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Abstract
The article deals with spaces the geometry of which is defined by cyclic

and anticyclic algebras. Arbitrary multiplicative function is taken as a
fundamental form. Motions are given as linear transformation preserving
given multiplicative function.
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Real cyclic and anticyclic algebras R+
m(ε), R−

m(ε) with generator ε, where
εm = ±1, may be considered as a generalization of the algebra of dual real num-
bers or the field of complex numbers and they are isomorphic to the following
direct sums (see [1]):

R+
m(ε) ∼=

⎧⎪⎪⎨
⎪⎪⎩

R⊕R⊕C⊕ . . .⊕C︸ ︷︷ ︸
k−1

,m = 2k

R⊕
k︷ ︸︸ ︷

C⊕ . . .⊕C,m = 2k + 1

R−
m(ε) ∼=

⎧⎪⎪⎨
⎪⎪⎩

C⊕ . . .⊕C︸ ︷︷ ︸
k

,m = 2k

R⊕
k︷ ︸︸ ︷

C⊕ . . .⊕C,m = 2k + 1

(1)

These isomorphisms determine the existence of certain functions F : R±
m(ε) →

R, such that F (x · y) = F (x)F (y) for every x,y ∈ R±
m(ε). This property is

called composition property (see [2]).
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As R±
m(ε) ⊂ Cm(ε), the composition property of algebras R±

m(ε) as well as
the type of multiplicative functions F : R±

m(ε) → R follows from composition
property of complex cyclic algebras Cm(ε). To prove the composition property
of algebras Cm(ε) we consider a resolvent x(αk

m) of an arbitrary element (see
[3]):
If

x = x0 + x1ε+ x2ε
2 + . . .+ xm−1ε

m−1 ∈ Cm(ε),

then

x(αk
m) = x0 + αk

mx1ε+ α2k
m x2ε

2 + . . .+ αk
mxm−1ε

k(m−1) ∈ Cm(ε),

where αm = cos(2π/m) + i sin(2π/m). The mapping α̂m : Cm(ε) → Cm(ε),
such that α̂m(x) = x(αm), is called a resolvent mapping and it fulfils the
following identities:

α̂m(x · y) = α̂m(x) · α̂m(y) and α̂m
m(x) = x, for any x,y ∈ Cm(ε).

Now, let us consider a function Δ: Cm(ε) → Cm(ε) which an arbitrary
a ∈ Cm(ε) maps to the value of the determinant of the following system of
equations:

a0x0 + am−1x1 + am−2x2 + · · ·+ a1xm−1 = b0

a1x0 + a0x1 + am−1x2 + · · ·+ a2xm−1 = b1

a2x0 + a1x1 + a0x2 + · · ·+ a3xm−1 = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am−1x0 + am−2x1 + am−3x2 + · · ·+ a0xm−1 = bm−1

This system of equations is equivalent to the equation a · x = b. The function
defined above is called a determinant of the element a ∈ Cm(ε). It may be
proved (see [3, 4]) that the following identity holds for every element x ∈ Cm(ε):

Δ(x) =

x0 xm−1 . . . x1
x1 x0 . . . x2
. . . . . . . . . . . .
xm−1 xm−2 . . . x0

= x · x(αm) · x(α2
m) · . . . · ·x(αm−1

m )

= (spx)(spx(αm))(spx(α2
m)) . . . (spx(αm−1

m )), (2)

where

spx ≡ sp(x0 + x1ε+ x2ε
2 + . . .+ xm−1ε

m−1) = x0 + x1 + x2 + · · ·+ xm−1.

For the example, if x = x0 + x1ε+ x2ε
2 ∈ C3(ε), we obtain:

Δ(x) =
x0 x2 x1
x1 x0 x2
x2 x2 x0

= x30 + x31 + x32 − 3x0x1x2

= (x0 + x1ε+ x2ε
2) · (x0 + αmx1ε+ α2

mx2ε
2) · (x0 + α2

mx1ε+ αmx2ε
2)

= (x0 + x1 + x2) · (x0 + αmx1 + α2
mx2) · (x0 + α2

mx1 + αmx2).
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Using multiplicative property of the resolvent, we obtain that the first part of
the identity (2) gives the multiplicative property of the determinant of elements
of cyclic algebras. It means that for any x,y ∈ Cm(ε) we have:

Δ(x · y) = Δ(x)Δ(y) (3)

By this way the determinant of an arbitrary element may represent a multi-
plicative function F (x) which determines the composition property of cyclic
algebras. However, the determinant is not unique multiplicative function of a
cyclic algebra. Another multiplicative function is a norm of an arbitrary element
of cyclic algebra which is defined by

N(x) = x(αm) · x(α2
m) · . . . · x(αm−1

m ).

The multiplicativity of the norm follows from the multiplicativity of determinant
Δ(x) and the trace spx for any x ∈ Cm(ε). Therefore we have for any x,y ∈
Cm(ε):

N(x · y) = N(x)N(y) (4)

Multiplicative functions of the determinant and of the norm of any element
are defined for every algebra Cm(ε). But for concrete cyclic algebra, others
multiplicative functions may be found.
Denote by Em ⊂ Cm(ε) a linear space generated by elements εk. Let us

remark that for any element t = t1ε+ t2ε
2 + . . .+ tm−1ε

m−1 ∈ Em we have the
following identity (see [3]):

Δ(exp t) =

m−1∏
k=1

Δ(exp tkε
k) = 1. (5)

The above provisions were obtained for complex cyclic algebras. However,
identities (2), (3), (4) and (5) remain valid for arbitrary elements of real cyclic
algebras and it is obvious that for x ∈ R±

m(ε) we have Δ(x) ∈ R and N(x) ∈ R.
By this way, we may on linear spaces of algebras R±

m(ε) construct geometric
structures the fundamental forms gh(x) of which are multiplicative functions
above or other ones. Groups of motions of such spaces are subgroups of the
group of linear transformations of a following type:

x′ = (exp t) · x, t ∈ Vm ⊂ Em (6)

where Vm is some subspace of linear space Em.
Especially, putting gm(x) = Δ(x) and Vm ≡ Em we obtain a geometric

structure on whole linear space of an arbitrary algebra R±
m(ε). Geometry of

such spaces is called cyclic geometry. Vector length of x ∈ R±
m(ε) in these

geometries is defined by [x] = m
√
Δ(x) and its value may be real as well as

complex. Thus as a extension of a vector the modul |[x]| of its length may be
used. A vector with zero length will be called isotropic.
A set of vectors with constant length � forms a surface which is called a

cyclic spheroid with radius �. This spheroid is in a center affine space of cyclic
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or anticyclic algebra determined by an equation Δ(x) = 0. If � = 0, then the
spheroid is called isotropic. It divides all centre affine space of given algebra
into disjunctive parts which are called quadrants of a cyclic space.
In every such quadrant, there may be a cyclic angle between vectors of the

same length x and x′ = (exp t) · x of the given quadrant defined as an element
t ∈ Em. If vectors do not have the same length, their length must be normalised
first.
A model example of the cyclic geometry may be obtained due to a two-

dimensional pseudo Euclidean space, because for m = 2 we have

g2(x) = Δ(x) =
x0 x1
x1 x0

= x20 − x21

for any x = x0+x1ε ∈ R+
2 (ε). In this case, spheroids with a real radius x

2
0−x21 =

�2 are represented by hyperbolas with equations x20 − x21 = �2, spheroids with a
purely imaginary radius i� are hyperbolas with equations x20 − x21 = �2 and an
isotropic spheroid is a couple of intersecting lines with equations x0 = ±x1.
Further, a cyclic angle between vectors x = x0 + x1ε and x′ = (expβt) · x

will be equal to βε. It differs from the pseudo euclidean angle β only by a
multiple ε.
The second model example is represented by a cyclic space of an algebra

R+
3 (ε). The fundamental form will be given as

g2(x) = Δ(x) = x30 + x31 + x32 − 3x0x1x2,

so that spheroids of a positive radius � > 0 will be surfaces with equation
x30 + x31 + x32 − 3x0x1x2 = �3, spheroids with a negative radius −� < 0 will
be surfaces with equation x30 + x31 + x32 − 3x0x1x2 = −�3 and an isotropic
spheroid will be an plane with equation x0 + x1 + x2 = 0 and a line x0 =
x1 = x2. To imagine the spheroid in 3-dimmesional center affine space we
study the intersections of this spheroid and coordinate planes with equations
x30 + x31 − 3x0x1c = �3 − c3 (for c = � we get a “Descartes leaf”—a curve with
equation x30 + x31 − 3�x0x1). However, transforming a coordinate system by
relations

x =
x0 + x1 + x2√

3
, y =

x0 − x1√
2

, z =
x0 + x1 − 2x2√

6

and

x0 =
x√
3
+

y√
2
+

z√
6
, x1 =

x√
3
− y√

2
+

z√
6
, x2 =

x√
3
− 2z√

6

we may the equation of spheroid with a radius � > 0 rearrange into form

x = 2�3/3
√
3(y2 + z2),

since the axis Ox is identical with a line x0 = x1 = x2 and axes Oy and Oz lie
in a plane x0 + x1 + x2 = 0.
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It follows from this that a surface showing a central spheroid of cyclic ge-
ometry of the third order may be obtained by a rotation of quadratic hyperbole
with equation

x =
2�3

3
√
3y2

around the axis Ox.
A cyclic angle between vectors x and x′ = exp(t1ε + t2ε

2) · x in R+
3 (ε) is

two parametric and it is equal to a vector t = t1ε + t2ε
2 ∈ T3. However, in

R+
3 (ε) there may be defined a scalar angle between vectors x and x

′ as a trace
of the element t.
Let us remark, that Euclidean planimetry is a model example of anticyclic

geometry because R−
2 (ε) ≡ C.

Beside of cyclic and anticyclic spaces defined on the all linear space of al-
gebras R±

m(ε), some geometric structure may be introduced on a hyperplane
Πm−1 : x0 + x1 + . . . + xm−1 = 1 if a norm of x ∈ Πm−1 ⊂ R±

m(ε) is
taken as a fundamental form and transformations given by functions x′ =
x ·exp(t1ε+t2ε2+ . . .+tm−1ε

m−1) with t1+t2+ . . .+tm−1 = 0 are taken as mo-
tions because these transformations putΠm−1 anew ontoΠm−1 and preserve a
norm. The geometry acquired by this way is called a projective cyclic geometry
because components of an element x ∈ Πm−1 ⊂ R±

m(ε) represent barycentric
coordinates of points of hyperplane Πm−1 ⊂ R±

m(ε).
There exists another series of spaces the geometry of which is connected with

cyclic and anticyclic algebras. It arises on spheroids in cyclic and anticyclic
spaces of algebras R±

m(ε), m > 2. Motions of spheroids are given by linear
functions (6). It is immediately seen if we take an element exp t = exp(t1ε +
t2ε

2+ . . .+ tm−1ε
m−1) as a parametric equations of a spheroid and use a known

property of exponential function expa · exp b = exp(a + b). For example, for
m = 3 parametric equations have a form x0 = �A(t1, t2), x1 = �B(t1, t2), x2 =
�C(t1, t2), where we put exp(t1ε+ t2ε

2) = A(t1, t2) + B(t1, t2)ε+B(t1, t2)ε
2.
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