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Abstract. We study the presence of copies of lnp ’s uniformly in the spaces Π2(C[0, 1], X)
and Π1(C[0, 1], X). By using Dvoretzky’s theorem we deduce that if X is an infinite-
dimensional Banach space, then Π2(C[0, 1], X) contains λ

√
2-uniformly copies of ln∞’s and

Π1(C[0, 1], X) contains λ-uniformly copies of ln2 ’s for all λ > 1. As an application, we
show that if X is an infinite-dimensional Banach space then the spaces Π2(C[0, 1], X) and
Π1(C[0, 1], X) are distinct, extending the well-known result that the spaces Π2(C[0, 1], X)
and N (C[0, 1], X) are distinct.

Keywords: p-summing linear operators; copies of lnp ’s uniformly; local structure of a Ba-
nach space; multiplication operator; average

MSC 2010 : 46B07, 47B10, 47L20, 46B28

1. Introduction and notation

The main purpose of this paper is to study the presence of copies of lnp ’s uni-

formly in the spaces Π2(C[0, 1], X) and Π1(C[0, 1], X). Let us fix some notation

and concepts used below. The scalar field R (or C) is denoted by K and if n ∈ N,

1 6 p 6 ∞, then lnp = (Kn,‖·‖p), where ‖(α1, . . . , αn)‖p =
( n∑

i=1

|αi|p
)1/p

if p < ∞
and ‖(α1, . . . , αn)‖∞ = max

16i6n
|αi|. By (ei)16i6n we denote the standard unit vectors

in K
n, i.e. ei = (0, . . . , 0, 1, 0, . . . , 0). For 1 6 p 6 ∞ we write, as usual, p∗ for

the conjugate of p, i.e. 1/p + 1/p∗ = 1. If α = (αi)16i6n ∈ K
n, 1 6 p, q 6 ∞,

Mα : lnp → lnq is the multiplication operator, i.e. Mα((ξi)16i6n) := (αiξi)16i6n. By

rn : [0, 1] → R, rn(t) = (−1)[2
nt] we denote the Rademacher functions ([·] denotes

the integer part) and C[0, 1] is the space of all scalar-valued continuous functions

on [0, 1] under the uniform norm.
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Let 1 6 p 6 ∞ and 1 < λ < ∞. We say that a Banach space X contains lnp ’s
λ-uniformly or that X contains λ-uniformly copies of lnp if for every n ∈ N there

exists a linear operator Jn : lnp → X such that

‖α‖p 6 ‖Jn(α)‖X 6 λ‖α‖p, α ∈ lnp

(see [3], page 260). Let X , Y be Banach spaces and 1 6 p < ∞. A linear opera-
tor T : X → Y is p-summing if there exists a constant C > 0 such that for every

n ∈ N, x1, . . . , xn ∈ X the relation
( n∑

i=1

‖T (xi)‖p
)1/p

6 C sup
‖x∗‖61

( n∑

i=1

|x∗(xi)|p
)1/p

holds and the p-summing norm of T is defined by πp(T ) := min{C : C as above}.
We denote by Πp(X,Y ) the class of all p-summing operators from X into Y (see [2],

[3], [4], [6]). Let X and Y be Banach spaces. If A is a set, the notation (xn)n∈N ⊂ A

means that xn ∈ A for every n ∈ N. A bounded linear operator T : X → Y is called

nuclear if there exist (x∗
n)n∈N ⊂ X∗, (yn)n∈N ⊂ Y such that

∞∑

n=1
‖x∗

n‖‖yn‖ < ∞ and

T (x) =
∞∑

n=1
x∗
n(x)yn for x ∈ X ; such a representation is called a nuclear represen-

tation of T and the nuclear norm of T is defined by ‖T ‖nuc := inf
{ ∞∑

n=1
‖x∗

n‖‖yn‖
}

,

where the infimum is taken over all the nuclear representations of T . We denote

by N (X,Y ) the space of all nuclear operators from X into Y (see [2], [3], [4], [6]).

In [10], Theorem 4.2, it was shown that, if X is an infinite-dimensional Banach

space, then N (C[0, 1], X) 6= Π2(C[0, 1], X). As a natural consequence of our results,

we recover the folklore result that if X is an infinite dimensional Banach space,

then Π1(C[0, 1], X) 6= Π2(C[0, 1], X), and hence N (C[0, 1], X) 6= Π2(C[0, 1], X), see

Corollary 1.

All notation and terminology, not otherwise explained, are as in [2], [3], [4], [6].

Preliminary results

The next Lemma is essentially well-known (see [8], Lemma 10).

Lemma 1. Let 1 6 p 6 ∞, n ∈ N, α = (αi)16i6n ∈ K
n and let Un

α : C[0, 1] → lnp

be the operator defined by Un
α (f) =

(
αi

∫ 1

0 f(t)ri(t) dt
)

16i6n
. Then:

(i) 2−1/2‖α‖r 6 ‖Un
α‖ 6 π2(U

n
α ) 6 ‖α‖r if 1 6 p < 2, where 1/p = 1/2 + 1/r and

2−1/2‖α‖∞ 6 ‖Un
α‖ 6 π2(U

n
α ) 6 ‖α‖∞ if 2 6 p 6 ∞.

(ii) π1(U
n
α ) = ‖α‖p.

P r o o f. The representing measure of Un
α is G

n
α : Σ → lnp defined by Gn

α(E) :=
(
αi

∫

E
ri(t) dt

)

16i6n
, where Σ is the σ-algebra of all borelian subsets of [0, 1], see [4],

458



Theorem 1, page 152. Let hn
α : [0, 1] → lnp be given by hn

α(t) = (αiri(t))16i6n and

observe that Gn
α(E) =

∫

E hn
α(t) dt for E ∈ Σ (the Bochner integral).

(i) From [4], Theorem 1, page 152, and Proposition 11, page 4, we have

‖Un
α‖ = ‖Gn

α‖([0, 1]) = sup
‖y∗‖61

|y∗ ◦Gn
α|([0, 1]) = sup

‖y∗‖61

∫ 1

0

|〈y∗, hn
α(t)〉| dt

because (y∗ ◦ Gn
α)(E) =

∫

E〈y∗, hn
α(t)〉dt and |y∗ ◦ Gn

α|([0, 1]) =
∫ 1

0 |〈y∗, hn
α(t)〉| dt.

However, for any y∗ = (ξi)16i6n ∈ (lnp )
∗ = lnp∗ we have 〈y∗, hn

α(t)〉 =
n∑

i=1

ξiαiri(t)

and by Khinchin’s inequality 2−1/2
( n∑

i=1

|ξiαi|2
)1/2

6
∫ 1

0
|〈y∗, hn

α(t)〉| dt, hence

2−1/2‖Mα‖ 6 ‖Gn
α‖([0, 1]), where Mα : lnp∗ → ln2 is the multiplication operator.

Thus we have shown that 2−1/2‖Mα : lnp∗ → ln2 ‖ 6 ‖Un
α‖. Let us note that always

‖Un
α‖ 6 π2(U

n
α ). Further, U

n
α : C[0, 1]

J→֒ L2[0, 1]
R→ ln2

Mα→ lnp is a factorization of U
n
α ,

where J is the canonical inclusion and R(f) =
( ∫ 1

0
f(t)ri(t) dt

)

16i6n
. Since J is

2-summing with π2(J) = 1 and ‖R‖ = 1, we deduce that π2(U
n
α ) 6 ‖Mα : ln2 → lnp ‖.

Now, as is well known, ‖Mα : lnp∗ → ln2 ‖ = ‖Mα : ln2 → lnp ‖ = ‖α‖r if 1 6 p < 2,

where 1/p = 1/2 + 1/r and ‖Mα : lnp∗ → ln2 ‖ = ‖Mα : ln2 → lnp‖ = max
16i6n

|αi| = ‖α‖∞
if 2 6 p 6 ∞, see [1], page 218, and the proof of (i) is finished.
(ii) From [4], Theorem 3, page 162, π1(U

n
α ) = |Gn

α|([0, 1]) =
∫ 1

0 ‖hn
α(t)‖p dt = ‖α‖p.

�

In the sequel the technique named Average of a finite number of elements, intro-

duced in [7], [9] is used to construct a useful kind of operators. Let us now fix some

notation and recall this concept.

Let n be a natural number. For (λ1, . . . , λn) ∈ K
n we define the finite system

denoted by Average(λi : 1 6 i 6 n) as being the system with 2n elements obtained

by arranging in the lexicographical order of Dn := {−1, 1}n the elements ε1λ1+ . . .+

εnλn for (ε1, . . . , εn) ∈ Dn. (On {−1, 1} we consider the natural order). Thus, as
sets we have

Average(λi : 1 6 i 6 n) = {ε1λ1 + . . .+ εnλn : (ε1, . . . , εn) ∈ Dn}.

Let us note that if (λi)16i6n ∈ K
n and (e(ε1,...,εn))(ε1,...,εn)∈Dn

are the standard unit

vectors in K2n ordered in the lexicographical order of Dn, then the following equality

in K
2n holds:

(1) Average(λi : 1 6 i 6 n) =
∑

(ε1,...,εn)∈Dn

(ε1λ1 + . . .+ εnλn)e(ε1,...,εn).
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If 1 6 p < ∞, by Khinchin’s inequality we have

(2) Ap‖(λ1, . . . , λn)‖2 6

∥
∥
∥Average

( 1

2n/p
λi : 1 6 i 6 n

)∥
∥
∥
p

=

(
1

2n

∑

(ε1,...,εn)∈Dn

|ε1λ1 + . . .+ εnλn|p
)1/p

6 Bp‖(λ1, . . . , λn)‖2.

Above and in the sequel Ap, Bp are Khinchin’s constants (see [3]).

Lemma 2. Let 1 6 p < ∞, n ∈ N, α = (αi)16i6n ∈ K
n and let Avnα :

C[0, 1] → l2
n

p be the operator defined by

Avnα(f) = Average

(
αi

2n/p

∫ 1

0

f(t)ri(t) dt : 1 6 i 6 n

)

.

Then:

(i) Ap2
−1/2‖α‖∞ 6 π2(Av

n
α) 6 Bp‖α‖∞.

(ii) Ap‖α‖2 6 π1(Av
n
α) 6 Bp‖α‖2.

P r o o f. Let f ∈ C[0, 1]. From the relation (2) we have

Ap‖Un
α (f)‖2 6 ‖Avnα(f)‖ 6 Bp‖Un

α (f)‖2

where Un
α : C[0, 1] → ln2 is defined by U

n
α (f) =

(
αi

∫ 1

0
f(t)ri(t) dt

)

16i6n
. Thus

Apπ2(U
n
α ) 6 π2(Av

n
α) 6 Bpπ2(U

n
α ) and Apπ1(U

n
α ) 6 π1(Av

n
α) 6 Bpπ1(U

n
α ).

The conclusion follows, because in this case, by Lemma 1, 2−1/2‖α‖∞ 6 π2(U
n
α ) 6

‖α‖∞ and π1(U
n
α ) = ‖α‖2. �

We need also the second average which we describe next. Let n be a natural

number. Let us note that if (λ1, . . . , λn) ∈ K
n then

(3) cK

n∑

i=1

|λi| 6 ‖Average(λi : 1 6 i 6 n)‖∞ 6

n∑

i=1

|λi|

where cK = 1 if K := R; cK = 1/2 if K := C (in this case consider the real and the

imaginary part).

For (λ1, . . . , λn) ∈ K
n let us denote the 2n elements of the set Average(λi : 1 6

i 6 n) by {β1, β2, . . . , β2n} and apply the same procedure; we define

Saverage(λi : 1 6 i 6 n) := Average(βi : 1 6 i 6 2n)

= {ε1β1 + . . .+ ε2nβ2n : (ε1, . . . , ε2n) ∈ D2n} ⊂ K
22

n

.
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From the relation (3) we have

cK
2n

‖(β1, . . . , β2n)‖1 6
1

2n
‖ Saverage(λi : 1 6 i 6 n)‖∞ 6

1

2n
‖(β1, . . . , β2n)‖1

and since by Khinchin’s inequality

1√
2
‖(λ1, . . . , λn)‖2 6

1

2n

2n∑

i=1

|βi| =
1

2n

∑

(ε1,...,εn)∈Dn

|ε1λ1 + . . .+ εnλn|

6 ‖(λ1, . . . , λn)‖2

we get

(4)
cK√
2
‖(λ1, . . . , λn)‖2 6

1

2n
‖ Saverage(λi : 1 6 i 6 n)‖∞ 6 ‖(λ1, . . . , λn)‖2.

Lemma 3. (a) Let n ∈ N, α = (αi)16i6n ∈ K
n and let Avnα : C[0, 1] → l2

n

∞ be

the operator defined by

Avnα(f) = Average

(

αi

∫ 1

0

f(t)ri(t) dt : 1 6 i 6 n

)

.

Then:

(i) cK2
−1/2‖α‖2 6 π2(Av

n
α) 6 ‖α‖2.

(ii) cK‖α‖1 6 π1(Av
n
α) 6 ‖α‖1.

(b) Let n ∈ N, α = (αi)16i6n ∈ K
n and let Savnα : C[0, 1] → l2

2
n

∞ be the operator

defined by

Savnα(f) := Saverage

(
1

2n
αi

∫ 1

0

f(t)ri(t) dt : 1 6 i 6 n

)

.

Then:

(i) cK2
−1‖α‖∞ 6 π2(Sav

n
α) 6 ‖α‖∞.

(ii) cK2
−1/2‖α‖2 6 π1(Sav

n
α) 6 ‖α‖2.

P r o o f. (a) Let f ∈ C[0, 1]. From the relation (3) we have

cK‖Un
α (f)‖1 6 ‖Avnα(f)‖∞ 6 ‖Un

α (f)‖1

where Un
α : C[0, 1] → ln1 is defined by U

n
α (f) = (αi

∫ 1

0 f(t)ri(t) dt)16i6n. Thus, easily,

cKπ2(U
n
α ) 6 π2(Av

n
α) 6 π2(U

n
α ) and cKπ1(U

n
α ) 6 π2(Av

n
α) 6 π1(U

n
α ).
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The conclusion follows, because in this case, by Lemma 1, 2−1/2‖α‖2 6 π2(U
n
α ) 6

‖α‖2 and π1(U
n
α ) = ‖α‖1.

(b) Let f ∈ C[0, 1]. From the relation (4) we have

cK√
2
‖Un

α (f)‖2 6 ‖ Savnα(f)‖∞ 6 ‖Un
α (f)‖2

where Un
α : C[0, 1] → ln2 is defined by U

n
α (f) =

(
αi

∫ 1

0
f(t)ri(t) dt

)

16i6n
. Thus

cK√
2
π2(U

n
α ) 6 π2(Sav

n
α) 6 π2(U

n
α );

cK√
2
π1(U

n
α ) 6 π1(Sav

n
α) 6 π1(U

n
α ).

The conclusion follows, because in this case, by Lemma 1, 2−1/2‖α‖∞ 6 π2(U
n
α ) 6

‖α‖∞ and π1(U
n
α ) = ‖α‖2. �

The results

In the next theorem, which is the main result of this paper, we show how the

local structure of the spaces Π2(C[0, 1], X) and Π1(C[0, 1], X) depends on the local

structure of X .

Theorem 4. Let 1 6 p 6 ∞, 1 < λ < ∞ and let X be a Banach space which

contains lnp ’s λ-uniformly. Then:

(i) For 1 6 p < 2, Π2(C[0, 1], X) contains λ
√
2-uniformly copies of lnr ’s where

1/p = 1/2 + 1/r.

(ii) For 2 6 p 6 ∞, Π2(C[0, 1], X) contains λ
√
2-uniformly copies of ln∞’s.

(iii) For 1 6 p < ∞, Π2(C[0, 1], X) contains λBp

√
2/Ap-uniformly copies of l

n
∞’s.

(iv) Π1(C[0, 1], X) contains λ-uniformly copies of lnp ’s.

(v) For 1 6 p < ∞, Π1(C[0, 1], X) contains λBp/Ap-uniformly copies of l
n
2 ’s.

(vi) For 1 6 p < ∞, the spaces Π2(C[0, 1], X) and Π1(C[0, 1], X) are distinct; in

particular, Π2(C[0, 1], X) 6= N (C[0, 1], X).

P r o o f. (i), (ii) and (iv). Let n ∈ N be arbitrary. By hypothesis there exists

a bounded linear operator Jn : lnp → X such that

(5) ‖α‖p 6 ‖Jn(α)‖X 6 λ‖α‖p, α ∈ lnp .

Let us define An : K
n → L(C[0, 1], X) by An(α) = Jn ◦Un

α , where U
n
α : C[0, 1] → lnp

is the operator from Lemma 1. Though not needed in the sequel, let us note that if

α = (αi)16i6n ∈ K
n and f ∈ C[0, 1] then

An(α)(f) =

n∑

i=1

αi

(∫ 1

0

f(t)ri(t) dt

)

Jn(ei).
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Let α ∈ K
n. For every f ∈ C[0, 1] by (5) we have

‖Un
α (f)‖p 6 ‖[An(α)](f)‖X = ‖Jn(Un

α (f))‖X 6 λ‖Un
α (f)‖p

and by the definition of p-summing operators we deduce that

(6) π2(U
n
α ) 6 π2(An(α)) 6 λπ2(U

n
α ) and π1(U

n
α ) 6 π1(An(α)) 6 λπ1(U

n
α ).

From (6) and Lemma 1 we obtain

‖α‖r 6 π2(
√
2An(α)) 6 λ

√
2‖α‖r if 1 6 p < 2, where

1

p
=

1

2
+

1

r
,

‖α‖∞ 6 π2(
√
2An(α)) 6 λ

√
2‖α‖∞ if 2 6 p < ∞,

‖α‖p 6 π1(An(α)) 6 λ‖α‖p,

which ends the proof of (i), (ii) and (iv).

(iii) and (v). Let n ∈ N be arbitrary. By hypothesis there exists a bounded linear

operator J2n : l2
n

p → X such that

(7) ‖ξ‖p 6 ‖J2n(ξ)‖X 6 λ‖ξ‖p, ξ ∈ l2
n

p .

We defineAvn : K
n → L(C[0, 1], X) by Avn(α) = J2n◦Avnα, where Avnα : C[0, 1] → l2

n

p

is the operator from Lemma 2. Again, though not needed in the sequel, let us note

that if α = (αi)16i6n ∈ K
n and f ∈ C[0, 1] we have

[Avn(α)](f) =
1

2n/p

∑

(ε1,...,εn)∈Dn

(

ε1α1

∫ 1

0

f(t)r1(t) dt+ . . .

+ εnαn

∫ 1

0

f(t)rn(t) dt

)

J2n(e(ε1,...,εn)).

Let α ∈ K
n. For every f ∈ C[0, 1] by (7) we have

‖Avnα(f)‖p 6 ‖[Avn(α)](f)‖X = ‖J2n(Avnα(f))‖X 6 λ‖Avnα(f)‖p

and by the definition of p-summing operators we deduce that

(8) π2(Av
n
α) 6 π2(Avn(α)) 6 λπ2(Av

n
α) and π1(Av

n
α) 6 π1(Avn(α)) 6 λπ1(Av

n
α).

Since by Lemma 2

Ap√
2
‖α‖∞ 6 π2(Avn(α)) 6 Bp‖α‖∞ and Ap‖α‖2 6 π1(Avn(α)) 6 Bp‖α‖2,
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from (8) we obtain

‖α‖∞ 6 π2

(
√
2

Ap
Avn(α)

)

6
λBp

√
2

Ap
‖α‖∞; ‖α‖2 6 π1

(Avn(α)

Ap

)

6
λBp

Ap
‖α‖2,

which ends the proof of (iii) and (v).

(vi) If Π2(C[0, 1], X) = Π1(C[0, 1], X), then by the open mapping theorem it

follows that there exists C > 0 such that π1(T ) 6 Cπ2(T ) for all T ∈ Π1(C[0, 1], X).

In particular, π1(An(α)) 6 Cπ2(An(α)) for all natural numbers n and all α ∈ K
n.

By (i), (ii) and (iv) for all natural numbers n and all α ∈ K
n we have ‖α‖p 6 C‖α‖r

if 1 6 p < 2, where 1/p = 1/2 + 1/r, or ‖α‖p 6 C‖α‖∞ if 2 6 p < ∞. Taking

α = (1, . . . , 1
︸ ︷︷ ︸

n-times

)

we get that for all natural numbers n we have n 6 C2 if 1 6 p < 2, or n 6 Cp if

2 6 p < ∞, which is impossible. Let us note that a contradiction can be obtained if
we use (iii) or (v). If Π2(C[0, 1], X) = N (C[0, 1], X) then, since N (C[0, 1], X) ⊆
Π1(C[0, 1], X) ⊆ Π2(C[0, 1], X), it follows that Π1(C[0, 1], X) = Π2(C[0, 1], X),

which as we have shown above is impossible. �

As a natural consequence of Theorem 4, we recover the folklore result that ifX is an

infinite-dimensional Banach space then the spaces Π2(C[0, 1], X) and Π1(C[0, 1], X)

are distinct. This extends the well-known result that the spaces Π2(C[0, 1], X) and

N (C[0, 1], X) are distinct, see [10], Theorem 4.2.

Corollary 5. Let X be an infinite dimensional Banach space. Then:

(i) Π2(C[0, 1], X) contains λ
√
2-uniformly copies of ln∞’s for all λ > 1.

(ii) Π1(C[0, 1], X) contains λ-uniformly copies of ln2 ’s for all λ > 1.

(iii) The spaces Π2(C[0, 1], X) and Π1(C[0, 1], X) are distinct; in particular,

Π2(C[0, 1], X) 6= N (C[0, 1], X).

P r o o f. Since X is infinite-dimensional, by the famous Dvoretzky theorem,

see [3], Chapter 19, X contains ln2 ’s λ-uniformly for all 1 < λ < ∞. The statement
follows by taking p = 2 in Theorem 4. �

Let us note that for p = ∞ in Theorem 4 ((ii) and (iv)) it follows that if 1 < λ < ∞
and X is a Banach space which contains ln∞’s λ-uniformly, then Π2(C[0, 1], X) con-

tains λ
√
2-uniformly copies of ln∞’s and Π1(C[0, 1], X) contains λ-uniformly copies

of ln∞’s, so in this case, there is no distinction between these classes.

We prove now a natural completion of Theorem 4. It shows that for p = ∞ in

Theorem 4 we have also a distinction if we use the first and the second average.

464



Theorem 6. Let 1 < λ < ∞ and let X be a Banach space which contains ln∞’s
λ-uniformly. Then:

(i) Π2(C[0, 1], X) contains λ
√
2-uniformly copies of ln2 ’s in the real case (2λ

√
2-

uniformly copies of ln2 ’s in the complex case).

(ii) Π1(C[0, 1], X) contains λ-uniformly copies of ln1 ’s in the real case (2λ-uniformly

copies of ln1 ’s in the complex case).

(iii) Π2(C[0, 1], X) contains 2λ-uniformly copies of ln∞’s in the real case (4λ-

uniformly copies of ln∞’s in the complex case).

(iv) Π1(C[0, 1], X) contains λ
√
2-uniformly copies of ln2 ’s in the real case (2λ

√
2-

uniformly copies of ln2 ’s in the complex case).

P r o o f. (i) and (ii). Let n ∈ N be arbitrary. By hypothesis there exists

a bounded linear operator J2n : l2
n

∞ → X such that

(9) ‖ξ‖∞ 6 ‖J2n(ξ)‖X 6 λ‖ξ‖∞, ξ ∈ l2
n

∞ .

We defineAvn : K
n → L(C[0, 1], X) by Avn(α) = J2n◦Avnα, where Avnα : C[0, 1] → l2

n

∞

is the operator from Lemma 3. Let us note (not used in the sequel) the explicit

expression,

[Avn(α)](f) =
∑

(ε1,...,εn)∈Dn

(

ε1α1

∫ 1

0

f(t)r1(t) dt+ . . .

+ εnαn

∫ 1

0

f(t)rn(t) dt

)

J2n(e(ε1,...,εn))

where α = (αi)16i6n ∈ K
n (see also the equality (1)). Let α ∈ K

n. For every

f ∈ C[0, 1] by (9) we have

‖Avnα(f)‖∞ 6 ‖[Avn(α)](f)‖X = ‖J2n(Avnα(f))‖X 6 λ‖Avnα(f)‖∞,

and by the definition of p-summing operators we deduce that

(10) π2(Av
n
α) 6 π2(Avn(α)) 6 λπ2(Av

n
α)

and

π1(Av
n
α) 6 π1(Avn(α)) 6 λπ1(Av

n
α).

Since by Lemma 3

cK√
2
‖α‖2 6 π2(Avn(α)) 6 ‖α‖2 and cK‖α‖1 6 π1(Avn(α)) 6 ‖α‖1,
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from (10) we obtain

‖α‖2 6 π2

(
√
2

cK
Avn(α)

)

6
λ
√
2

cK
‖α‖2 and ‖α‖1 6 π1

(Avn(α)

cK

)

6
λ

cK
‖α‖1

which ends the proof of (i) and (ii).

(iii) and (iv). Let n ∈ N be arbitrary. By hypothesis there exists a bounded linear

operator J22n : l2
2
n

∞ → X such that

(11) ‖ξ‖∞ 6 ‖J22n (ξ)‖X 6 λ‖ξ‖∞, ξ ∈ l2
2
n

∞ .

We define Savn : K
n → L(C[0, 1], X) by Savn(α) = J22n ◦ Savnα where Savnα :

C[0, 1] → l2
2
n

∞ is the operator from Lemma 3. We leave for the interested reader to

write the explicit expresion for [Savn(α)](f), which again is not used in the sequel.

Let α ∈ K
n. For every f ∈ C[0, 1] by (11) we have

‖ Savnα(f)‖∞ 6 ‖[Savn(α)](f)‖X = ‖J22n (Savnα(f))‖X 6 λ‖ Savnα(f)‖∞

and by the definition of p-summing operators we deduce that

(12) π2(Sav
n
α) 6 π2(Savn(α)) 6 λπ2(Sav

n
α)

and

π1(Sav
n
α) 6 π1(Savn(α)) 6 λπ1(Sav

n
α).

Since by Lemma 3

cK
2
‖α‖∞ 6 π2(Savn(α)) 6 ‖α‖∞ and

cK√
2
‖α‖2 6 π1(Savn(α)) 6 ‖α‖2,

from (12) we obtain

‖α‖∞ 6 π2

( 2

cK
Savn(α)

)

6
2λ

cK
‖α‖∞ and ‖α‖2 6 π1

(
√
2 Savn(α)

cK

)

6
λ
√
2

cK
‖α‖2,

which ends the proof of (iii) and (iv). �

In [5] was shown that the space Π1(C[0, 1], X) can be identified with the so called

space ltree1 (X); we refer the reader to the paper [5] for the definition of this space

and more details. From Theorems 4, 6 and Corollary 5 we get
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Corollary 7. (a) Let 1 6 p 6 ∞, 1 < λ < ∞ and let X be a Banach space which
contains lnp ’s λ-uniformly. Then:

(i) ltree1 (X) contains λ-uniformly copies of lnp ’s.

(ii) For 1 6 p < ∞, ltree1 (X) contains λBp/Ap-uniformly copies of l
n
2 ’s.

(b) Let 1 < λ < ∞ and let X be a Banach space which contains ln∞’s λ-uniformly.
Then:

(i) ltree1 (X) contains λ
√
2-uniformly copies of ln1 ’s in the real case (2λ

√
2-uniformly

copies of ln1 ’s in the complex case).

(ii) ltree1 (X) contains λ-uniformly copies of ln2 ’s in the real case (2λ-uniformly copies

of ln2 ’s in the complex case).

(c) Let X be an infinite dimensional Banach space. Then ltree1 (X) contains λ-

uniformly copies of ln2 ’s for all λ > 1.
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