
Archivum Mathematicum

Shah Jahan; Varinder Kumar; S.K. Kaushik
On the existence of non-linear frames

Archivum Mathematicum, Vol. 53 (2017), No. 2, 101–109

Persistent URL: http://dml.cz/dmlcz/146797

Terms of use:
© Masaryk University, 2017

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/146797
http://dml.cz


ARCHIVUM MATHEMATICUM (BRNO)
Tomus 53 (2017), 101–109

ON THE EXISTENCE OF NON-LINEAR FRAMES

Shah Jahan, Varinder Kumar, and S.K. Kaushik

Abstract. A stronger version of the notion of frame in Banach space called
Strong Retro Banach frame (SRBF) is defined and studied. It has been proved
that if X is a Banach space such that X ∗ has a SRBF, then X has a Bi-Banach
frame with some geometric property. Also, it has been proved that if a Banach
space X has an approximative Schauder frame, then X ∗ has a SRBF. Finally,
the existence of a non-linear SRBF in the conjugate of a separable Banach
space has been proved.

1. Introduction

Frames for Hilbert spaces were introduced by Duffin and Schaeffer [5] in the
context of nonharmonic Fourier series. Frames now a days are widely used in
various branches of mathematics and engineering. Feichtinger and Grochenig [6]
generalized the notion of frame to Banach spaces and introduced the concept
of atomic decomposition in a Banach space. Also, Grochenig [7] introduced a
more general concept namely Banach frame for Banach spaces. For a nice and
comprehensive survey of frames and related concepts one may refer to [1, 4].

Various other generalizations of frames for Banach spaces were defined and
studied by many authors namely Schauder frames by Han and Larson [8] and
also studied by Casazza et al. [2, 3], frames by Terekhin [17]. Banach frames in
conjugate Banach spaces, called retro Banach frames, were introduced and studied
by Jain et al. [9] and further studied in [13]. Approximative atomic decompositions
in Banach spaces were studied in [10]. Schauder frames in conjugate Banach spaces
were defined and studied in [12] while approximative Schauder frames were studied
in [11]. The notion of Bi-Banach frame in a Banach space was defined and studied
in [14] wherein they noted that a Schauder frame for a Banach space is a Bi-Banach
frame but the converse is not true.

In the present paper, we shall consider a stronger notion of frame in a Banach
space called strong Retro Banach frame (SRBF). It has been proved that if X is
a Banach space such that X ∗ has a SRBF, then X has a Bi- Banach frame with
some geometric property. Also, it has been proved that if a Banach space X has an
approximative Schauder frame, then X ∗ has a SRBF. Finally, a result related to
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the existence of a non-linear SRBF in the conjugate of a separable Banach space
has been proved.

Throughout this paper X will denotes an infinite dimensional Banach space over
the scalar field K(R,C), X ∗ denotes the conjugate space of X and L(X ,X ) denote
the Banach space of all continuous linear mappings of X into X . For a sequence
{xn} ∈ X and {fn} ∈ X ∗, [xn] denotes the closed linear span of {xn} in the norm
topology of X and [fn] the closed linear span of {fn} in the weak star topology
of X ∗. A sequence space S is called a BK-space if it is a Banach space and the
co-ordinate functionals are continuous on S. That is the relations xn = {αj(n)},
x = {αj} ∈ S, lim

n→∞
xn = x imply lim

n→∞
α

(n)
j = αj (j = 1, 2, 3, . . . ). Also, if V ⊆ X ∗,

then we define γ(v) = inf
x∈X
x 6=0

sup
f∈v
‖f‖≤I

∣∣f( x‖x‖)∣∣.
A sequence {xn} ⊂ X is said to be a Markusevic basis (M -basis) for X if {xn}

is complete in X and there exists a sequence {fn} in X ∗ biorthogonal to {xn},
called an associated sequence of coefficient functional (a.s.c.f.), which is total on X .
Definition 1.1 ([9]). Let X be a Banach space and Xd be a BK-space. Let
{xn} ⊂ X and J : X ∗d → X ∗ be given. The pair ({xn}, J) is called a retro Banach
frame for X ∗ with respect to X ∗d if
(a) {f(xn)} ∈ X ∗d , for all f ∈ X ∗.
(b) There exist positive constants A and B with 0 < A ≤ B <∞ such that
(1.1) A‖f‖X∗ ≤ ‖{f(xn)}‖X∗

d
≤ B‖f‖X∗ , for all f ∈ X ∗.

(c) J is a bounded linear operator such that

J({f(xn)}) = f, for all f ∈ X ∗.
The constants A and B are called lower and upper bounds of the retro Banach

frame ({xn}, J). The inequality (1.1) is called the retro Banach frame inequality.
A retro Banach frame ({xn}, J) is said to be exact if there exists a sequence

{fn} ⊂ X ∗ such that fi(xj) = δi,j , for all i, j ∈ N.
Definition 1.2. Let X be a Banach space with dual X ∗. A pair ({xn}, {fn})
(where {fn} ⊂ X ∗ and {xn} ⊂ X ) is called a Bi-Banach frame for X if there exist
associated Banach spaces Xd and (X ∗)d and bounded linear operators S : Xd → X ,
T : (X ∗)d → X ∗ such that ({fn} , S) is a Banach frame for X and ({xn} , T ) is
retro Banach frame for X ∗.

A Bi-Banach frame ({xn}, {fn}) is called tight if both the retro Banach frame
({xn} , T ) and the Banach frame ({fn} , S) are tight.

The following results are stated in the form of lemmas which will be used in the
subsequent work.
Lemma 1.3 ([16]). Let X be a Banach space and {fn} ⊂ X ∗ be a sequence
such that {x ∈ X : fn (x) = 0,∀ n ∈ N} = {0}. Then X is linearly isometric to the
Banach space Xd = {{fn (x)} : x ∈ X}, where the norm is given by ‖{fn(x)}‖Xd =
‖x‖X , x ∈ X .
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Lemma 1.4 ([16]). Let X be a separable normed linear space and let {x∗n} be a
sequence in X ∗ such that x∗n

‖x∗n‖
w∗−→ 0 and that for the linear subspace [x∗n] of X ∗,

γ([x∗n]) ≥ 0. Then there exist a norm | · | on X equivalent to the initial norm on X
such that (X , | · |) is strictly convex and satisfies the following property

(1.2) If lim
n→∞

fk(xn) = fk(x0)(k = 1, 2, . . . ) , then lim
n→∞

|xn| ≥ |x0| .

2. Main result

Approximative Schauder frames in Banach spaces were studied in [11] and the
notion of Bi-Banach frame was studied in [14]. In the following definition, we gave
a stronger notion called Strong Retro Banach frame (SRBF). The idea of defining
this notion is to correlate this notion with the existing notions like approximative
Schauder frames and Bi-Banach frames.

Definition 2.1. Let {xn} ⊂ X be an exact RBF for X ∗ with admissible se-
quence {fn} ⊂ X ∗. Let Xn = [x1, x2, . . . , xn], n ∈ N. If there exists a se-
quence {vn}, where each vn : Xn → Xn is a continuous linear mapping, such
that x = lim

n→∞
vn

n∑
i=1

fi(x)xi, x ∈ X , then ({xn}, {fn}, {vn}) is called a strong RBF

(or SRBF) for X ∗.

Remark 2.2. If we define un : X → X , n ∈ N by

un(x) = vn

n∑
i=1

fi(x)xi , n ∈ N .

Then one may observe that if ({xn}, {fn}, {vn}) is a SRBF, then lim
n→∞

un(x) = x

and dim un(X ) = dim (vn
n∑
i=1

fi(x)xi)(X ) ≤ n <∞ and so {xn} is an approxima-

tive basis of X .

In the following result, we prove that the existence of SRBF in the conjugate
of a Banach space guarantees the existence of a Bi-Banach frame in the Banach
space along with some geometric property.

Theorem 2.3. Let X be a Banach space and ({xn}, {fn}, {vn}) be a SRBF for
X ∗ with admissible sequence {fn} ⊂ X ∗. Then ({xn}, {fn}) is a Bi-Banach frame
for X such that γ([fn]) > 0.

Proof. Clearly, by definition of SRBF, {x ∈ X : fn(x) = 0, for all n ∈ N} =
{0}. Therefore, by Lemma 1.3, there exists an associated Banach space Xd =
{{fn(x)};x ∈ X} with norm given by ‖{fn(x)}‖Xd = ‖x‖X , x ∈ X . Define J : Xd →
X by J({fn(x)}) = x, x ∈ X . Then J is a bounded linear operator such that
({fn}, J) is a Banach frame for X . Hence ({xn}, {fn}) is a Bi-Banach frame for
X . Let for each n ∈ N, vn : Xn → Xn be a continuous linear mapping given by
lim
n→∞

vn
n∑
i=1

fi(x)xi = x. Write vn(xj) =
∑n
i=1 a

(n)
ji xi, j = 1, 2, . . . , n, n ∈ N, where
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a
(n)
ji = fi(vn(xj)), for all i, j = 1, 2, 3, . . . , n, n ∈ N. Thus

vn

( n∑
i=1

fi(x)xi
)

=
n∑
j=1

( n∑
i=1

a
(n)
ij fi(x)

)
xj , x ∈ X , n ∈ N .

Define

hn,j =
n∑
i=1

a
(n)
ij fi , j = 1, 2, 3, . . . , n, n ∈ N .

Then hn,i ∈ [fi]ni=1 (j = 1, 2, . . . , n; n ∈ N). Hence, we conclude that
γ([fn]) > 0. �

In the following result, we prove a weak duality type result.

Theorem 2.4. Let ({xn}, {fn}, {vn}) be a SRBF for X ∗ with admissible sequence
{fn} ⊂ X ∗. Then there exists a sequence of continuous linear mappings {τn}
(τn : Vn → Vn, where Vn = [f1, f2, . . . , fn], n ∈ N) such that

f(x) = lim
n→∞

(
τn

n∑
i=1

f(xi)fi
)

(x)

Proof. For each k = 1, 2, 3, . . . , n, n ∈ N, define τn : span {f1, f2, . . . , fn} →
span {f1, f2, . . . , fn} by

τn(fk) =
n∑
i=1

a
(n)
ik fi =

n∑
i=1

fk(vn(xi))fi .

Extend each τn to [f1, f2, . . . , fn]. Then(
τn

n∑
i=1

f(xi)fi
)

(x) =
n∑
i=1

f(xi)
(
τn(fi)

)
(x)

=
n∑
i=1

( n∑
j=1

a
(n)
ji fj(x)

)
f(xi)

=
n∑
i=1

( n∑
j=1

fi
(
vn(xj)

)
fj(x)

)
f(xi)

=
n∑
i=1

vn

( n∑
j=1

fi(xj)fj(x)
)
f(xi)

= f
(
vn

( n∑
i=1

fi(x)xi
))

=→ f(x) as n→∞

�

Approximative Schauder frames were defined and studied in [11]. In the following
result, we prove that if a Banach space X has an approximative Schauder frame,
then its dual space has a SRBF.
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Theorem 2.5. If a Banach space X has an approximative Schauder frame, then
X ∗ has a SRBF.

Proof. Let {un} be a sequence of finite rank continuous linear mapping from X
to X such that lim

n→∞
un(x) = x, x ∈ X . Let {xn} be a Markusevic basis for X with

a.s.c.f. {fn} ⊂ X ∗ such that

(2.1)
⋃
n

u∗n(X ∗) ⊂ [fn] .

Since each un is finite dimensional, we may write

un(x) =
pn∑
i=1

ψni(x)φni , x ∈ X , n ∈ N ,

where {φni}pni=1 is a basis for {un(X )} with associated sequence {ψni}pni=1 ⊂ X ∗.
Let {gni}pni=1 be a sequence in X ∗ that is biorthogonal to {φni}pni=1. Then

u∗n(gnj)(x) = gnj
(
un(x)

)
= gnj

( pn∑
i=1

ψni(x)φni
)

=
pn∑
i=1

ψni(x)gnj(φni)

= ψnj(x) , j = 1, 2, . . . , pn .

Hence, ψnj ∈ [fn], j = 1, 2, . . . , pn, n ∈ N. Let n ∈ N be given. Then, for any
ε > 0, there exists an integer mn(ε) such that for each i = 1, 2, . . . , pn one can find
φni ∈ [x1, x2, . . . , xmn ] and ψni ∈ [f1, f2, . . . , fmn ] such that

(2.2) ‖φni − φni‖ < ε and ‖ψni − ψni‖ < ε , i = 1, 2, 3, . . . , pn .

Write

vmn(x) =
pn∑
i=1

ψni(x)φni , x ∈ X .

Then

‖vmn(x)−un(x)‖ =
∥∥∥ pn∑
i=1

(
ψni(x)− ψni(x)

)
φni +

pn∑
i=1

ψni(x)(φni − φni)
∥∥∥

≤
( pn∑
i=1
‖ψni−ψni‖‖φni‖+

pn∑
i=1
‖ψni‖‖φni−φni‖

)
‖x‖ , x ∈ X .

Therefore, by (2.2), taking ε = 1
n and {mn} to be an increasing sequence, we obtain

(2.3) ‖vmn − un‖ <
1
n
.
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Now, observe that

fi

(
x−

k∑
j=1

fj(x)xj
)

= 0 ,(2.4)

for all x ∈ X , i = 1, 2, . . . ,mn ; k = mn,mn + 1, . . . .

Also, ψni ∈ [f1, f2, . . . , fmn ]. So, for x ∈ X , we have

vmn

( k∑
j=1

fj(x)xj
)

=
pn∑
i=1

ψni

( k∑
j=1

fj(x)xj
)
φni

=
pn∑
i=1

ψni(x)φni

= vmn(x) , for all x ∈ X and k ≥ mn .(2.5)

Therefore

lim
n→∞

vmn

( mn∑
j=1

fj(x)xj
)

= lim
n→∞

vmn(x)

= lim
n→∞

un(x)

= x , x ∈ X .(2.6)

Define a sequence {Tn} by Tn(x) =
∑n
i=1 fi(x)xi, n ∈ N. Write

vk = Tk|[x1,x2,...,xk] , k = 1, 2, . . . ,m1 − 1

and

vk = vmn |[x1,x2,...,xk] , k = mn,mn + 1, . . . ,mn − 1 , n = 1, 2, 3 . . . .

Then, each vk is a continuous linear mapping defined on [x1, x2, . . . , xk] with range
given by

vk
(
[x1, x2, . . . , xk]

)
= [x1, x2, . . . , xk] ; k = 1, 2, 3, . . . ,m1 − 1

vk
(
[x1, x2, ...xk]

)
⊂ [x1, x2, . . . , xk] , k = mn,mn + 1, . . . ,mn+1 − 1 , n ∈ N .

Using (2.5) and (2.6), we obtain lim
n→∞

vmn(x) = x. Hence lim
n→∞

vn
(∑n

i=1 fi(x)xi
)

=
x. �

In view of the proof of Theorem 2.5, one may observe that existence of approxi-
mative Schauder frame in a Hilbert space is a sufficient condition for the space
having Markusevic basis to have a SRBF. More precisely we have

Corollary 2.6. Let H be a Hilbert space with an approximative Schauder frame.
Then every Markusevic basis of H give rise to a SRBF for H.

In the following example, we show that in general, a SRBF do not have strong
duality
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Example 2.7. Let X be a Banach space with a Schauder basis and such that
X ∗ is separable but fails to have approximative property. Let {xn} be a shrinking
Markusevic basis of X with associated sequence of coefficient functional {fn} ⊂ X ∗.
Define

un(x) =
n∑
i=1

fi(x)xi , x ∈ N .

Then {xn} is an approximative Schauder frame for X satisfying
⋃∞
n=1 un

∗(X ∗) ⊂
[fn]. Therefore ({xn}, {fn}, {vn}) is a SRBF for X ∗. However, X ∗∗ has no SRBF.

One may observe that in Definition 2.1, each vn is linear. Now, we would like to
drop this condition of linearity and in the process define non-linear SRBF.

Definition 2.8. A SRBF ({xn}, {fn}, {vn}) is called non-linear SRBF if each vn
is continuous but not necessarily linear.

Finally, we prove the following result related to the existence of a non-linear
SRBF.

Theorem 2.9. If X is a separable Banach Space, then X ∗ has a non-linear SRBF.

Proof. Let {xn} be a Markusevic basis with a sequence of coefficient functional
{fn} ⊂ X ∗ such that γ([fn]) > 0. Then, by Lemma 1.4, there is a norm | · | on
X that is equivalent to the original norm ‖ · ‖ on X such that X with this new
norm | · | is strictly convex. Therefore, by [15, Corollary 3.3, page 110], for every
finite dimensional subspace G of X and for every x ∈ X \ G, there is a unique
πG(x) ∈ G such that |x − πG(x)| = dist (x,G) = min

x∈G
|x − g| and such that the

mapping πG : X → G is continuous (here note that, in general, πG is non-linear).
Let N(a, b) denote a positive integer depending on a and b. For each n, choose an
increasing sequence of positive integers {mn} with m1 = N(1, 1), m2 = N(m1,

1
2 ),

m3 = N(m2,
1
3 ), . . . , mn = N(mn−1,

1
n ), for all n ≥ 2 and satisfying

dist
(
a, [xi]mni=mn−1+1

)
≤
(

1 + 1
n

)
dist

(
a, [xi]∞i=mn−1+1

)
,

where a ∈ [xi]mn−1
i=1 . Define {vn} by vk = Tk|[x1,...,xk], k = 1, 2, . . . ,m1 − 1, where

Tk(x) =
∑k
i=1 fi(x)xi and for any b =

∑k
i=1 aixi ∈ [xi]ki=1, (k = mn,mn +

1, . . . ,mn+1 − 1; n ∈ N)

vk(b) =
mn−1∑
i=1

aixi − πG
(mn−1∑
i=1

aixi

)
,

where G = [xi]mni=mn−1+1. Then each vn is continuous (in general, non-linear) with
range given by

vk
(
[x1, . . . , xk]

)
= [x1, . . . , xk] , k = 1, 2, 3, . . . ,m1 − 1

vk
(
[x1, . . . , xk]

)
⊂ [x1, . . . , xk] , (k = mn,mn + 1, . . . ,mn+1 − 1; n ∈ N) .
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Let x ∈ X be any element. Then

fi

(
vk

( k∑
j=1

fj(x)xj
))

= fi(x) , i = 1, 2, . . . ,mn ; k = mn,mn+1, . . . ,mn+1−1;n ∈ N .

This gives

(2.7) lim
k→∞

fi

(
vk

( k∑
j=1

fj(x)xj
))

= fi(x) , i = 1, 2, . . . .

In view of Lemma 1.4, we have

(2.8) lim
k→∞

∣∣∣vk( k∑
i=1

fi(x)xi
)∣∣∣ ≥ |x| .

Also, we have

vk

( k∑
i=1

fi(x)xi
)

=
∣∣∣mn−1∑
i=1

fi(x)xi − πG
mn−1∑
i=1

fi(x)xi
∣∣∣

= dist
(mn−1∑
i=1

fi(x)xi,G
)

≤
(

1 + 1
n

)
dist

(mn−1∑
i=1

fi(x)xi, [xi]∞i=mn−1+1

)
≤
(

1 + 1
n

)∣∣∣mn−1∑
i=1

fi(x)xi +
(
x−

mn−1∑
i=1

fi(x)xi
)∣∣∣

=
(

1 + 1
n

)
|x| , k = mn,mn + 1, mn+1 − 1; n ∈ N .

Thus, by (2.8), we have

(2.9) lim
k→∞

∣∣∣vk( k∑
i=1

fi(x)xi
)∣∣∣ = |x| .

Hence, we conclude that

lim
k→∞

∣∣∣vk( k∑
i=1

fi(x)xi
)
− x
∣∣∣ = 0 .

Since | · | is equivalent to the initial norm of X , we obtain

lim
n→∞

vn

( n∑
i=1

fi(x)xi
)

= x , x ∈ X .

�
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