmetry prop-
erties. Now, we calculate the covariant derivatives of the non-vanishing compo-

nents of the curvature tensor as follows

(Ve,R)(X,Y,U, V) =

= —a1A3 +azda — b1 +b3A5 — c1Ag + c3Ag — di A2 + d3diy,

(Ve, R)(X,Y,U,V) =

(Ve, R)(X,Y,U, V) =0,

For the following choice of the the one forms

Aer) = WQT;lal)\g, Bi(e1) =
Az(er) = w Ba(er) =
Are2) = CLS/\QT;lag/\S, Bi(ez) =
Aalea) = %)\8#_262)\97 By(ez) =
Ay(ey) = e?*(a1by ;1a2b1)c1d2’

Bi(es) = _e2z(a1b2 ;1a2b1)cld27
Ci(es) = m Coles) =
Difes) = m» Dy(e3) =
Aales) = 02622(a1b2T2 agbl)clalQ7
Bs(es) = _a%e®*(a1by — asbi)cady

Ts ’

—a2>\3 + ag)\g — bQ)\G + b3)\5 — CQ)\Q + Cg)\gdg)\ll — d2>\12,

bss — b1 )g

T ’
dsA11 — didio

T ’
b3As — baAg

T ’
d3A11 — da )12

T ’

1
a303 + b396’
1
c3by + dsba’
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one can easily verify the relations

(Ve R)(X, Y, U, V) = [Ar(e:) + Ba(e:) | R(X, Y, U, V)
+C1(X)R(e;, Y,U,V) + C1(Y)R(X,¢;, U, V)
+ Dy (U)R(X,Y,e;,V) + D1 (V)R(X,Y,U,e;)
+ [As(e;) + Bo(e)]G(X, Y, U, V)
+ Co(X)G(ey, YU, V) 4+ Co(Y)G (X, €3, U, V)
+ D2 (U)G(X, Y, e, V) + Do (V)G(X, Y, U, €;)

for 1, 2, 3. From the above, we can state that

Theorem 6. There exizt a Kenmotsu manifold (M?3,g) which is an almost
generalized weakly symmetry Kenmotsu manifold.
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