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ASYMPTOTIC REPRESENTATIONS OF SOLUTIONS

OF THE NONAUTONOMOUS ORDINARY DIFFERENTIAL

n-TH ORDER EQUATIONS

Mousa Jaber Abu Elshour and Vjacheslav Evtukhov

Abstract. Asymptotic representations of some classes of solutions of nonau-
tonomous ordinary differential n-th order equations which somewhat are close
to linear equations are established.

1. Introduction

We consider the differential equation
(1.1) y(n) = α0p(t)y| ln |y||σ ,
where α0 ∈ {−1, 1}, σ ∈ R, p : [a, ω[ → ]0,+∞[ is a continuous function, −∞ <
a < ω ≤ +∞1.

A solution y of the equation (1.1), which is defined and which is not equal to
zero on an interval [ty, ω[ ⊂ [a, ω[, is called a Pω(λ0)-solution if it satisfies the
conditions:

(1.2) lim
t↑ω

y(k)(t) =
{

either 0,
or ±∞ (k = 0, n− 1) , lim

t↑ω

(y(n−1)(t))2

y(n)(t)y(n−2)(t)
= λ0 .

We notice that differential equation (1.1) is a specific case of the differential
equation of more general form
(1.3) y(n) = α0p(t)ϕ(y) ,
where α0 and p are the same as in the equation (1.1) and ϕ : ∆Y0 → ]0,+∞[ is a
continuous and regularly varying function when y → Y0 of the order γ, Y0 is equal
to either zero or ±∞, ∆Y0 is some one-sided neighborhood of Y0. Here, by virtue
of the definition of the properly varying function (see, for example, the monograph
of E. Seneta [6, Ch. 1]), the function ϕ has the following representation

ϕ(y) = |y|γL(y) ,
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where L is a slowly-varying function when y → Y0. The function L(y) = | ln |y||σ
might be the specific case of it.

In the paper [4], for the equation (1.3) the conditions for the existence and
the asymptotics when t ↑ ω for all possible types of the Pω(λ0)-solutions were
obtained. However, the results of that paper do not cover the situation when γ = 1,
particularly, the differential equation (1.1).

For the equation (1.1), in the paper [2], the conditions for the existence of the
Pω(λ0)-solutions when λ0 ∈ R \

{
0, 1

2 , . . . ,
n−2
n−1

}
are established, as well as the

asymptotics for such solutions and their derivatives up to the order n− 1 inclusive.
Also the quantity of such solutions was established.

In specific cases, when λ0 = n−i−1
n−i (i = 1, n− 1), by means of the results of

V.M. Evtukhov [1, Ch.3, §10, pp. 142–144], the a priori asymptotic properties of
the Pω(λ0)-solutions of the equation (1.1) can be obtained. In the aim of that, we
need the following notation

πω(t) =
{
t , if ω = +∞,
t− ω , if ω < +∞ .

Lemma 1.1. 1. If n > 2, then each Pω
(
n−2
n−1

)
-solution of the differential equation

(1.1) when t ↑ ω admits asymptotic representations

y′(t) = o
( y(t)
πω(t)

)
, y(k)(t) ∼ (−1)k−1 (k − 1)!

[πω(t)]k−1 y
′(t) (k = 2, . . . , n) .

2. If i ∈ {2, . . . , n − 2} and n > i + 1, then each Pω

(
n−i−1
n−i

)
-solution of the

differential equation (1.1) when t ↑ ω admits asymptotic representations

y(k−1)(t) ∼ [πω(t)]i−k

(i− k)! y(i−1)(t) (k = 1, . . . , i− 1), y(i)(t) = o
(y(i−1)(t)

πω(t)

)
,

(1.4)

y(k)(t) ∼ (−1)k−i (k − i)!
[πω(t)]k−i y

(i)(t) (k = i+ 1, . . . , n) .(1.5)

3. If n ≥ 2, then each Pω(0)-solution of the differential equation (1.1) when t ↑ ω
admits asymptotic representations

y(k−1)(t) ∼ [πω(t)]n−k−1

(n− k − 1)! y
(n−2)(t) (k = 1, . . . , n−2), y(n−1)(t) = o

(y(n−2)(t)
πω(t)

)
,

and in case of the existence of the limit lim
t↑ω

πω(t)y(n)(t)
y(n−1)(t) (finite or equal to ±∞), the

following representation is valid

y(n)(t) ∼ −y
(n−1)(t)
πω(t) when t ↑ ω .

From this lemma follows that while considering asymptotic behavior of the
Pω

(
n−i−1
n−i

)
(i = 1, n− 1)-solutions of the equation (1.1), we must separately
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consider the situations when: 1) n > 2 and i = 1 (λ0 = n−2
n−1 ); 2) 1 < i < n− 1;

3) n ≥ 2 and i = n− 1 (λ0 = 0).
The aim of the present paper is to derive necessary and sufficient conditions for

the existence of Pω
(
n−i−1
n−i

)
-solutions of the equation (1.1) when i ∈ {2, . . . , n− 2}

and n > i + 1. When t ↑ ω, we also establish asymptotic representations for all
such solutions and their derivatives up to the order n− 1 inclusive.

2. Auxiliary notation

Besides the first statement of the Lemma 1.1, we also require one known result for
the system of quasilinear differential equations about the existence of the solutions
that tend to zero when t ↑ ω

(2.1)


v′k = h(t)

[
fk(t, v1, . . . , vn) +

n∑
i=1

ckivi

]
(k = 1, n− 1) ,

v′n = H(t)
[
fn(t, v1, . . . , vn) +

n∑
i=1

cnivi

]
,

where cki ∈ R (k, i = 1, n), h, H : [t0, ω[→ R \ {0} are continuously differentiable
functions, fk : [t0, ω[ × Rn (k = 1, n) are continuous functions that satisfy the
conditions

(2.2) lim
t↑ω

fk(t, v1, . . . , vn) = 0 uniformly in (v1, . . . , vn) ∈ Rn1
2
,

where

Rn1
2

=
{

(v1, . . . , vn) ∈ Rn : |vi| ≤
1
2 (i = 1, n)

}
.

By virtue of the Theorem 2.6 from the paper of V.M. Evtukhov and A.M. Sa-
moilenko [3], the following statement is valid for the system of equations (2.1).

Lemma 2.1. Let functions h and H satisfy the conditions

(2.3) lim
t↑ω

H(t)
h(t) = 0,

ω∫
t0

H(τ) dτ = ±∞, lim
t↑ω

1
H(t)

(
H(t)
h(t)

)′
= 0 .

Moreover, let for the matrixes Cn = (cki)nk,i=1 and Cn−1 = (cki)n−1
k,i=1, det Cn 6= 0,

and Cn−1 does not have eigenvalues with zero real part. Then the system of diffe-
rential equations (2.1) has at least one solution (vk)nk=1 : [t1, ω[→ Rn1

2
(t1 ∈ [t0, ω[)

that tends to zero when t ↑ ω. Moreover, if inequality H(t) (detCn) (detCn−1) > 0
is valid in the interval [t0, ω[, there exists m-parametric family of such solutions if
among the eigenvalues of the matrix Cn−1, there exists m eigenvalues (with regard
of multiplicities) whose real parts have sign opposite to the sign of the function
h(t); if opposite inequality is valid, there exists m+ 1-parametric family.
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3. Main results

In order to formulate the main result, let us introduce auxiliary functions

JA(t) =
∫ t

A

p(τ)πn−2
ω (τ) |ln |πω(τ)||σ dτ, I(t) =

∫ t

a

JA(τ) dτ ,

where

A =


a , if

ω∫
a

p(τ)|πω(τ)|n−2 |ln |πω(τ)||σ dτ = +∞ ,

ω , if
ω∫
a

p(τ)|πω(τ)|n−2 |ln |πω(τ)||σ dτ < +∞ .

Theorem 3.1. Let i ∈ {2, . . . , n− 2} (n > i+ 1 ≥ 3). Then, for the existence of
Pω

(
n−i−1
n−i

)
-solutions of the differential equation (1.1), it is necessary and sufficient

that the following conditions are valid

(3.1) lim
t↑ω

πω(t)J ′A(t)
JA(t) = −1 , lim

t↑ω
I(t) = ±∞ , lim

t↑ω
πω(t)JA(t) = 0 .

Moreover, when t ↑ ω, each solution of that kind admits the asymptotic representa-
tions

y(k−1)(t)
y(i−1)(t)

= [πω(t)]i−k

(i− k)! [1 + o(1)] (k = 1, i− 1),(3.2)

ln |y(i−1)(t)| = α0(−1)n−i−1|i− 1|σ

(i− 1)!(n− i)! I(t)[1 + o(1)](3.3)

y(k)(t)
y(i−1)(t)

= α0(−1)n−k−1(k − i)!|i− 1|σ

(i− 1)!(n− i)!
JA(t)
πk−iω (t)

[1 + o(1)](3.4)

(k = i, n− 1).

Moreover, if the conditions (3.1) are valid, for the differential equation (1.1) in
case ω = +∞, there exists i-parametric family of solutions that admit asymptotic
representations (3.2)–(3.4) as t ↑ ω, and in case ω < +∞, there exists (n − i +
1)-parametric family of solutions with such representations.

Proof of the Theorem 3.1. Necessity. Let y : [ty, ω[ → R be an arbitrary
Pω

(
n−i−1
n−i

)
-solution of the equation (1.1). Then, by virtue of the definition of

Pω(λ0)-solution, there exists t0 ∈ [ty, ω[ so that ln |y(t)| 6= 0 in the interval [t0, ω[,
and, by virtue of the second statement of the Lemma 1.1, the asymptotic repre-
sentations (1.4), (1.5) are valid. According to the first asymptotic representations
from (1.4)

y(t) ∼ πi−1
ω (t)

(i− 1)!y
(i−1)(t) , y′(t) ∼ πi−2

ω (t)
(i− 2)!y

(i−1)(t) as t ↑ ω .

This implies that
y′(t)
y(t) ∼

i− 1
πω(t) as t ↑ ω ,
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and therefore
ln |y(t)| ∼ (i− 1) ln |πω(t)| as t ↑ ω .

By virtue of the asymptotic representations from (1.1), we have
(3.5)
y(n)(t) = α0

(i− 1)!p(t)π
i−1
ω (t) |(i− 1) ln |πω(t)||σ y(i−1)(t) [1 + o(1)] as t ↑ ω .

In its turn, according to asymptotic representations (1.5)

(3.6) y(n)(t) ∼ (−1)n−i (n− i)!
πn−iω (t)

y(i)(t) , y(i+1)(t) ∼ −y
(i)(t)
πω(t) as t ↑ ω .

Thus, from (3.5) follows that

(3.7) y(i)(t)
y(i−1)(t)

=

α0(−1)n−i

(i− 1)!(n− i)! p(t)π
n−1
ω (t) |(i− 1) ln |πω(t)||σ [1 + o(1)] as t ↑ ω

and

(3.8) y(i+1)(t)
y(i−1)(t)

=

α0(−1)n−i−1

(i− 1)!(n− i)! p(t)π
n−2
ω (t) |(i− 1) ln |πω(t)||σ [1 + o(1)] as t ↑ ω .

Now, considering the second relation from (1.4) and the second relation from (3.6),
we obtain( y(i)(t)
y(i−1)(t)

)′
= y(i+1)(t)
y(i−1)(t)

[
1− [y(i)(t)]2

y(i+1)(t)y(i−1)(t)

]
= y(i+1)(t)
y(i−1)(t)

[
1− πω(t)y(i)(t)

y(i−1)(t)
y(i)(t)

πω(t)y(i+1)(t)

]
∼ y(i+1)(t)
y(i−1)(t)

as t ↑ ω .

Consequently, asymptotic representation (3.8) can be written in the form( y(i)(t)
y(i−1)(t)

)′
= α0(−1)n−i−1

(i− 1)!(n− i)!p(t)π
n−2
ω (t) |(i− 1) ln |πω(t)||σ [1+o(1)] as t ↑ ω .

By integrating this relation in the interval from t0 to t, we obtain
y(i)(t)
y(i−1)(t)

= c0 + α0(−1)n−i−1

(i− 1)!(n− i)!

∫ t

t0

p(τ)πn−2
ω (τ) |(i− 1) ln |πω(τ)||σ [1 + o(1)] dτ ,

where c0 is some real constant. Or, by means of choosing the integration limit A in
the function JA,

(3.9) y(i)(t)
y(i−1)(t)

= c+ α0(−1)n−i−1|i− 1|σ

(i− 1)!(n− i)! JA(t)[1 + o(1)] as t ↑ ω ,

where

c = c0 + α0(−1)n−i−1|i− 1|σ

(i− 1)!(n− i)!

∫ A

t0

p(τ)πn−2
ω (τ) |ln |πω(τ)||σ [1 + o(1)]dτ .
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When A = a, the integral from the right part of the relation tends to ±∞ when
t ↑ ω, (3.9) can be written in the form

(3.10) y(i)(t)
y(i−1)(t)

= α0(−1)n−i−1|i− 1|σ

(i− 1)!(n− i)! JA(t)[1 + o(1)] as t ↑ ω

Let us show that in case A = ω, when integral from the right part of the relation
(3.9) tends to zero as t ↑ ω, the representation (3.10) is also valid, i.e. c = 0. Indeed,
if c 6= 0, then from (3.9) follows

y(i)(t)
y(i−1)(t)

= c+ o(1) as t ↑ ω .

This representation when ω = +∞, i.e. when πω(t) = t, contradicts to the last
relation from (1.4). When ω < +∞, we obtain from it after integrating

ln |y(i−1)(t)| = c1 + o(1) as t ↑ ω (c1 = const) .

This contradicts to the first relations from (1.2) (as k = i− 1).

Consequently, for each case from these two cases considered, the asymptotic
representation (3.10) is valid.

From this representation, by virtue of the last relation from (1.4), we obtain the
validity of the last condition from (3.1). Besides, from (3.10) and (3.7), it follows
that

lim
t↑ω

p(t)πn−1
ω (t) |ln |πω(t)||σ

JA(t) = −1 ,

i.e. the first condition from (3.1) is valid.

By integrating (3.10) from t0 to t, we obtain

ln |y(i−1)(t)| = c+ α0(−1)n−i−1|i− 1|σ

(i− 1)!(n− i)!

∫ t

t0

JA(τ)[1 + o(1)] dτ ,

where c is some real constant. By virtue of the first relation from (1.2) from the
definition of Pω(λ0)-solution, ln |y(i−1)(t)| → ±∞ as t ↑ ω. From this relation the
validity of the second relation from (3.1) and the validity of (3.3) follows.

When k = i, n− 1, due to the asymptotic representations (1.5) from Lemma 1.1
and asymptotic representation (3.10), we obtain

y(k)(t)
y(i−1)(t)

= y(k)(t)
y(i)(t)

y(i)(t)
y(i−1)(t)

∼ (−1)k−i (k − i)!
πk−iω (t)

y(i)(t)
y(i−1)(t)

∼ α0(−1)n−k−1(k − i)!|i− 1|σ

(i− 1)!(n− i)!
JA(t)
πk−iω (t)

as t ↑ ω .

Consequently, when t ↑ ω, the asymptotic representations (3.4) are valid. The
verity of (3.2) follows directly from the Lemma 1.1.

Sufficiency. Let i ∈ {2, . . . , n − 2}, n > i + 1 and let the conditions (3.1)
be satisfied. We will show that in this case, the differential equation (1.1) has
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Pω

(
n−i−1
n−i

)
-solutions that admit asymptotic representations (3.2)–(3.4) when

t ↑ ω. We will also consider the question about the quantity of solutions with such
representations.

Since
πω(t)JA(t) = πω(t)JA(t)

I(t) I(t) ,

then from the conditions (3.1) follows that

(3.11) lim
t↑ω

πω(t)JA(t)
I(t) = 0 .

Besides, by virtue of the l’Hospital rule

(3.12) lim
t↑ω

I(t)
ln |πω(t)| = lim

t↑ω
πω(t)JA(t) = 0 .

By introducing the transformation to the equation (1.1)

(3.13)

y(k−1)(t)
y(i−1)(t)

= [πω(t)]i−k

(i− k)! [1 + vk(t)] (k = 1, i− 1) ,

y(k)(t)
y(i−1)(t)

= α0(−1)n−k−1(k − i)!|i− 1|σ

(i− 1)!(n− i)!
JA(t)
πk−iω (t)

[1 + vk(t)]

(k = i, n− 1) ,

ln |y(i−1)(t)| = α0(−1)n−i−1|i− 1|σ

(i− 1)!(n− i)! I(t)[1 + vn(t)] ,

we obtain the system of differential equations

v′k = i− k
πω(t) (vk+1 − vk)− α0(−1)n−i−1|i− 1|σ

(i− 1)!(n− i)! JA(t)(1 + vk)(1 + vi)

(k = 1, i− 2) ,

v′i−1 = − vi−1

πω(t) −
α0(−1)n−i−1|i− 1|σ

(i− 1)!(n− i)! JA(t)(1 + vi−1)(1 + vi) ,

v′k = −k + 1− i
πω(t) (1 + vk+1) + k − i

πω(t) (1 + vk)− J ′A(t)
JA(t) (1 + vk)

− α0(−1)n−i−1|i− 1|σ

(i− 1)!(n− i)! JA(t)(1 + vk)(1 + vi) (k = i, n− 2) ,

v′n−1 = n− i− 1
πω(t) (1 + vn−1)− J ′A(t)

JA(t) (1 + vn−1)

− α0(−1)n−i−1|i− 1|σ

(i− 1)!(n− i)! JA(t)(1 + vn−1)(1 + vi)
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+ (n− i)J ′A(t)
JA(t) (1 + v1)

∣∣∣ln ∣∣∣πi−1
ω (t)

(i−1)! (1 + v1)
∣∣∣∣∣∣σ

|i− 1|σ |ln |πω(t)||σ

×

∣∣∣∣∣1 + α0(−1)n−i−1|i− 1|σ

(i− 1)!(n− i)!
I(t)(1 + vn)

ln
∣∣∣πi−1
ω (t)

(i−1)! (1 + v1)
∣∣∣
∣∣∣∣∣
σ

,

v′n = JA(t)
I(t) (1 + vi)−

JA(t)
I(t) (1 + vn) .

Assuming that

h(t) = 1
πω(t) , H(t) = JA(t)

I(t) ,

δ1(t) = α0(−1)n−i|i− 1|σ

(i− 1)!(n− i)! πω(t)JA(t) , δ2(t) = πω(t)J ′A(t)
JA(t) + 1 ,

δ3(t) = α0(−1)n−i−1|i− 1|σ

(i− 1)!(n− i)!(i− 1)
I(t)

ln |πω(t)| , δ4(t, v1) =
ln
∣∣∣ 1+v1

(i−1)!

∣∣∣
(i− 1) ln |πω(t)| ,

we can rewrite this system

(3.14)



v′k = h(t) [fk(t, v1, . . . , vn)− (i− k)vk + (i− k)vk+1]
(k = 1, i− 2) ,

v′i−1 = h(t) [fi−1(t, v1, . . . , vn)− vi−1] ,

v′k = h(t) [fk(t, v1, . . . , vn) + (k − i+ 1)vk − (k − i+ 1)vk+1]
(k = i, n− 2) ,

v′n−1 = h(t) [fn−1(t, v1, . . . , vn)− (n− i)v1 + (n− i)vn−1] ,

v′n = H(t) [vi − vn] ,

where

fk(t, v1, . . . , vn) = δ1(t)(1 + vk)(1 + vi) (k = 1, i− 1) ,

fk(t, v1, . . . , vn) = δ1(t)(1 + vk)(1 + vi)− δ2(t)(1 + vk) (k = i, n− 2) ,

fn−1(t, v1, . . . , vn) = δ1(t)(1 + vn−1)(1 + vi)− δ2(t)(1 + vn−1)

+(n− i)(1 + v1)
[

1 + πω(t)J ′A(t)
JA(t) |1 + δ4(t, v1)|σ

∣∣∣1 + δ3(t)(1 + vn)
1 + δ4(t, v1)

∣∣∣σ] .
Here, by virtue of the conditions (3.1) and (3.12),

lim
t↑ω

δi(t) = 0 (i = 1, 2, 3)(3.15)
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and

lim
t↑ω

δ4(t, v1) = 0 uniformly in v1 ∈
[
−1

2 ,
1
2

]
.(3.16)

Considering these relations, we select the number t0 ∈ ]a, ω[ so that when t ∈ [t0, ω[
and |v1| ≤ 1

2 , |vn| ≤ 1
2 the following inequalities are valid

|δ4(t, v1)| ≤ 1
2 ,

∣∣∣δ3(t)(1 + vn)
1 + δ4(t, v1)

∣∣∣ ≤ 1
2 .

Further, we consider the system (3.14) on the set

Ω = [t0, ω[×Rn1
2
, where Rn1

2
=
{

(v1, . . . , vn) ∈ Rn : |vi| ≤
1
2 , i = 1, n

}
.

On this set, the right parts of the system are continuous, functions h, H are
continuously differentiable in the interval [t0, ω[. Due to the conditions (3.15),
(3.16),

lim
t↑ω

fk(t, v1, . . . , vn) = 0 uniformly in (v1, . . . , vn) ∈ Rn1
2
.

Consequently, the system of differential equations (3.14) is the system of quasilinear
differential equations of the type (2.1).

Let us show that all conditions of the Lemma 2.1 are true for this system.
By virtue of the form of the functions I and JA,∫ t

t0

H(τ) dτ ∼ ln |I(t)| → +∞ as t ↑ ω .

Moreover,
H(t)
h(t) = πω(t)JA(t)

I(t) ,
1

H(t)

(H(t)
h(t)

)′
= 1 + πω(t)J ′A(t)

JA(t) − πω(t)JA(t)
I(t)

therefore, due to the validity of the first condition from (3.1) and the validity of
the condition (3.11),

lim
t↑ω

H(t)
h(t) = 0 , lim

t↑ω

1
H(t)

(H(t)
h(t)

)′
= 0 .

Consequently, the conditions (2.3) of the Lemma 2.1 are true for te system (3.14).
It is also obvious that, for the system of differential equations (3.14), the matrixes
Cn−1 and Cn of dimensions (n − 1) × (n − 1) and n × n (subsequently) from
Lemma 2.1 are following

detCn−1 = (−1)i−1(i− 1)!(n− i)! , detCn = (−1)i(i− 1)!(n− i)!
and

det [Cn−1 − ρEn−1] =
(−1)n−1(ρ+ i− 1)(ρ+ i− 2) . . . (ρ+ 1)(ρ− 1)(ρ− 2) . . . (ρ− n+ i) ,

where En−1 is the identity matrix of the dimension (n− 1)× (n− 1). Hence, in
particular, we obtain that the matrix Cn−1 has n−1 non-zero real eigenvalues, and
there are (i− 1)-negative and (n− i)-positive eigenvalues among these eigenvalues.
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Thus, all conditions of Lemma 2.1 are true for the system of differential equations
(3.14). According to this Lemma, the system of equations (3.14) has at least one
solution (vk)nk=1 : [t1, ω[→ Rn (t1 ∈ [t0, ω[) that tends to zero when t ↑ ω. Moreover,
according to this lemma, since there are (i− 1) negative eigenvalues and there are
(n− i) positive eigenvalues among the eigenvalues of the matrix Cn−1, in case of the
validity of the inequality h(t) > 0 (h(t) < 0) in the interval [t0, ω[, the system of
differential equations (3.14) has (i− 1)-parameter (subsequently, (n− i)-parameter)
family of solutions that vanish in the point ω when H(t) < 0 in the interval [t0, ω[,
and i-parameter ((n− i+ 1)-parameter) family of such solutions when H(t) > 0 in
[t0, ω[.

In order to finally answer the question about the quantity of solutions that
vanish when t ↑ ω, it is necessary to define the signs of the functions h and H in
the interval [t0, ω[.

Since h(t) = π−1
ω (t), according to the form of the function πω, we obtain

sign h(t) =
{

1 , if ω = +∞ ,

−1 , if ω < +∞ .

For the function H, according to the definition of the function I, we have

H(t) = JA(t)
I(t) = |JA(t)|∫ t

a
|JA(τ)| dτ

> 0 as t ∈ [t0, ω[ .

Considering the obtained sign conditions for the functions h and H, we can make
the following conclusion about the quantity of solutions of the system (3.14) that
tend to zero when t ↑ ω:

1) if ω = +∞, then the system of differential equations (3.14) has i-parameter
family of vanishing solutions when t ↑ ω;

2) if ω < +∞, then the system of differential equations (3.14) has (n − i +
1)-parameter family of vanishing solutions when t ↑ ω.

By virtue of the transformation (3.13), each of the vanishing solutions (vk)nk=1 :
[t1, ω[→ Rn of the system (3.14) corresponds to the solution y : [t1, ω[→ R of the
differential equation (1.1), that admits the asymptotic representations (3.2)–(3.4)
as t ↑ ω. Considering these representations and the conditions (3.1), it is easy to
ascertain that each such solution is Pω

(
n−i−1
n−i

)
-solution of the differential equation

(1.1).
Theorem is proved. �

Remark 3.1. While establishing the validity of the conditions (3.1), it is possible
to notice that, in virtue of the first condition, the second and the third conditions
are subsequently equivalent to the conditions∫ ω

a

p(t)|πω(t)|n−1 |ln |πω(t)||σ dt = +∞ , lim
t↑ω

p(t)πnω(t) |ln |πω(t)||σ = 0 .

Remark 3.2. Notice that conditions (3.1) do not depend on the index i. This
indicates that when n ≥ 4 and the conditions (3.1) are satisfied, for each i ∈
{2, . . . , n− 2} and for ω = +∞, resp. for ω < +∞, the differential equation (1.1)
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has i-parametric, resp. (n− i+ 1)-parametric, family of Pω
(
n−i−1
n−i

)
-solutions that

admit the asymptotic representations (3.2)–(3.4) as t ↑ ω.
When σ = 0, i.e. equation (1.1) is linear differential equation of the type

(3.17) y(n) = α0p(t)y ,
where α0 ∈ {−1; 1} and p : [a, ω[ → ]0,+∞[ is a continuous function, from the
Theorem 3.1 and the Remarks 3.1 and 3.2, the following statement directly follows.
Corollary 3.1. If n ≥ 4 and the following conditions are satisfied

(3.18)
lim
t↑ω

πn−1
ω (t)p(t)∫ t

A
πn−2
ω (τ)p(τ) dτ

= −1 ,∫ ω

a

|πω(τ)|n−1p(τ) dτ = +∞ , lim
t↑ω

πnω(t)p(t) = 0 ,

then the linear differential equation (3.17) has n−3 linearly independent Pω
(
n−i−1
n−i

)
-

-solutions yi : [t1, ω[ → R (i = 2, n− 2) that admit asymptotic representations
when t ↑ ω

y
(k−1)
i (t)
y

(i−1)
i (t)

= [πω(t)]i−k

(i− k)! [1 + o(1)] (k = 1, i− 1) ,

ln |y(i−1)
i (t)| = α0(−1)n−i

(i− 1)!(n− i)!

∫ t

a

p(τ)πn−1
ω (τ) dτ [1 + o(1)] ,

y
(k)
i (t)

y
(i−1)
i (t)

= α0(−1)n−k(k − i)!
(i− 1)!(n− i)! p(t)πn−k+i−1

ω (t)[1 + o(1)] (k = i, n− 1) ,

and, moreover, equation (3.17) does not have any other Pω
(
n−i−1
n−i

)
-solutions for

i ∈ {2, . . . , n− 2} that are different from mentioned above.
Remark 3.3. The linear independence of the solutions mentioned in the corollary
follows from the fact that the matrix of the dimension n× (n− 3) with the columns
consisting of the solutions yi (i = 2, n− 2) and their derivatives up to the order
n− 1 inclusive, contains minor of the dimension (n− 3)× (n− 3), that is different
from zero in some left neighborhood of ω.

This corollary for ω = +∞ complements the results established in the monograph
of I.T. Kiguradze and T.A. Chanturia (see Ch.1, §6, item 6.5, pp. 184–186) for
linear differential equations with asymptotically small coefficients.
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