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Abstract. We propose a new Broyden method for solving systems of nonlinear equations,
which uses the first derivatives, but is more efficient than the Newton method (measured by
the computational time) for larger dense systems. The new method updates QR or LU de-
compositions of nonsymmetric approximations of the Jacobian matrix, so it requires O(n2)
arithmetic operations per iteration in contrast with the Newton method, which requires
O(n3) operations per iteration. Computational experiments confirm the high efficiency of
the new method.
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1. Introduction

Consider the system of nonlinear equations

(1) f(x) = 0,

where f : R
n → R

n is a nonlinear mapping, and denote by J(x) the Jacobian matrix

of f at the point x. We suppose that the Jacobian matrix is dense of a dimension

which is not small, so methods saving matrix operations are preferred. We will use

the following assumptions concerning the mapping f .

Assumption J1. The mapping f : R
n → R

n is continuously differentiable on

the level set D(F ) = {x ∈ R
n : ‖f(x)‖ 6 F}, where F is a suitable upper bound,
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and the Jacobian matrix J is Lipschitz continuous on D(F ), i.e., there is a constant

L > 0 such that

(2) ‖J(y)− J(x)‖ 6 L‖y − x‖ ∀x, y ∈ D(F ).

Assumption J2. There is a constant J > 0 such that

(3) ‖J(xi)s‖ 6 J‖s‖ ∀ i ∈ N ∀ s ∈ R
n.

Notice that Assumption J2 follows from Assumption J1 if D(F ) is compact.

Assumption J3. There is a constant J > 0 such that

(4) ‖J(xi)s‖ > J‖s‖ ∀ i ∈ N ∀ s ∈ R
n,

where xi ∈ R
n, i ∈ N, are points generated by a chosen solution method.

We restrict our attention to iterative methods of the form xi+1 = xi+αisi, i ∈ N,

with Aisi + fi ≈ 0, fi = f(xi), Ai ≈ Ji = J(xi) and αi > 0, which generate

a monotone non-increasing sequence of norms ‖f(xi)‖, i ∈ N. Since the norm ‖f(x)‖

is a non-smooth function, we use the scaled squared norm F (x) = ‖f(x)‖2/2 as

a merit function and assume that its gradient ∇F (x) = J(x)Tf(x) is computed ei-

ther analytically or by reverse automatic differentiation. The Newton method, which

is the most widely known and rapidly convergent method of this type, uses matrices

Ai = Ji, i ∈ N. Since the Jacobian matrix Ji is completely recomputed in every

iteration, the solution of the linear system Jisi + fi = 0 requires O(n3) arithmetic

operations per iteration to obtain a matrix factorization. This fact prolongs the com-

putational time, so quasi-Newton methods, which update factorizations of matrices

Ai, i ∈ N, in O(n2) arithmetic operations, can be more efficient for larger n.

In this paper, we propose a new quasi-Newton method (31), which is a good

approximation of the two-sided adjoint quasi-Newton method (26). Two-sided ad-

joint quasi-Newton methods have sophisticated theoretical (Theorem 8) and excellent

numerical properties. Surprisingly, the new method is numerically perfect as well,

but, unlike the method (26), it does not require additional computation of directional

derivatives Ji+1di, i ∈ N (the computation of gradients JT
i+1fi+1, i ∈ N, suffices, see

Section 3).

The paper is organized as follows. In Section 2, we briefly describe the trust region

approach used in the implementation of quasi-Newton methods. Section 3, which

is devoted to quasi-Newton methods and their properties, introduces a new quasi-

Newton method. Section 4 contains results of computational experiments, which

confirm the high efficiency of the new method. We follow results introduced in [3],

[4] and [14]–[15]. Further information can be found in [8], [10]–[11] and [16]–[17].
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2. Trust region methods

We restrict our attention to trust region methods, which have shown more suc-

cessful than line-search methods in our numerical experiments. In the description of

trust region methods, we utilize the knowledge of gradients gi = ∇F (xi), i ∈ N, and

denote

Qi(s) =
1

2
sTAT

i Ais+ gTi s

for the predicted decrease and

̺i(s) =
F (xi + s)− Fi(xi)

Qi(s)

for the ratio of the actual and the predicted decreases of the merit function. Detailed

desctiption of trust region methods is presented in [3], where also Definition 1 and

Theorem 1 can be found.

Definition 1. We say that an iterative method xi+1 = xi + αisi, i ∈ N, for

solving a system of nonlinear equations f(x) = 0, is a trust region method, if the

following conditions hold.

(T1) Direction vectors si ∈ R
n, i ∈ N, are determined in such a way that

‖si‖ 6 ∆i,(5)

‖si‖ < ∆i ⇒ Aisi + fi = 0,(6)

Qi(si) 6 σ min
α‖gi‖6∆i

Qi(−αgi),(7)

where 0 < σ < 1.

(T2) Step-sizes αi > 0, i ∈ N, are selected so that

̺i(si) 6 0 ⇒ αi = 0,(8)

̺i(si) > 0 ⇒ αi = 1.(9)

(T3) Trust region radii 0 < ∆i 6 ∆, i ∈ N, are chosen by the rule

̺i(si) < ̺ ⇒ β‖si‖ 6 ∆i+1 6 β‖si‖,(10)

̺ 6 ̺i(si) 6 ̺ ⇒ ∆i+1 = ∆i,(11)

̺i(si) > ̺ ⇒ ∆i 6 ∆i+1 6 min(γ∆i,∆),(12)

where 0 < β 6 β < 1 < γ and 0 < ̺ < ̺ < 1.
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The direction vector si ∈ R
n satisfying conditions (5)–(7) can be computed in

various ways. We have chosen the dog-leg strategy, introduced in [12], which uses

the formulas

si = −
∆i

‖gi‖
, ‖sCi ‖ > ∆i,(13)

si = sCi + λi(s
N
i − sCi ), ‖sCi ‖ < ∆i < ‖sNi ‖,(14)

si = sNi , ‖sNi ‖ 6 ∆i,(15)

where

(16) sCi = −
‖gi‖

2

‖Aigi‖2
gi, sNi = −A−1

i fi,

and λi is a number selected in such a way that ‖si‖ = ∆i. It is known (see [3])

that the direction vector si computed by (13)–(16) satisfies conditions (5)–(7) with

σ = 1/2.

The following assertion follows from the theorem introduced in [13].

Theorem 1. Let the mapping f : R
n → R

n satisfy assumptions J1–J3 and ma-

trices Ai, i ∈ N, have bounded norms. Let xi ∈ R
n, i ∈ N, be a sequence generated

by the trust region method (T1)–(T3). Then f(xi) → 0.

Notice that the sequence generated by the trust-region method (T1)–(T3) can

converge to a stationary point of the function F (x) which is not a solution of the

system f(x) = 0, when Assumption J3 is not satisfied.

In the subsequent considerations, we assume that matrices Ai ≈ Ji, i ∈ N, used in

Definition 1, are obtained by quasi-Newton updates described in the next section. In

this case, a safeguard against the loss of convergence is necessary. In our implemen-

tation of the trust region method, we use restarts, which consist in setting Ai = Ji

and repeating the computation of si by (T1) when Ai 6= Ji and ̺i(si) 6 0.

3. Quasi-Newton methods

Quasi-Newton methods, which are surveyed in [4] and [16], use nonsingular matri-

ces Ai, i ∈ N, which are computed recursively by the formula Ai+1 = Ai + uiv
T
i

to satisfy the quasi-Newton condition Ai+1di = yi, where di = xi+1 − xi and

yi = fi+1 − fi. It can be easily shown that the quasi-Newton condition holds if

vTi di 6= 0 and ui = (yi − Aidi)/v
T
i di. To simplify the notation, we frequently omit

the index i and replace i+ 1 by the symbol +. Thus we can write

(17) A+ = A+
(y −Ad)vT

vTd
,
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where the vector v is a free parameter. Setting v = d, we get an efficient and

broadly used Broyden’s good method [2]. Further efficient methods can be ob-

tained by minimizing the condition number κ(M) = ‖M‖‖M−1‖ or the number

‖I −M‖‖I −M−1‖, where

(18) M = A−1A+ = I −
(d−A−1y)vT

vTd
= I −

(d− w)vT

vTd

(with w = A−1y). The following theorem is proved in [7].

Theorem 2. Let A+ be the matrix determined by formula (17), so that (18)

holds. Assume that vectors d and w are linearly independent and denote a = dTd,

b = dTw, c = wTw, so that a > 0, b > 0 and ac > b2. Then ‖I −M‖‖I −M−1‖ is

minimized if and only if v = θd− w = θd−A−1y, where

θ =
√
c/a if b 6 0,

θ = −
√
c/a if b > 0.

Quasi-Newton methods find the solution of a linear system after a finite number

of steps. The following theorem is proved in [5].

Theorem 3. Let xi, i ∈ N, be a sequence generated by a quasi-Newton method

of the form (17) with Aisi + fi = 0 and αi = 1 (so di = si), i ∈ N, applied to

the system of linear equations J(x − x∗) = 0 with a nonsingular matrix J . Let

fi = J(xi − x∗) 6= 0, 1 6 i 6 2n. Then f2n+1 = J(x2n+1 − x∗) = 0 and x2n+1 = x∗.

Quasi-Newton methods can be derived variationally by the following theorem [4].

Theorem 4. Let W be a square nonsingular matrix of order n. Then the ma-

trix A+, which is a solution of the variational problem

(19) ‖(A+ −A)W−1‖F = min
Ã

‖(Ã−A)W−1‖F s.t. Ãd = y,

can be expressed in the form (17), where v = WTWd.

Setting W = I in (19), we obtain Broyden’s good update, which corresponds to

the orthogonal projection of A into the linear manifold defined by the quasi-Newton

condition A+d = y. Such update satisfies the bounded deterioration principle: there

exists a constant c such that

(20) ‖Ai+1 − Ji+1‖ 6 ‖Ai − Ji‖+ c‖di‖, i ∈ N.

The bounded deterioration principle can be used for proving the following local

convergence theorem [4].
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Theorem 5. Let x∗ ∈ R
n be a point such that f(x∗) = 0 and the Jacobian

matrix J(x∗) is nonsingular. Then there are numbers δ > 0 and θ > 0 such that if

‖x1−x∗‖ 6 δ and ‖A1−J1‖ 6 θ, the sequence xi, i ∈ N, generated by Broyden’s good

quasi-Newton method with unit step-sizes (αi = 1, i ∈ N), converges Q-superlinearly

to the point x∗.

If the first derivatives are available, the standard quasi-Newton condition can be

replaced by a stronger condition Ai+1di = Ji+1di. Alternatively, the adjoint

quasi-Newton condition AT
i+1wi = JT

i+1wi can be used (if wi = fi+1, then gi+1 =

JT
i+1fi+1 = AT

i+1fi+1). In this way, we obtain adjoint quasi-Newton methods, where

matricesAi, i ∈ N, are chosen recursively by the formulaAi+1 = Ai+uiv
T
i and satisfy

the adjoint quasi-Newton condition AT
i+1wi = JT

i+1wi. It can be easily shown that

the adjoint quasi-Newton condition holds if wT
i ui 6= 0 and vi = (Ji+1−Ai)

Twi/w
T
i ui.

Thus, we can write

(21) A+ = A+
uwT(J+ −A)

wTu
.

Using the well known Sherman-Morrison formula, we can see that A+ is nonsingular

if and only if wTJ+A
−1u 6= 0. In the subsequent considerations, we will assume that

wTu 6= 0 and wTJ+A
−1u 6= 0. These conditions are usually checked algorithmically

and the updates are skipped if necessary.

Adjoint quasi-Newton methods can be derived variationally by the following the-

orem.

Theorem 6. Let W be a square nonsingular matrix of order n. Then the ma-

trix A+, which is a solution of the variational problem

(22) ‖(A+ −A)TW−1‖F = min
Ã

‖(Ã−A)TW−1‖F s.t. ÃTw = JT
+w,

can be expressed in the form (21), where u = WTWw.

P r o o f. The assertion follows from Theorem 4 after replacing A, A+, d, and y

by AT, AT
+, w, and JT

+w, respectively. �

Formula (21) contains two optional vectors u and w. Setting u = (J+ − A)d, we

get two-sided (or tangent) quasi-Newton methods

(23) A+ = A+
(J+ −A)dwT(J+ −A)

wT(J+ −A)d
,
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satisfying conditions AT
+w = JT

+w and A+d = J+d. Setting u = y − Ad, we obtain

secant quasi-Newton methods

(24) A+ = A+
(y −Ad)wT(J+ −A)

wT(y −Ad)
.

Putting w = f+, we obtain residual quasi-Newton methods

(25) A+ = A+
u fT

+(J+ −A)

fT
+u

.

This class contains the very important two-sided residual quasi-Newton method,

which uses the update

(26) A+ = A+
(J+ −A)d fT

+ (J+ −A)

fT
+(J+ −A)d

satisfying conditions A+d = J+d and AT
+f+ = JT

+f+. Setting u = w (or w = u),

we come to variationally derived adjoint quasi-Newton methods (Theorem 6) with

W = I.

If W = I in (22), we get the update which is an orthogonal projection of A into

the linear manifold defined by the adjoint quasi-Newton condition AT
+w = JT

+w.

Such update satisfies the bounded deterioration principle (20), so the following local

convergence theorem holds [14].

Theorem 7. Let x∗ ∈ R
n be a point such that f(x∗) = 0 and the Jacobian

matrix J(x∗) is nonsingular. Then there are numbers δ > 0 and θ > 0 such that if

‖x1−x∗‖ 6 δ and ‖A1−J1‖ 6 θ, the sequence xi, i ∈ N, generated by the tangent (23)

or the secant (24) or the residual (25) adjoint quasi-Newton method with wi = ui,

i ∈ N, and with the unit step-sizes (αi = 1, i ∈ N), converges Q-superlinearly to the

point x∗ ∈ R
n.

Two-sided quasi-Newton methods have excellent properties expressed by the fol-

lowing theorem.

Theorem 8. Let xi, i ∈ N, be a sequence generated by the two-sided quasi-

Newton method with Aisi + fi = 0 with Ai nonsingular and αi = 1 (so di = si),

i ∈ N, applied to the system of linear equations J(x − x∗) = 0 with a nonsingular

matrix J . Let fi = J(xi − x∗) 6= 0, 1 6 i 6 n+ 1. Then fn+2 = J(xn+2 − x∗) = 0

and xn+2 = x∗.
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P r o o f. Assume that fi 6= 0, 1 6 i 6 n + 1. We prove by induction that, for

1 6 i 6 n, the vector di 6= 0 is not a linear combination of vectors dj , 1 6 j < i, and

that, for 1 6 j < i 6 n+ 1, the equalities

(Ai − J)dj = 0,(27)

wT
j (Ai − J) = 0(28)

hold (these equalities are mentioned in [14] without proof). Let i = 1. Since A1d1 =

A1s1 = −f1, f1 6= 0, and the matrix A1 is nonsingular, we can write d1 6= 0.

The induction step:

(a) Let 1 < i 6 n. Since Aidi = Aisi = −fi, fi 6= 0, and the matrix Ai is

nonsingular, we can write di 6= 0. Since

fi+1 = J(xi + di − x∗) = fi + Jdi 6= 0

by assumption, we obtain

(Ai − J)di = Aisi + fi − Jdi − fi = −(fi + Jdi) 6= 0,

so the vector di is not a linear combination of vectors dj , 1 6 j < i.

(b) Using (26), we can write

(29) Ai+1 − J = Ai − J +
(J −Ai)diw

T
i (J −Ai)

wT
i (J −Ai)di

.

Equalities (27), which hold by the inductive assumption, and the relation (29) imply

that (Ai+1 − J)dj = 0 for 1 6 j < i. Furthermore,

(Ai+1 − J)di = (Ai − J)di + (J −Ai)di = 0,

so (Ai+1 − J)dj = 0 for 1 6 j 6 i.

(c) Equalities (28), which hold by the inductive assumption, and the relation (29)

imply that wT
j (Ai+1 − J) = 0 for 1 6 j < i. Moreover,

wT
i (Ai+1 − J) = wT

i (Ai − J) + wT
i (J −Ai) = 0,

so wT
j (Ai+1 − J) = 0 for 1 6 j 6 i.

The induction step is finished. Since vectors di, 1 6 i 6 n, are linearly independent

and (27) implies (An+1 −J)di = 0, 1 6 i 6 n, we can write An+1 = J and therefore,

f(xn+2) = J(xn+2 − x∗) = J(xn+1 + dn+1 − x∗) = fn+1 + Jdn+1

= fn+1 +An+1sn+1 = 0.

�
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Theorem 8 is very strong, since it guarantees that the two-sided quasi-Newton

method terminates after at most n+ 1 steps, if the system is linear and certain as-

sumptions are satisfied. Note that quasi-Newton methods of the form (17) terminate

after at most 2n steps under the same assumptions (Theorem 3).

Adjoint quasi-Newton methods use vector JT
+w, which can be computed by back-

ward automatic differentiation [6]. Two-sided quasi-Newton methods use the vec-

tor J+d as well, which can be computed by forward automatic differentiation [6] or

by numerical differentiation. It can be also successfully approximated by the vector

y = f+ − f .

If the residual quasi-Newton method is used, then JT
+w = JT

+f+ = g+, where g+
is the gradient of the function F (x) = ‖f(x)‖2/2 at the point x+. Thus (25) with

u = w = f+ can be rewritten in the form

(30) A+ = A+
f+(g+ − h+)

T

fT
+f+

,

where h+ = ATf+.

The update of two-sided residual quasi-Newton method (26) can be approximated

by the expression

(31) A+ = A+
(y −Ad)(g+ − h+)

T

(g+ − h+)Td

(the directional derivative J+d is replaced by the vector y). This new method is

not a two sided quasi-Newton method, since usually y 6= J+d, but its properties are

similar to the properties of the residual two-sided quasi-Newton method (26), since

y ≈ J+d. Notice that the method (31) satisfies the quasi-Newton condition A+y = d

and has the form (17), where v = g+ − h+.

Changing the denominator in (31) in such a way that

(32) A+ = A+
(y −Ad)(g+ − h+)

T

fT
+(y −Ad)

,

we obtain the residual secant quasi-Newton method (24) with w = f+, which satisfies

the condition AT
+f+ = JT

+f+ and is also a good approximation of the two-sided

residual quasi-Newton method (26). Methods (30)–(32) require the computation of

the gradient g+ = JT
+f+, but the computation of the full Jacobian matrix J+ or the

vector J+d is not necessary.

According to (6), quasi-Newton methods determine the direction vector s by solv-

ing the system of linear equations As+f = 0, where A is a nonsingular square matrix.
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For this purpose, one can use either the orthogonal decomposition or the triangu-

lar decomposition of the matrix A. Both the orthogonal decomposition A = QR,

where Q is an orthogonal matrix and R is an upper triangular matrix, and the tri-

angular decomposition A = LU , where L is a lower triangular matrix with units on

the diagonal and U is an upper triangular matrix, require O(n3) arithmetic opera-

tions, while solutions of linear systems QRs+ f = 0 and LUs+ f = 0, require only

O(n2) arithmetic operations. Therefore, it is advantageous to update decompositions

A = QR and A = LU by methods requiring O(n2) arithmetic operations.

The next theorem, introduced, e.g., in [4], demonstrates the way for determin-

ing the orthogonal decomposition of the matrix Ā = A + uvT from the orthogonal

decomposition of the matrix A by using O(n2) arithmetic operations.

Theorem 9. Let Ā = A+uvT, where A = QR, Q is an orthogonal matrix and R

is an upper triangular matrix. Let ũ = QTu and let Q̃T be an orthogonal matrix (the

product of Givens elementary rotation matrices) such that Q̃Tũ = ‖ũ‖e1, and the

matrix R̃ = Q̃R is upper Hessenberg. Let Q̂T be an orthogonal matrix (the product

of Givens elementary rotation matrices) such that the matrix R = Q̂T(R̃+ ‖ũ‖e1v
T)

is upper triangular. Then Ā = QR, where Q = QQ̃Q̂.

There are two efficient methods for updating the triangular decomposition using

O(n2) arithmetic operations. The simplest of them, proposed in [1], is based on the

following theorem (an alternative proof is introduced).

Theorem 10. Let L, L be lower triangular matrices with units on the diagonal

and let U , U be upper triangular matrices such that

(33) LU = LU + pqT.

Let li, l̄i, 1 6 i 6 n, be the columns of matrices L, L and ui, ui, 1 6 i 6 n, the

transposed rows of matrices U , U . Then

ui = ui + piiqi,(34)

l̄i =
uii

uii

li +
qii
uii

pi = li +
qii
uii

pi+1(35)

for 1 6 i 6 n, where pii, qii are the ith entries of the vectors pi, qi and uii, uii are

the ith diagonal entries of the matrices U , U (so uii = uii + piiqii by (34)). The

vectors pi, qi, 1 6 i 6 n, are computed recursively by the relations

pi+1 = pi − piili,(36)

qi+1 =
uii

uii

qi −
qii
uii

ui = qi −
qii
uii

ui+1(37)

where p1 = p, q1 = q.
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P r o o f. The theorem is proved by induction. Assume that

(38)
n∑

j=i

l̄ju
T
j =

n∑

j=i

lju
T
j + piq

T
i

holds for some index 1 6 i < n. This equality is satisfied for i = 1 with p1 = p and

q1 = q, since (33) can be written in the form

n∑

j=1

l̄ju
T
j =

n∑

j=1

lju
T
j + pqT.

Since the vectors lj , l̄j , uj , uj , i 6 j 6 n, have the first j−1 entries equal to zero, the

matrix (38) has the first i− 1 rows and i− 1 columns equal to zero and the entries in

its ith row and ith column are fully determined by the vectors ui and li by formulas

l̄iiui = liiui + piiqi and l̄iuii = liuii + piqii. Since l̄ii = lii = 1, one can write

ui = ui + piiqi,(39)

l̄i =
uii

uii

li +
qii
uii

pi.(40)

Using relations (39)–(40) and formula (37), we obtain

uii l̄i = uiili + qiipi = (uii − piiqii)li + qiipi = uiili + qii(pi − piili) = uiili + qiipi+1,

which after dividing it by uii gives the second equality in (35). To finish the induction

step, we have to prove the relation

(41) liu
T
i − l̄iu

T
i = pi+1q

T
i+1 − piq

T
i ,

which follows by subtracting (38) with j = i+ 1 from the same equation with j = i.

But

liu
T
i − l̄iu

T
i = liu

T
i −

(
li +

qii
uii

pi+1

)
(ui + piiqi)

T

= liu
T
i − liu

T
i − piiliq

T
i −

qii
uii

pi+1(ui + piiqi)

= −piiliq
T
i −

qii
uii

pi+1ui+1

and

pi+1q
T
i+1 − piq

T
i = (pi − piili)

(
qi −

qii
uii

ui+1

)
− piq

T
i = −piiliq

T
i −

qii
uii

pi+1ui+1,

which proves relation (41), so the induction step is completed. �
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4. Computational experiments

Methods for solving systems of nonlinear equations were tested on 62 problems

with selected dimensions taken from the collection TEST37 contained in the soft-

ware system for universal functional optimization UFO [9]. Table 1 contains results

obtained by the following methods:

TRNM—Newton’s method,

TRBG—Broyden’s good method,

TRIT—the method of Ip and Todd (Theorem 2),

TRRB—residual basic adjoint quasi-Newton method (30),

TRRT—residual tangent adjoint quasi-Newton method (26),

TRRS—residual secant adjoint quasi-Newton method (32),

TRNB—new quasi-Newton method (31).

The above methods were implemented as dog-leg trust-region methods (5)–(16) with

parameters ̺ = 0.1, ̺ = 0.9, β = 0.05, β = 0.75, γ = 2, termination criterion

‖fi‖ 6 10−8 and the restart strategy described in Section 2. All methods solve linear

systems by using both the orthogonal and triangular decompositions of nonsym-

metric matrices. Quasi-Newton methods use updates described in Theorem 9 and

Theorem 10. If the denominator of the updating formula is zero, the corresponding

update is skipped.

Table 1 proposes results obtained by solving 62 problems with 200 equations, 62

problems with 300 equations, 60 problems with 400 equations, and contains the

total numbers of iterations NIT, function evaluations NFV, Jacobian (or gradient)

evaluations NFJ, matrix decompositions NDC, the total number of failures (number

od unsolved problems) and the total computational time.

The results contained in Table 1 lead to several conclusions:

⊲ If elements of the Jacobian matrix are given analytically, the Newton method con-

verges rapidly and requires lowest number of iterations and function evaluations.

However, this method consumes O(n3) arithmetic operations per iteration, which

prolongs the computational time for larger n.

⊲ Quasi-Newton methods of the form (17) require more iterations and function eva-

luations in comparison with the Newton method, but they use O(n2) arithmetic

operations in a greater part (≈ 90%) of iterations.

⊲ Adjoint quasi-Newton methods (23) and (32) converge faster than standard quasi-

Newton methods and use O(n2) arithmetic operations in a greater part of itera-

tions as well.

⊲ The new method (31), which is of the form (17), is surprisingly competitive with

the Newton method, measured by the number of iterations and function evalua-
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tions. Its properties are similar to those of residual adjoint quasi-Newton methods

(23) and (32), but directional derivatives Ji+1di, i ∈ N, need not be computed.

The new method shows to be very efficient in comparison with the methods intro-

duced in Table 1.

⊲ Triangular decompositions save arithmetic operations, so the methods with trian-

gular decompositions are faster. At the same time, the methods with orthogonal

decompositions are more stable.

Orthogonal decomposition Triangular decomposition

n = 200 NIT NFV NFJ NDC Fail Time NIT NFV NFJ NDC Fail Time
TRNM 1418 1525 1418 1319 – 13.40 1404 1559 1404 1236 – 1.20

TRBG 2605 3000 281 277 – 4.74 2103 2568 308 305 1 0.90

TRIT 1948 2212 215 210 1 3.88 2081 2525 282 279 1 0.92

TRRB 3576 3939 4239 360 – 6.98 2580 3047 3405 418 – 1.23

TRRT 1732 1915 2040 185 – 3.63 2222 2581 2810 291 – 1.24

TRRS 2277 2439 2544 165 – 3.99 1826 2164 2375 273 – 0.95

TRNB 1650 1838 1947 169 – 3.37 1923 2169 2343 234 – 0.95

n = 300 NIT NFV NFJ NDC Fail Time NIT NFV NFJ NDC Fail Time
TRNM 1450 1591 1450 1379 – 44.30 1892 2087 1892 1759 – 6.13

TRBG 2865 3344 363 360 – 15.61 2299 2736 280 278 1 2.16

TRIT 2464 2893 270 268 1 13.86 2085 2498 280 278 1 2.34

TRRB 3804 4163 4464 361 1 19.46 3502 4163 4658 556 1 3.85

TRRT 2051 2237 2355 178 – 10.71 2302 2732 3018 346 – 3.02

TRRS 1807 1981 2094 173 – 9.71 2788 3125 3386 322 – 3.08

TRNB 1727 1984 2112 198 – 10.23 2227 2571 2789 278 – 2.59

n = 400 NIT NFV NFJ NDC Fail Time NIT NFV NFJ NDC Fail Time
TRNM 1036 1134 1036 739 1 58.29 1128 1259 1128 1019 1 4.30

TRBG 2178 2488 201 197 – 23.30 2091 2394 195 192 – 3.66

TRIT 2140 2412 203 200 – 24 00 2199 2494 191 188 – 4.13

TRRB 2804 3103 3338 293 – 33.63 1854 2179 2388 266 – 3.93

TRRT 2200 2377 2489 170 1 23.07 1836 2137 2307 227 1 4.52

TRRS 1405 1561 1658 155 – 18.15 1863 2122 2300 235 – 4.18

TRNB 1474 1662 1751 147 – 17.94 1546 1787 1907 177 – 3.54

Table 1. TEST37
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