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KYBER NET IKA — VOLUM E 5 3 ( 2 0 1 7 ) , NUMBE R 2 , P AGES 2 9 6 – 3 3 0

IMPROVING THE PERFORMANCE OF SEMIGLOBAL
OUTPUT CONTROLLERS FOR NONLINEAR SYSTEMS

Abdallah Benabdallah and Walid Hdidi

For a large class of nonlinear control systems, the main drawback of a semiglobal stabilizing
output feedback controllers (UR)R>0 with increasing regions of attraction (ΩR)R>0 is that, when
the region of attraction ΩR is large, the convergence of solutions of the closed-loop system to
the origin becomes slow. To improve the performance of a semiglobal controller, we look for
a new feedback control law that preserves the semiglobal stability of the nonlinear system
under consideration and that is equal to some “fast” controller UR0 on a neighborhood of
the origin. Under an input-output-to-state stability (IOSS) assumption, we propose a new
semiglobal stabilizing hybrid feedback controller that unifies a “slow” controller that has a
large region of attraction with a “fast” controller having a small region of attraction. This
unification is inspired from the elegant hybrid unification of a local controller with a global
one given in [21]. Moreover, this unification is different from the recent result [24], since in
the cited paper the objective is just the stabilization; whereas in our study, the objective is
the stabilization with high performance. Finally, we illustrate our main result by means of two
numerical examples.

Keywords: nonlinear system, hybrid output feedback, semiglobal output stabilization,
local performance

Classification: 93C10, 93D15

1. INTRODUCTION

Stabilization of nonlinear systems is central to control theory. There are numerous tools
for global stabilization by state feedback controllers, such as backstepping, forwarding,
passivity, control Lyapunov function and feedback linearization (see for instance the
textbooks [6, 27] and [10] and the references therein). However, the stabilization tech-
niques do not take into account the performance issue. As pointed out in [21, 24] and
[30], by hybrid unification of a high-performance local controller (obtained for example
by linearization) with global controller can ameliorate the performance.

However, for a large class of nonlinear control systems global state or output stabi-
lization fails for many nonlinear control systems. For global output stabilization, the
majority of existing results deal with a specific class of systems such as triangular systems
(see for example [15, 18] and [22]).
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On the other hand, from a practical point of view and in many situations, we do not
need to build a global controller, but it is only sufficient to stabilize the system under
consideration locally around the origin with a region of attraction arbitrarily large. This
is the notion of semiglobal stabilization. For a large class of systems, through high-
gain observer (see [7]), it is possible to build an output feedback controller that solves
the problem of semiglobal output stabilization (see [13, 19] and [12]). In this paper,
we address the performance issue of output semiglobal stabilizers for nonlinear control
systems. The proposed strategy consists in unifying a local continuous output controller
with high performance with a second continuous output controller having a large region
of attraction. The new obtained hybrid output controller stabilizes semiglobally the
nonlinear system and ameliorates the performance.

It is well known now, that hybrid feedback is an efficient tool for robust stabilization
of nonlinear control systems [20]. It removes some classical restrictions imposed by
continuous feedback (see [20] and references therein). Recently, many important results
of stabilization are established (see for example [1, 2, 26] and [25]).

To the best of our knowledge, the first unification of two output local controllers
is solved in [24]. Unfortunately, such strategy of unification does not ameliorate the
performance as we will show by a numerical examples. In this paper, we modify the
hybrid unification introduced in [24] in order to accelerate the convergence.

To motivate the problem that we want to solve, we consider the following example.

Example 1.1. Consider the linear control system,

ẋ = Ax+B sat(u), (1)

where x ∈ Rn is the system state, u ∈ R is the control input, A and B are constant real
matrices with appropriate dimensions and sat(.) is the symmetric saturation function
defined as

∀z ∈ R, sat(z) = sign(z) min {|z|, ū} , (2)

where ū is a positive constant. It is well known (see the textbook [29] page 57) that, if
there exist a positive definite matrix Pλ ∈ Rn×n and matrices X,Y ∈ R1×n that satisfy
the following linear matrix inequalities (LMI)

APλ + PλA
T +BΓ+

j Y + Y TΓ+
j B

T +BΓ−j X +XTΓ−j B
T ≤ −2λPλ,

and (
Pλ XT

X ηū2

)
≥ 0,

where Γ+
1 = 1,Γ+

2 = 0, and Γ−j = 1−Γ+
j , for j = 1, 2, then the origin of system (1) with

linear control u = Kx = Y P−1
λ x is exponentially stable with a decay rate λ > 0 and a

region of attraction that contains the ellipsoid

Ωλ(Pλ, η) = {x ∈ R2, xTP−1
λ x ≤ η−1},

where η is a strictly positive real number.
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Fig. 1. Regions of attraction of system (1) with ū = 1000,

λ = λ0 = 10 and λ = λ1 = 1. The size of region of attraction is

inversely proportional to the decay rate λ.

For ū = 1000, A =
(

0 1
0 1

)
and B =

(
0
1

)
, Figure 1 shows that the ellipsoid Ω10

in blue color (i. e. with λ = 10) is included in the ellipsoid Ω1 in red color (i. e. with
λ = 1).

As shown in Figure 1, for system (1), the size of a region of attraction Ωλ is inversely
proportional to the decay rate λ. In other words, for a small prescribed region of
attraction, we can choose a sufficiently large decay rate λ, while for a large prescribed
region of attraction, we are forced to choose a relatively small decay rate λ. Such
situation occurs in most observable and controllable linear systems of the form{

ẋ = Ax+Bu,
y = Cx,

(3)

with dynamic output linear controller{
ξ̇ = Acξ +Bcy,
u = sat(K0ξ +K1y).

(4)

This motivates us to improve the performance of the semiglobal output controllers (4).
To do this, we exploit the idea of hybrid unification of two output controllers introduced
in [21] and generalized recently in [24].

In this paper, we consider a nonlinear control system for which we know a family of
output controllers (UR)R>0 with regions of attraction (ΩR)R>0, such that ΩR1 ⊂ ΩR2 ,
for all R1 < R2. We assume that when we use the controller UR:

• for large values of R, the solutions of the closed loop system converge slowly, and

• for some value R0, they converge quickly to the origin.

We are looking for a new output feedback that preserves the semiglobal stability of the
origin of nonlinear system under consideration such that, for a given region of attraction
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we use a slow controller UR for some large real R to steer the system trajectories to a
neighborhood of the origin, and consequently, we apply the fast local controller UR0 to
converge rapidly to the origin. The strategy of combining two controllers has been well
used in the literature [4, 5, 17, 30] and [23]. To apply this strategy, there are two main
difficulties.

1. The first difficulty is that, since we cannot measure all the components of the
system state, we do not know if the trajectories enter or not the region of attraction
ΩR0 . Thus, we do not know when we switch from the slower controller to the faster
one.

2. The second difficulty is that, when switching between the slower controller and
the faster one, the solution can leave the two regions of attraction ΩR0 and ΩR.
Hence, the solution cannot converge to the origin.

As in [21], the first difficulty is overcome by means of a norm estimator (For more details,
see [14]). For the second difficulty, we impose that when we apply the slower controller
UR, we cannot switch to the faster controller UR0 before some positive time τ∗. In our
study, the objective of the unification is different from the one solved in [24]. In the
cited paper, the objective is to stabilize the system at any price, while in our work, the
objective is the stabilization with a high performance. As a consequence, in [24] the
time trigger τ∗ is chosen sufficiently large. This means that they use the slow controller
frequently and this is not good from the performance point of view.

In our work, we prove that for all arbitrarily small positive time trigger τ∗ there exists
γ(R) (depending on τ∗ see (30)) such as we can unify Uγ(R) with UR0 . The obtained
controller has a region of attraction that contains the region of attraction of the system
under consideration in closed loop with the controller UR.

We point out that hybrid feedback can achieve asymptotic stabilization that is robust
to small measurement noise, actuator errors, and external disturbances (see [20]). For
these reasons, we consider the unification based on hybrid feedback.

The paper is organized as follows. In section 2, we present the problem under con-
sideration and we introduce the new hybrid output controller that solves it. Moreover,
we present our main result, which is summarized in Theorem 2.3. Section 3 is devoted
to the proof of the main Theorem. In section 4, we give two examples that illustrate the
improvement of the performance of our new hybrid output controller and we compare
this performance with the initial continuous controller and with the hybrid controller of
[24]. Section 5 is dedicated to a discussion about some drawbacks of the given hybrid
controller.

2. PROBLEM FORMULATION AND THE MAIN RESULT

Consider the nonlinear system {
ẋ = f(x, u),
y = h(x), (5)

where x ∈ Rnp is the system state, u ∈ Rm is the control input and y ∈ Rp is the
measured output. We assume that the function f : Rnp ×Rm → Rnp is locally Lipschitz
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with f(0, 0) = 0 and the function h : Rnp → Rp is continuously differentiable with
h(0) = 0.

We denote by |x| the Euclidean norm of vector x, and for R > 0 and n ∈ N∗ (where
N∗ is the set of strictly positive integers), the closed ball of Rn of radius R and centered
at the origin is denoted by Bn(0, R) and defined as follows

Bn(0, R) = {x ∈ Rn, |x| ≤ R}.

A continuous function α : [0, a[→ [0,+∞[ is said to belong to class K if it is strictly
increasing and α(0) = 0. A continuous function α : [0,+∞[→ [0,+∞[ is said to belong
to class K+∞ if it is a class K function and limr→+∞ α(r) = +∞.

2.1. Assumptions and objective

For system (5), we consider the following assumptions.

Assumption 1. There exist a positive integer l1 and a family of output feedback
controllers (UR)R>0 = (αR, ϕR)R>0 where, αR : Rl1×Rp → Rm, and ϕR : Rl1×Rp → Rl1
are continuous functions vanishing at the origin such that, the origin of the closed loop
system

(SR) :
{
ẋ = f(x, αR(ξ1, y)),
ξ̇1 = ϕR(ξ1, y),

(6)

is asymptotically stable with region of attraction containing the invariant set Bnp(0, R)×
Bl1(0, R).

Assumption 2. The functions αR and ϕR are uniformly bounded with respect the
parameter R, i. e. there exists a class K function θ such that

max{|ϕR(ξ1, y)|, |αR(ξ1, y)|} ≤ θ
(
|ξ1|+ |y|

)
, ∀(ξ1, y) ∈ Rl1 × Rp.

Assumption 3. System (5) is input-output-to-state stable (IOSS).

A discussion about the class of system under consideration and assumptions are given
in the following remarks.

Observation 2.1. Assumption 2 is not restrictive since asymptotic stabilization of non-
linear system is not a result of the magnitude of the feedback control but it is a result of
the “way” of stabilization. For example in [16], the class of considered system is globally
stabilizable by an arbitrarily small state feedback (see Assumption A2 page 3). More-
over, as explained by Mazenc in [11] that Assumption A2 is not restrictive since feedback
stabilization is the result of the “way” of stabilization and not of feedback magnitude. In
this work, we claim that Assumption 2 can be canceled. Precisely, we conjectured that
if there exists a family of output feedbacks (UR)R>0 = (αR, ϕR)R>0 satisfying Assump-
tion 1, then we can build a new family of output feedbacks (ŨR)R>0 = (α̃R, ϕ̃R)R>0

satisfying Assumptions 1 and 2.
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On the other hand, as in [24], Assumption 3 can be relaxed to require output-to-
state stability (OSS) of the closed loop system with the feedback controller UR instead
of the IOSS property. Since OSS is equivalent to the norm observability (see [28]), we
believe that the OSS property is the minimal assumption required to unify two output
feedbacks.

Observation 2.2. Note that, in Assumption 1 we can define the invariant setsBnp(0, R)×
Bl1(0, R), R > 0 by using a Lyapunov function W (x, ξ1) that satisfies

ω1(|(x, ξ1)|) ≤W (x, ξ1) ≤ ω2(|(x, ξ1)|),

and the derivative of W along the solutions of (6) satisfies

Ẇ (x, ξ1) < 0,

for all (x, ξ1) in a neighborhood of (0, 0), where ω1 and ω2 are class K functions. In this
setting, the invariant sets have the form

Ωc = {(x, ξ1) ∈ Rn × Rl1 ,W (x, ξ1) ≤ c},

for sufficiently small positive real c. This generates technical difficulties in the proof of
Theorem 2.3. That is why we assume that each invariant set of the system (6) contains
a set of the form Bnp(0, R) × Bl1(0, R), for some positive real number R. From a
topological point of view, there is no difference between the two settings since the norm
defined by the Lyapunov function W (x, ξ1) and the Euclidian norm on Rnp × Rl1 are
equivalent.

Furthermore, suppose that there exists a positive real R0 > 0 such that the solutions
of system (5) in closed loop with the output controller UR0 ,

(SR0) :
{
ẋ = f(x, αR0(ξ0, y)),
ξ̇0 = ϕR0(ξ0, y),

(7)

converge quickly to the origin and for all R > R0, the convergence of solutions of system
(SR0) is faster than the solutions of system (SR). In other words, the output controller
UR0 is faster than any output controller UR, R ≥ R0. We say that UR0 is the fast
controller and UR is a slow controller.

Our objective is to construct a new semiglobal output feedback controller for system
(5) that improves the performance locally. The main idea of the solution to this problem
is to use a slow controller to steer the trajectory in the region of attraction of the fast
controller and then we switch to the fast one.

This work is inspired from [21], where a hybrid output feedback controller solving the
problem of uniting local and global output feedback controllers has been constructed.
The previous work has been generalized in [24], for hybrid output feedbacks instead
of continuous output feedback and for output to state stable (OSS) systems instead
of IOSS systems. Here the problem is more challenging since we are interested in the
stabilization with high performance and not just the stabilization as in [24]. To build
our new semiglobal output hybrid feedback with high performance, as in [24], we impose
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that when we apply the slow controller UR, we cannot switch to the fast controller UR0

before some positive trigger time τ∗ > 0. In contrast to [24], where the trigger time τ∗

is chosen sufficiently large; in our work, the trigger time τ∗ can be chosen arbitrarily
small. This has been established using the adequate estimation (25) which induces the
estimation (26) in the proof of the main Theorem. This leads to the balance (30) between
the trigger time τ∗ and γ(R).

To present our hybrid controller, we introduce some basic concepts about hybrid
systems.

2.2. Basic concepts of hybrid system

A hybrid system (H) is governed by a continuous dynamic

if x ∈ C, ẋ = f0(x),

and a discrete dynamic
if x ∈ D, x+ = g0(x),

where, f0 : Rn → Rn and g0 : Rn → Rn are outer semi continuous and locally bounded
functions, C and D are two closed sets of Rn, C is the flow set and D is the jump
set with C ∪ D = Rn. The set S ⊂ R+ × N is a compact hybrid time domain if S =⋃J−1
j=0 ([tj , tj+1], j) for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 . . . ≤ tJ . The set

S is a hybrid time domain if for all (T, J) ∈ S, S ∩ ([0, T ] × {0, 1 . . . , J}) is a compact
hybrid time domain.

A hybrid arc x is a function defined on a hybrid time domain dom(x) such that for all
j ∈ N, t 7→ x(t, j) is locally absolutely continuous on dom(x) ∩ ([0,+∞[×{j}). A hybrid
arc x is a solution (or a trajectory) of the hybrid system (H) if,

1. for all j ∈ N, and for almost t such that (t, j) ∈ dom(x),

x(t, j) ∈ C and ẋ(t, j) = f0(x(t, j)),

2. for all (t, j) ∈ dom(x), such that (t, j + 1) ∈ dom(x),

x(t, j) ∈ D and x(t, j + 1) = g0(x(t, j)).

For more details about the existence of solutions of hybrid systems, see the recent text-
book [8].

For all R > 0, we consider a dynamic hybrid output feedback controller (C,D, u, v, w)
where, for a given integer l, C ⊂ Rl, D ⊂ Rl are closed sets, u : Rp × C → Rm,
v : Rp × C → Rl and w : Rp ×D → Rl are continuous functions. System (5) in closed
loop with the dynamic hybrid output feedback controller (C,D, u, v, w)R>0 indexed by
a real parameter R is defined as the hybrid system

if ξ ∈ C,
{
ẋ = f(x, u(h(x), ξ)),
ξ̇ = v(h(x), ξ),

if ξ ∈ D,
{
x+ = x,
ξ+ = w(h(x), ξ).

(8)
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The origin of the parameterized dynamic hybrid system (8) is said to be semiglobal
asymptotically stable, if

(1) Local stability : for all ε > 0, and all R > 0, there exists δ > 0, such that for all
initial conditions (x0, ξ0) in Rnp × (C ∪ D) and |(x0, ξ0)| < δ, for all trajectories
(x, ξ) of (8) starting from (x0, ξ0), we have

|(x(t, j), ξ(t, j))| < ε, ∀ (t, j) ∈ dom(x, ξ).

(2) semiglobal attractivity : for all compactK ⊂ Rnp×(C∪D), there exists a parameter
RK > 0, such that for all (x0, ξ0) ∈ K, for all trajectories (x, ξ) of (8) with
parameter RK starting from (x0, ξ0), we have

lim
t+j→∞

|(x(t, j), ξ(t, j))| = 0.

A family of hybrid controller (C,D, u, v, w)R>0 stabilizes semiglobally the origin of sys-
tem (5), if the origin of the closed loop system (8) is semiglobal asymptotically stable.

2.3. Problem formulation

Now, we can present in a precise way the problem that we want to solve.

Problem. Given any family of output controllers (UR)R≥R0 that stabilizes semiglobally
the origin of system (5), find a hybrid output feedback controller

UR = (CR, DR, uR, vR, wR),

such that,

(I1) The family of controllers (UR)R≥R0 stabilizes semiglobally the origin of system (5).

(I2) There exist a positive real δ and a matrix M ∈ Rl1×l, such that for all initial state
(x0, ξ0), |(x0, ξ0)| < δ, then (x,Mξ) is a trajectory of system (SR0), where (x, ξ)
is a trajectory of system (5) in closed loop with the hybrid controller UR.

Note that item (I2) is equivalent to say that, for any R ≥ R0, the hybrid controller
UR is locally equal to the fast controller UR0 . As we will see in the proof of Theorem 2.3,
the new hybrid output feedback UR is a hybrid combination of certain slow controller
Uγ(R) with the fast controller UR0 . Then, item (I2) says that the hybrid controller UR
has the highest performance of the fast continuous controller UR0 locally.

To solve the above problem, using Assumption 3, we introduce two norm estimators
of the system state.

2.4. Two norm estimators

The IOSS property of system (5) (See [14]) given by Assumption 3 is equivalent to the
existence of an IOSS-Lyapunov function V1 that satisfies

κ1(|x|) ≤ V1(x) ≤ κ2(|x|), (9)
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where κ1, κ2 are class K∞ functions, and

V̇1(x) = ∇V1(x).f(x, u) ≤ −V1(x) + σ1(|u|) + σ2(|y|), (10)

for all (x, y, u) ∈ Rnp × Rp × Rm, and for some class K∞ functions σ1 and σ2. We
point out that, for IOSS-nonlinear system there is no a constructive method to build an
IOSS-Lyapunov function satisfying (10).

Estimation (10) can be used to construct the following norm estimator for system
(5),

ż1 = −z1 + ρ1(u, h(x)), (11)

with ρ1(u, y) = σ1(|u|) + σ2(|y|). By taking the difference between (10) and (11), we
obtain

V̇1(x)− ż1 ≤ −(V1(x)− z1). (12)

Integrating (12), it yields

V1(x(t))− z1(t) ≤ (V1(x0)− z0
1)e−t

≤ (V1(|x0|) + |z0
1 |)e−t.

Then,
V1(x(t)) ≤ z1(t) + (V1(x0) + |z0

1 |)e−t, ∀t ∈ [0, Tsup(x, z1)), (13)

for all initial conditions (x0, z0
1) in Rnp × R+, and all piecewise continuous signal u(t),

where x(t) and z1(t) are the solutions of systems (5) and (11), respectively.
We use the norm estimator z1(t) in the hybrid controller in the following way. When

we apply the slow controller and after a large time t if z1(t) is small, i. e. z1(t) ≤ ε1a,
by estimation (13) we deduce that V1(x(t)) becomes small, i. e. V1(x(t)) ≤ ε1b (see the
proof of Lemma 3 page 23). Then, we conclude that x(t) enters the region of attraction
of the fast controller and then we can switch to it.

Moreover, we construct a “local” norm estimator for the state of the closed loop
system with hybrid controller. Observe that the Lyapunov function

V0(x, ξ0) = V1(x) +
1
2
|ξ0|2,

is an IOSS-Lyapunov function for system (7){
ẋ = f(x, u),
ξ̇0 = v,

(14)

with input (u, v) and output (h(x), ξ0). Indeed, the derivative of V0 along the solutions
of system (14) is bounded as

V̇0(x, ξ0) ≤ −V0(x, ξ0) + ρ0(h(x), ξ0, u, v), (15)

where
ρ0(h(x), ξ0, u, v) = σ1(|u|) +

1
2
|v|2 + σ2(|y|) + |ξ0|2.
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In view of (15), the norm estimator

ż0 = −z0 + ρ0(h(x), ξ0, u, v), (16)

satisfies,
V0(x(t), ξ0(t)) ≤ z0(t) + (V0(x0, ξ00) + |z0

0 |)e−t, (17)

for all initial conditions (x0, ξ00 , z
0
0), and all piecewise continuous signals u : R+ → Rm,

v : R+ → Rl1 , and t ∈ [0, Tsup(x, ξ0, z0)), where x(t) and z0(t) are the solutions of the
systems (14) and (16), respectively.

Note that, when we apply the fast controller and when V0(x(t), ξ0(t)) grows with
respect to time t; by estimation (17), we deduce that z0(t) becomes large enough to
conclude that (x(t), ξ0(t)) is not in the region of attraction of the fast controller. And
then, we must switch to the slow controller.

2.5. The hybrid controller and the closed loop system

As in [21], and by continuity of the functions V1, ρ0, ρ1 and h, for all R > R0, there
exist a positive constants ε0a < ε0bR, ε1a < ε1b and ε2, such that the following items are
satisfied :

(I1) The set
{(x, ξ0) ∈ Rnp × Rl1 , V0(x, ξ0) ≤ ε0bR},

is included in Bnp(0, R)×Bl1(0, R).

(I2) Since the trajectories of system (6) converge to the origin, then for all (x0, ξ01) ∈
Bnp(0, R)×Bl1(0, R), there exists a time t0, such that

V1(x(t)) + |ξ1(t)| < ε2, ∀t ∈ [t0, Tsup(x0, ξ01)[. (18)

(I3) For each trajectory of system (SR) starting from {(x, ξ0), V1(x) ≤ ε1b, ξ0 = 0}, we
have ρ0(h(x(t)), ξ0(t), 0, αR(.), ϕR(.), 0) < ε0a,∀t ≥ 0.

(I4) For all initial conditions (x0, ξ01) in the set {(x, ξ1) ∈ Rnp ×Rl1 , V1(x)+ |ξ1| ≤ ε2},
the trajectory of system (SR) satisfies ρ1(αR(h(x(t), ξ1(t)), h(x(t)) < ε1a,∀t ≥ 0.

Note that, ε0bR can be chosen sufficiently large when R tends to +∞. Since R > R0,
ε1b and ε2 are chosen independent from R, and by Assumption 2, ε0a, ε1a are independent
from R.

Now, using (I1) to (I4) we can give an explicit expression of the new hybrid output
controller (UR)R>R0 . Let τ∗ > 0 be an arbitrarily strictly positive real time, and R > R0.
Denote l = 2l1 + 4, and decomposing ξ ∈ Rl as ξ = (ξ0, ξ1, z0, z1, s, q) ∈ Rl1 ×Rl1 ×R×
R×R×R. Consider the hybrid output controller UR = (CR, DR, uR, vR, wR) defined as
follows :

• CR = C0R ∪ C1R, DR = D0R ∪D1R,

• uR : Rp × CR → Rp, (y, ξ) 7→ (1− q)αR0(y, ξ0) + qαγ(R)(y, ξ1),
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• vR : Rp × CR → Rl

(y, ξ) 7→
(

(1− q)ϕR0(y, ξ0), qϕγ(R)(y, ξ1), (1− q)(−z0 + ρ0R0(y, ξ0)),

− z1 + ρ1

(
(1− q)αR0(y, ξ0) + qαγ(R)(y, ξ1), y

)
, q, 0

)
,

• wR : Rp ×DR → Rl
(y, ξ) 7→ (0, 0, (1− q)z0, z1, 0, 1− q),

where
ρ0R0(h(x), ξ0) = ρ0(h(x(t)), ξ0(t), αR0(.), ϕR0(.)),

with

• C0R = {ξ : 0 ≤ z0 ≤ ε0a, 0 ≤ z1, ξ1 = 0, s = 0, q = 0},

• C1R = {ξ : 0 ≤ z0, 0 ≤ z1, ξ0 = 0, s ≥ 0, q = 1},

• D0R = {ξ : ξ1 = 0, z0 ≥ ε0a, z1 ≥ 0, s = 0, q = 0},

• D1R = {ξ : 0 ≤ z0 ≤ ε0a, 0 ≤ z1 ≤ ε1a, ξ0 = 0, s ≥ τ∗, q = 1},

and γ(R) is a positive real to be selected later. System (5) in closed loop with the hybrid
output controller UR is defined as the hybrid system:

if ξ ∈ CR,
{
ẋ = f(x, uR(h(x), ξ)),
ξ̇ = vR(h(x), ξ),

if ξ ∈ DR,

{
x+ = x,
ξ+ = wR(h(x), ξ).

(19)

The closed loop system (19) can be represented by the following automate

C0R :

&%
'$

ẋ = f(x, αR0(y, ξ0),
ż0 = −z0 + ρ0R0(y, ξ0),
ż1 = −z1 + ρ1(αR0(y, ξ0)),
ξ̇0 = ϕR0(y, ξ0),
ξ̇1 = 0,
ṡ = 0, q̇ = 0,

z0 ≥ ε0a

D0R :

x+ = x
ξ+0 = 0, ξ+1 = ξ1,

z+
0 = z0,

z+
1 = z1,

q+ = 1, s+ = 0, C1R :

&%
'$

ẋ = f(x, αγ(R)(y, ξ1)),
ż0 = 0,

ż1 = −z1 + ρ1(αγ(R)(y, ξ1), y)
ξ̇0 = 0,
ξ̇1 = ϕγ(R)(y, ξ1)

ṡ = 1, q̇ = 0

z1 ≤ ε1a and s ≥ τ∗

: D1R

x+ = x,
ξ+0 = ξ0, ξ

+
1 = 0,
z+
0 = 0,
z+
1 = z1,

s+ = 0, q+ = 0,
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2.6. The main Theorem

The main result of this paper is summarized in the following Theorem.

Theorem 2.3. Consider the system (5) with assumptions 1, 2 and 3. Let τ∗ be an
arbitrarily strictly positive real time. Then, there exists γ(R) > 0 such that the family
of hybrid output controller

(
UR
)
R>R0

defined above stabilizes semiglobally the origin of
system (5). Furthermore, the set Bnp(0, R)×Bl1(0, R)×Bl1(0, R)×R4 ∩

(
Rnp × (CR ∪

DR)
)

is included in the region of attraction of the closed loop system (19).

Let us give the main ideas of the proof of Theorem 2.3 Intuitively, due to the expres-
sion of CR , for large initial conditions, the trajectories of (5) in closed loop with the
controller UR are trajectories of (6) as long as the state variable z1 of the second norm
estimator does not attain the value ε1a. Due to item (I2) and item (I4) of Assumption
2, for sufficiently large time, the state variable z1 becomes smaller than ε1a. Then the
trajectory enters D1R and C0R successively. It is possible that, as the first time when we
enter C0R, we are not in the region of attraction of (7). However using (11), (13), (15),
(16) , and item (I3) of Assumption 2, we may prove that, for sufficiently large time,
V0(x, z0) is smaller than ε0bR, and thus we eventually are in C0R and also in the region
of attraction of the fast local controller. Due to the expression of C0R, we continue to
follow the trajectories of (7), and, with item (I1) of Assumption 2, we converge to the
origin.

Some remarks about the new hybrid output controller are given.

Observation 2.4. The main difficulty in our problem of uniting two local output con-
trollers UR0 and Uγ(R) (γ(R) is defined in the proof of Theorem 2.3 in (30)) with regions
of attraction Ω0 and Ω1 with Ω0 ⊂ Ω1, is the following. When we switch between the two
controllers, we must not leave the region of attraction Ω1. This is completely different
from the problem of uniting local and global output controllers which has been solved
in [21]. This difficulty has been surmounted in [24] by adding a sufficiently large trigger
time τ∗ when the “global” controller is applied to guarantee the entry of the trajectories
to the region of attraction of the local controller. From a performance point of view,
the strategy proposed in the cited paper is not good since we are forced to use the slow
controller frequently.

To solve our problem, for the given compact set Bnp(0, R) and positive trigger time
τ∗, we consider two controllers UR0 and Uγ(R) where γ(R) is chosen sufficiently large
(see (30)). The new hybrid controller UR is equal to the fast controller UR0 near the
origin and equal to the slow controller Uγ(R) away from the origin. And we impose that
any switch from Uγ(R) to UR0 must occur after the trigger time τ∗. As we will see in
the proof of Theorem 2.3, this strategy of switch is designed such that the trajectories
of system (5) with hybrid controller UR do not leave the region of attraction of system
(5) with continuous controller Uγ(R).

To guarantee a high performance with the new hybrid controller UR i. e. to minimize
the use of the slow continuous controller Uγ(R), the trigger time τ∗ can be chosen ar-
bitrarily small. Noting that, if τ∗ tends to 0, then γ(R) converges to +∞. In addition,
if we select τ∗ large then in the hybrid controller UR we will use frequently the slow
continuous controller Uγ(R). And this is not good for the performance. Thus, to obtain
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a high performance we chose τ∗ “not small” and “not large”. An “optimal” value of τ∗

(if there exists) depends on the system itself and on the semiglobal continuous controller.
We believe that a computation of the optimal value of τ∗ is hard even for linear systems
subject to saturation actuators (3) – (4).

Finally, we note that the trigger time τ∗ should not to be used when we apply the
fast continuous controller UR0 , otherwise, the trajectory can leave the two regions of
attraction of the two controllers.

Observation 2.5. The main drawback in the proposed hybrid controller (UR)R≥R0 is
the following. According to Proposition 3.1 and for R > R0, we use a continuous
controller Uγ(R) to steer the system trajectories in the region of attraction of the fast
controller UR0 , but from a practical point of view the convergence becomes slow if γ(R)
is large. This is not good from a performance point of view. It seems possible to improve
the performance of the new hybrid controller (UR)R>R0 by using the controller UR+ε

instead of Uγ(R) to steer the system trajectories in the region of attraction of the fast
controller, for small positive real ε. This scenario will be feasible if we solve the problem
of the unification of two local output controllers UR0 and UR with region of attractions
Ω0 and Ω1 such that Ω0 ⊂ Ω1.

Observation 2.6. For linear systems, the detectability implies IOSS. Note that for
detectable linear time unvarying system, we can construct a convergent Luenberger
observer that estimates not only the norm of the state but also the state itself. We
believe that when we change the two norm estimators in the hybrid controller (UR)R>R0

by the state of the Luenberger observer, this leads to better improve the performance
for linear systems.

3. PROOF OF THEOREM 2.3

In this section, we give a constructive proof of the main result of this paper which is
summarized in Theorem 2.3. To make the proof easy to follow, we break it up into
four steps. In the first step, we prove the existence of the solutions of the closed loop
system (19). The second step is devoted to the local stability of the origin of the closed
loop system (19). In the third step, we prove that there exists γ(R) > 0, such that
all solutions of the closed loop system (19) starting from an initial condition in the
set Bnp(0, R) × Bl1(0, R) × Bl1(0, R) × R4 ∩

(
Rnp × (CR ∪ DR)

)
do not leave the set

Bnp(0, γ(R))×Bl1(0, γ(R))×Bl1(0, γ(R))×R4∩
(
Rnp× (CR∪DR)

)
. Finally, the fourth

step is devoted to prove that all solutions started from Bnp(0, R)×Bl1(0, R)×Bl1(0, R)×
R4 ∩

(
Rnp × (CR ∪DR)

)
converge to the origin.

3.1. Existence of hybrid solutions of the closed loop system (19)

In the following, we prove the existence of maximal solutions of the closed loop system
(19) using the viability conditions

• vR(y, ξ) ∩ TCR(ξ) 6= ∅, for all (y, ξ) ∈ Rp × ∂CR\DR,

• wR(y, ξ) ∈ CR ∪DR, for all (y, ξ) ∈ Rp ×DR,
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where ∂CR denotes the boundary of CR and TCR(ξ) the tangent cone of CR in ξ (See
[9] or the recent textbook [8] for more details).

Let us prove the first item. Observe that zq = 0, for all ξ ∈ (∂CR\DR). From
(11) and (16), we get żq ≥ 0, in (∂CR\DR), for all q ∈ {0, 1}. Then, when flowing
from the boundary of CR, we enter CR, which gives vR(y, ξ) ∩ TCR(ξ) 6= ∅, for all
(y, ξ) ∈ Rp × ∂CR\DR.

Concerning the second item, in view of the expression of wR, we have wR(y, ξ) =
(0, 0, 0, z1, 0, 1) ∈ C1R if ξ ∈ D0R, and wR(y, ξ) = (0, 0, 0, z1, 0, 0) ∈ C0R if ξ ∈ D1R.
Thus, for all (y, ξ) ∈ Rp × DR, wR(y, ξ) ∈ CR ∪ DR. This completes the proof of the
first step.

3.2. Stability of the origin of the closed loop system (19): Proof of item
(I2)

Let R > R0. The proof of this step can be found in [21]. Precisely, we can choose δ small
enough and independent from R such that for all the initial conditions (x0, ξ0) satisfying
|(x0, ξ0)| ≤ δ, the trajectory of (19) do not leave C0R. Thus, we obtain the local stability
and moreover Item (I2) of our problem is satisfied with M = (Il1 0l1×(l1+4)), where Il1
is the l1 × l1 identity matrix and 0l1×(l1+4) is the l1 × (l1 + 4) null matrix.

3.3. Region of attraction of the closed loop system (19): Proof of item (I1)

This step is the main contribution of this work. In the following proposition, we prove
that all the solutions of the closed loop system (19) do not leave some compact set as
shown in Figure 2.

Proposition 3.1. For all R > R0, there exists a positive constant γ(R) > R, such that
for all initial conditions (x0, ξ0) ∈ Bnp(0, R)×Bl1(0, R)×Bl1(0, R)×R4 ∩

(
Rnp × (CR ∪

DR)
)
, all trajectories (x(t, j), ξ(t, j)) of the closed loop system (19), does not leave the

set Bnp(0, γ(R))×Bl1(0, γ(R))×Bl1(0, γ(R))× R4 ∩
(
Rnp × (CR ∪DR)

)
.

P r o o f . Let (x0, ξ0) ∈ Bnp(0, R) × Bl1(0, R) × Bl1(0, R) × R4 ∩
(
Rnp × (CR ∪ DR)

)
and (x(t, j), ξ(t, j)) a trajectory of hybrid system (19) starting from the initial condition
(x0, ξ0) and a hybrid time domain dom(x, ξ).

Let ((tn, jn))n∈IN be a sequence of hybrid time of dom(x, ξ) such that t0 = j0 = 0,
(x(0, 0), ξ(0, 0)) = (x0, ξ0) and IN = {0, 1, . . . , N}, where N ∈ N ∪ {+∞}. We assume
that we have no jump between two points of the previous sequence.

In the following, we prove that there exists γ(R) > R, such that

(x(t, jn), ξ0(t, jn), ξ1(t, jn)) ∈ Bnp(0, γ(R))×Bl1(0, γ(R))×Bl1(0, γ(R)), (20)

for all t ∈ [tn, tn+1[ and all n ∈ IN .
Consider the case where ξ0 ∈ C0R. Using (9), from (17) and the definition of C0R, we
get

V0(x(t, 0), ξ0(t, 0)) ≤ z0(t, 0) + (V0(x0, ξ00) + |z0
0 |)e−t,

≤ ε0a + (κ2(R) +
1
2
R2)e−t

≤ ε0a + κ2(R) +
1
2
R2. (21)
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Bn(0, R)&%
'$Bn(0, γ(R))

Uγ(R)

Uγ(R)

&%
'$

.x
0

.

.

Bn(0, R0)
UR0

UR0
.&%

'$

Fig. 2. Time evolution of a solution x(t, j) of system (19) with the

hybrid controller UR.

Thus, it follows that for all (t, 0) ∈ dom(x, ξ),

|x(t, 0)| ≤ κ−1
1

(
ε0a + κ2(R) +

1
2
R2

)
:= γ0(R), (22)

and

|ξ0(t, 0)| ≤

√
2
(
ε0a + κ2(R) +

1
2
R2

)
:= γ1(R). (23)

Define
γ2(R) = max{R, γ0(R), γ1(R)}.

Since in C0R, ξ1(t, 0) = 0, we conclude that

(x(t, 0), ξ0(t, 0), ξ1(t, 0)) ∈ Bnp(0, γ2(R))×Bl1(0, γ2(R))×Bl1(0, γ2(R)),

for all t ∈ [t0, t1[.
Now, we treat the case when the initial condition ξ0 ∈ DR\CR. In this case, we

switch to CR, with

(x(0, 1), ξ0(0, 1), ξ1(0, 1)) = (x(0, 1), 0, 0) ∈ Bnp(0, R)×Bl1(0, R)×Bl1(0, R).

In view of the above discussion about the initial condition ξ0 and neglecting the case
in the subsection 3.2 where the solutions do not leave C0R, without loss of generality we
may assume that the trajectory (x(t, j), ξ(t, j)) of system (19) satisfies

• ξ(t, j2n) ∈ C1R, for all t ∈ [t2n, t2n+1[, and

• ξ(t, j2n+1) ∈ C0R, for all t ∈ [t2n+1, t2n+2[,
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for all n ∈ IN , where

(x(0, 0), ξ0(0, 0), ξ1(0, 0)) ∈ Bnp(0, γ2(R))×Bl1(0, γ2(R))×Bl1(0, γ2(R)).

In the sequel, we denote
R̃n := V1(x(tn, jn)).

Using (17), and since ξ1(t2n, j2n) = 0, ξ0(t, j2n) = 0 in C1R, we have

V0(x(t, j2n), 0) ≤ z0(t, j2n) + (R̃2n + z0(t2n, j2n))e−(t−t2n).

for all t ∈ [t2n, t2n+1[. From the definition of C0R and D0R, we deduce that z0(t2n, j2n) =
ε0a. Note that since in C1R, we have ż0(t, j2n) = 0, it yields that z0(t, j2n) = ε0a, for all
t ∈ [t2n, t2n+1[. Since V1(x) ≤ V0(x, ξ0), when t tends to t2n+1, it yields

R̃2n+1 ≤ ε0a + (R̃2n + ε0a)e−τ
∗
. (24)

Again, using (17) and since ξ0(t2n+1, j2n+1) = 0, z0(t2n+1, j2n+1) = 0, and ξ1(t, j2n+1) =
0, in C0R, we get

V0(x(t, j2n+1), ξ0(t, j2n+1)) ≤ z0(t, j2n+1) + R̃2n+1e
−(t−t2n+1),

for all t ∈ [t2n+1, t2n+2[. Since V1(x) ≤ V0(x, ξ0) and in C0R, z0(t, j2n+1) ≤ ε0a, when t
tends to t2n+2, it yields

R̃2n+2 ≤ ε0a + R̃2n+1,

≤ 2ε0a + (R̃2n + ε0a)e−τ
∗
.

Thus, we get
R̃2n+2 ≤ 2ε0a + ε0ae

−τ∗ + R̃2ne
−τ∗ . (25)

From estimation (25), it follows

R̃2n ≤ R̃0e
−nτ∗ + (2ε0a + ε0ae

−τ∗)
n−1∑
i=0

(
e−τ

∗
)i

(26)

≤ κ2(γ2(R)) +
(
2ε0a + ε0ae

−τ∗) 1
1− e−τ∗

:= γ̃2(R), (27)

for all n ∈ IN . From (9), we get

|(x(t2n, j2n)| ≤ κ−1
1 (γ̃2(R)). (28)

Using (24), it yields

R̃2n+1 ≤ ε0a + (R̃2n + ε0a)e−τ
∗
,

≤ ε0a + ε0ae
−τ∗ + γ̃2(R)e−τ

∗
:= γ̃3(R).

In view of (9), we get
|x(t2n+1, j2n+1)| ≤ κ−1

1 (γ̃3(R)). (29)
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Now, define γ(R) as follows

γ(R) = max
{
γ2(R), κ−1

1 (γ̃2(R)),
√

2(ε0a + γ̃3(R)), κ−1
1 (ε0a + γ̃3(R))

}
. (30)

Since ξ1(tn, jn) = ξ0(tn, jn) = 0, from (28) and (29) we obtain

(x(tn, jn), ξ0(tn, jn), ξ1(tn, jn)) ∈ Bnp(0, γ(R))×Bl1(0, γ(R))×Bl1(0, γ(R)).

Now, let prove (20). First, in [t2n+1, t2n+2[, from (17) it yields

V0(x(t, j2n+1), ξ0(t, j2n+1)) ≤ z0(t, j2n+1) + R̃2n+1e
−(t−t2n+1),

≤ ε0a + R̃2n+1,

≤ ε0a + γ̃3(R).

Then,
V1(x(t, j2n+1)) ≤ ε0a + γ̃3(R),

and
1
2
|ξ0(t, j2n+1)|2 ≤ ε0a + γ̃3(R),

which implies that
|x(t, j2n+1)| ≤ κ−1

1 (ε0a + γ̃3(R)) ≤ γ(R),

and
|ξ0(t, j2n+1)| ≤

√
2(ε0a + γ̃3(R)) ≤ γ(R).

Since ξ1(t, j2n+1) = 0, for all t ∈ [t2n+1, t2n+2[, it follows that

(x(t, j2n+1), ξ0(t, j2n+1), ξ1(t, j2n+1)) ∈ Bnp(0, γ(R))×Bl1(0, γ(R))×Bl1(0, γ(R)),

for all t ∈ [t2n+1, t2n+2[.
Finally, in [t2n, t2n+1[, (x(t, j2n), ξ1(t, j2n)) is a trajectory of system (Sγ(R)){

ẋ = f(x, αγ(R)(ξ1, y))
ξ̇1 = ϕγ(R)(ξ1, y)

(31)

with initial condition (x(t2n, j2n), ξ1(t2n, j2n)) ∈ Bnp(0, γ(R)) × Bl1(0, γ(R)) which is
included in the region of attraction of (31). Since ξ0(t, j2n) = 0, for all t ∈ [t2n, t2n+1[,
it follows that (x(t, j2n), ξ0(t, j2n), ξ1(t, j2n)) do not leave Bnp(0, γ(R))×Bl1(0, γ(R))×
Bl1(0, γ(R)), for all t ∈ [t2n, t2n+1[.

So, for all n ∈ IN , we have (20) and this achieves the proof of Proposition 3.1. �

3.4. Convergence of hybrid trajectories

Let (x0, ξ0) ∈ Bnp(0, R)×Bl1(0, R)×Bl1(0, R)×R4 ∩
(
Rnp × (CR ∪DR)

)
. Using three

Lemmas, we prove the convergence to the origin of any hybrid trajectory of system (19)
with initial condition (x0, ξ0).

Lemma 3.2. There exists a hybrid time (t, j) ∈ dom(x, ξ), such that

q(t, j) = 0.
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P r o o f . By contradiction, assume that

q(t, j) = 1,∀(t, j) ∈ dom(x, ξ), (32)

then, dom(x, ξ) = [0, T ) × {0}. If T < +∞, then the hybrid trajectory (x(t, 0), ξ(t, 0))
eventually leaves any compact subset of Rnp × Rl. Since in C1R, ξ0 = 0, and us-
ing (11), z1(t, 0) and z0(t, 0), cannot grow unbounded if (x(t, 0), ξ1(t, 0)) is bounded.
Then, (x(t, 0), ξ1(t, 0)) is a trajectory of (31) which grows unbounded. This is im-
possible since the initial condition (x0, ξ01) is in the set Bnp(0, γ(R)) × Bl1(0, γ(R)),
which is included in the region of attraction of system (31). Therefore, T = +∞ and
(x(t, 0), ξ1(t, 0)) is trajectory of (31) starting from (x0, ξ01) in Bnp(0, R) × Bl1(0, R) ⊂
Bnp(0, γ(R))×Bl1(0, γ(R)) which is included in the region of attraction of system (31),
then the trajectory (x(t, 0), ξ1(t, 0)) converges to the origin. Therefore, from (11), there
exists a time t̄ ≥ τ∗, such that z1(t̄, 0) ≤ ε1a and z0(t̄, 0) ≤ ε0a. Then, we enter succes-
sively, in D1R and in C0R and this contradicts (32). �

Lemma 3.3. Suppose that there exists a hybrid time (t̄, j̄) ∈ dom(x, ξ), such that,

q(t, j) = 0,∀(t, j) ∈ dom(x, ξ), (t, j) ≥ (t̄, j̄). (33)

Then, any hybrid trajectory (x(t, j), ξ(t, j)) of system (19) is complete and converges to
the origin.

P r o o f . Assume (33). Then, there exists j0 ∈ N, such that ξ(t, j0) ∈ C0R, for all
t ∈ [t̄, T ), where

T = sup{t,∃j, (t, j) ∈ dom(x, ξ)}.

By contradiction, suppose that T is finite. Then, one of the components of the state
(x(t, j), ξ(t, j)) is unbounded. Note that in C0R, z0(t, j0) is bounded, ξ1(t, j0) = 0 and
s(t, j0) = 0, for all t ∈ [t̄, T [. Therefore, (x(t, j0), ξ0(t, j0), z1(t, j0)) is unbounded. Note
that if (x(t, j0), ξ0(t, j0)) is bounded, then z1(t, j0) is bounded. So, (x(t, j0), ξ0(t, j0)) is
unbounded. Thus, by (16) the component z0(t, j0) is unbounded and this contradicts
with the fact that in C0R, 0 ≤ z0(t, j0) ≤ ε0a. Therefore, T = +∞ and the hybrid
trajectory (x(t, j), ξ(t, j)) is complete.

Due to (17) and in C0R, z0(t, j0) ≤ ε0a and ξ1(t, j0) = 0, there exists a time t̃ ≥ t̄,
such that

V0(x(t̃, j0), ξ0(t̃, j0), 0) ≤ ε0b,

and then (x(t̃, j0), ξ0(t̃, j0)) belongs to Bnp(0, R0)× Bl1(0, R0) which is included in the
region of attraction of system (SR0). Hence, (x(t, j0), ξ0(t, j0)) converges to the origin.
Since systems (16) and (11) are ISS, z0(t, j0) and z1(t, j0) tends also to 0. Moreover,
ξ1(t, j0) = s(t, j0) = q(t, j0) = 0, for all t ≥ t̄. Then, the hybrid trajectory (x(t, j), ξ(t, j))
converges to the origin. �

Lemma 3.4. There does not exist a non decreasing infinite sequence of hybrid times
((tn, jn))n∈N in dom(x, ξ), such that,

q(t2n, j2n) = 1, q(t2n+1, j2n+1) = 0, ∀ n ∈ N. (34)
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P r o o f . By contradiction, assume that there exists a non decreasing sequence of hybrid
times (tn, jn) ∈ dom(x, ξ) satisfying (34), for all n ∈ N. Without loss of generality, we
may assume that we have no jump between two points of this sequence. From (34),
the trajectory ξ(t, j2n) is in C1R for all t ∈ [t2n, t2n+1[, and ξ(t, j2n+1) is in C0R for all
t ∈ [t2n+1, t2n+2[, for all n ∈ N. Then,

t2n ≥ nτ∗, ∀n ∈ N,

which implies that T = +∞. Using inequality (13) and the continuity of x(t, j) and
z1(t, j) with respect to t, it yields

V1(x(t, j)) ≤ z1(t, j) + (V1(x0) + |z0
1 |)e−t, (35)

for all (t, j) ∈ dom(x, ξ). Since z1(t2N+1, j2N+1) ≤ ε1a, from (35) we obtain

V1(x(t2N+1, j2N+1)) ≤ ε1a + (V1(x0) + |z0
1 |)e−Nτ

∗
.

Then, we can find a positive integer N , such that

V1(x(t2N+1, j2N+1)) ≤ ε1b.

Thus, (x(t, j2N+1), ξ0(t, j2N+1)) is a trajectory of (SR0) for t ∈ [t2N+1, t2N+2[ with the
initial condition (x(t2N+1, j2N+1), ξ0(t2N+1, j2N+1)) which belongs in the set

{(x, ξ0), V1(x) ≤ ε1b, ξ0 = 0}.

Using (I3), we get

ρ0(h(x(t, j2N+1)), ξ0(t, j2N+1), 0, αR0(.), ϕR0(.), 0) < ε0a, ∀t ∈ [t2N+1, t2N+2[.

Thus, from (16) we obtain

z0(t, j2N+1) < ε0a, ∀t ∈ [t2N+1, t2N+2[. (36)

Then, we do not enter C1R, abut this contradicts with (34). This achieves the proof of
this lemma. �

4. ILLUSTRATIVE EXAMPLES

Example 4.1. To compare the performance of our hybrid controller with the continuous
semiglobal output controller and hybrid output controller introduced in [24], we consider
the following linear saturated system{

ẋ = Ax+Bsat(u),
y = Cx,

(37)

where x =
(

x1

x2

)
∈ R2, A =

(
0 1
0 1

)
, B =

(
0
1

)
, C = (1 0) and sat(.) is defined by

(2) with ū = 100. An output controller of system (37) is given by

u = Kx̂, (38)
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where K = (k1, k2) ∈ R2, and x̂ =
(

x̂1

x̂2

)
is the solution of the linear Luenberger

observer
˙̂x = Ax̂+Bsat(u) + L(Cx− Cx̂), (39)

where L =
(

l1
l2

)
∈ R2. The closed loop system (37) – (38) – (39) is written in a compact

form as (
ẋ
˙̂x

)
= A

(
x
x̂

)
+ B sat(Kx̂), (40)

where, A =
(

A 0
LC A− LC

)
, B =

(
B
B

)
. Gains matrices K and L are computed as

follows, K = Y P−1, L = Q−1T , where Q and P are symmetric positive definite 2 × 2
matrices, T is 2× 1 matrix and Y is 1× 2 matrix satisfying the following linear matrix
inequalities (LMI):

PAT +AP +BY + Y TBT ≤ −2λP, (41)

QA+ATQ− CTTT − TC ≤ −2λQ. (42)

where λ is a positive constant. To compute a set included in the region of attraction of
system (40), we can use for example [29]. Such set has the form

Ωλ =
{
X , XW−1

λ X
T ≤ 1

}
,

where X = (x1, x2, x̂1, x̂2) and Wλ is 4× 4 symmetric positive definite matrix satisfying
the following LMIs: (

WλAT + AWλ BS − ZT
∗ −2S

)
< 0, (43)

and, (
Wλ WλK

T − ZT
∗ ū2

)
≥ 0. (44)

It is worthy to note that the origin of the closed loop system (40) is exponentially
stable with a decay rate λ and a region of attraction containing Ωλ. Note that if λ is
small, then the region of attraction Ωλ will be large and if λ is large, then the region
of attraction Ωλ will be small. To improve the performance of the semiglobal controller
(38) – (39) when Ωλ is large, i. e. λ is small, let us construct a hybrid controller by
uniting two local controllers. It is simple to see that Assumptions 1 and 3 are satisfied.
For Assumption 2, we can choose the gain matrices K and L bounded for small values
of λ (i. e. large values of R in Assumption 2.) by choosing in LMIs (41) and (42), P ≥ I2
and Y Y T ≤ 1, TTT ≤ 1.

The fast controller is chosen with λ = λ0 = 20. Computations give

K0 =
(
−800.5492 −41

)
, L0 =

(
41.0008
882.5390

)
and

Wλ0 = 103


0.0037 −0.0281 0.0038 −0.0615
−0.0281 0.3055 −0.0269 0.5488
0.0038 −0.0269 0.0042 −0.0598
−0.0615 0.5488 −0.0598 1.1615

 .
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The maximum value of R0 such that B2(0, R0)×B2(0, R0) ⊂ Ωλ0 is

R0 =

√
1

λmax(W−1
λ0

)
= 0.2686.

We use the Algorithm 4.3 in [21] to compute ε0b and ε1b. Calculations give ε0b =
ε1b = 0.3196. Let ε1a = ε0a = 0.2876. The IOSS-Lyapunov function of system (37) is
selected as follows

V (x1, x2) = (x1, x2)P1(x1, x2)T ,

where P1 is 2× 2 symmetric positive definite matrix satisfying the following LMI

P1A+ATP1 +M1C + CTMT
1 < −2P1.

where M1 is 2× 1 unknown matrix. Denote M = P−1
1 M1. A solution to the previous

LMI is the following

P1 =
(

17.0058 −4.0741
−4.0741 2.0370

)
, M =

(
−3.0001
−8.3486

)
.

Note that κ1(r) = r2 and κ2(r) = 18.0429r2. Then, the dynamics of the norm estimators
z0 and z1 are given by (16) and (11) with

ρ1(y, u) = 2(u, y)
(
BTP1B 0

0 MTP1M

)
(u, y)T = 2.0370u2 + 90.9569y2,

and

ρ0R0(h(x), ξ0) = 2.0370(K0ξ0)2 + 90.9569x2
1 + |ξ0|2

+
1
2
|Aξ0 +Bsat(K0ξ0) + L0(Cx− Cξ0)|2 ,

where ξ0 = (x̂01, x̂02) and ξ1 = (x̂11, x̂12) are governed by the dynamics

ξ̇0 = Aξ0 +Bsat(K0ξ0) + L0(Cx− Cξ0),

and
ξ̇1 = Aξ1 +Bsat(K2ξ1) + L2(Cx− Cξ1).

The slow controller is chosen with λ = λ1 = 7. Solutions K1 and L1 to (41) and (42)
with λ = 7 are given by

K1 = (−98.6110 − 15.0008), L1 = (15.0003 128.4948)T .

To compute Wλ1 we solve LMIs (43) and (44) and such that Ωλ0 ⊂ Ωλ1 which is
equivalent to the following LMI (

Wλ1 I4
I4 W−1

λ0

)
≥ 0.
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Calculations give

Wλ1 = 103


0.1512 −0.3883 0.1558 −0.8331
−0.3883 1.5713 −0.3745 2.6878
0.1558 −0.3745 0.1719 −0.8057
−0.8331 2.6878 −0.8057 5.5413

 ,

and the maximum value of R such that B2(0, R)×B2(0, R) ⊂ Ωλ1 is

R =

√
1

λmax(W−1
λ1

)
= 1.6697.

Now, we choose τ∗ = 0.1. Then, we obtain successively

• γ0(R) = κ−1
1

(
ε0a + κ2(R) + 1

2R
2
)

= 5.5409,

• γ1(R) = κ−1
1

(
2ε1a + γ̃1(R)

)
= 5.3275,

• γ2(R) = 6.3062,

• γ̃2(R) = 38.9062,

• γ̃3(R) = 39.4815.

Thus,
γ(R) = 6.3062.

In order to obtain ΩR ⊂ Ωγ(R) and B2(0, γ(R)) × B2(0, γ(R)) ⊂ Ωγ(R), we take
λ = λ2 = 2, and we obtain from (41) and (42)

K2 = (−8.6970 − 5), L2 = (5.0001 18.4350)T .

Now, let us compare the performance of the continuous controller with λ = λ1 = 7
with region of attraction Ωλ1 that contains B2(0, R) × B2(0, R) to the hybrid con-
troller which is composed of the two continuous controllers with λ0 = 20 and λ2 = 2,
respectively, and with regions of attraction Ωλ0 and Ωλ2 that contain respectively
B2(0, R0) × B2(0, R0) and B2(0, γ(R)) × B2(0, γ(R)). To compare the two controllers,
let x0

1 = 0, x0
2 = 0.075, x̂0

01 = x̂0
02 = 0, x̂0

11 = x̂0
12 = 0, z0

0 = 0, z0
1 = 0, s0 = 0, q0 = 0.

Figure 4 shows a trajectory of system (37) in closed loop with hybrid controller when
ε0a = 0.3196, ε1a = 0.2876 and τ∗ = 0.1. The trajectory starts from (x1, x2) = (0, 0.075)
with the fast controller UR0 (q = 0) until the time t ≈ 0.1, where z0(0.1) ≈ 0.285 > ε0a,
triggering a jump to q = 1, thus the slow controller is used. At about t ≈ 0.2 ≥ τ∗,
z1 reaches ε1a and s is above τ∗. Then a jump to the fast controller occurs. In that
mode, the trajectory converges to the origin at about t ≈ 0.55. Figure 3 shows a tra-
jectory to the system (37) starting from the same initial condition (x1, x2) = (0, 0.075)
with the continuous controller UR. We see that the trajectory converges to the origin
at about t ≈ 1.2. We conclude that the trajectory with the hybrid controller converges
more rapidly than with the continuous one, which indicates that the performance of the
hybrid controller is better than the continuous one.



318 A. BENABDALLAH AND W. HDIDI

0 0.5 1 1.5
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t

x 1,x
2

 

 

Fig. 3. Time evolution of (x1(t), x2(t)) of the system (37) in closed

loop with the continuous controller with a decay rate λ = λ1 = 7 and

initial condition x0
1 = 0, x0

2 = 0.075, x̂0
01 = x̂0

02 = 0.

Now, we compute the hybrid controller using the design procedure in [24]. To obtain
an OSS-Lyapunov functions, we rewrite system (37) in closed loop with output controller
Ui, i = 0, 1 as (

ẋ
˙̂x

)
= Ai

(
x
x̂

)
+ B sat(Ki(x x̂)T ) +

(
Li
Li

)
y, (45)

where, Ai = diag(A − LiC,A − LiC) and Ki = (0 0 Ki). An OSS-Lyapunov function
Vi(x, x̂) = (x, x̂)TWi(x, x̂) of system (45) with output y = Cx is obtained by solving the
following LMI (

WiAT
i + AiWi + 2Wi BSi − ZTi

∗ −2S

)
< 0, (46)

and, (
Wi WiKTi − ZT
∗ ū2

)
≥ 0. (47)

It is not difficult to prove that the derivative of Vi along the solutions of (45) satisfies

V̇i(x, x̂) ≤ −Vi(x, x̂) + γi(|y|), (48)

where γi(r) = air
2 and ai =

(
Li

Li

)T
Wi

(
Li

Li

)
. Furthermore, αi,1(r) = bi,1r

2 and

αi,2(r) = bi,2r
2 where bi,1 = λmin(Wi) and bi,2 = λmax(Wi). Let,

ε0b = λmax(W0)/λmin(Wλ0),

such that Γ0 = {(x, x̂) ∈ R2 × R2, (x, x̂)TW0(x, x̂) ≤ ε0b} is a subset of the re-
gion of attraction Ωλ0 = {(x, x̂) ∈ R2 × R2, (x, x̂)TWλ0(x, x̂) ≤ 1} for the asymp-
totic stabilization of the origin of system (37) with local controller U0 defined by (38)
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Fig. 4. Time evolution of (x1(t, j), x2(t, j), z0(t, j), z1(t, j)) of the

system (37) in closed loop with the hybrid controller with

λ2 = 2, λ0 = 20 and initial condition x0
1 = 0, x0

2 = 0.075,

x̂0
01 = x̂0

02 = x̂0
11 = x̂0

12 = z0
0 = z0

1 = s0 = q0 = 0.

and (39) with L = L0 and K = K0. Furthermore, ε1b = ε0bλmax(W̃1)/λmin(W̃0)
is such that Γ1 = {x ∈ R2, (x, 0)TW1(x, 0) ≤ ε1b} × {0} is a subset of Γ0, where
W̃i = (I2 02×2)Wi(I2 02×2)T , I2 is 2 × 2 identity matrix and 02×2 is 2 × 2 null matrix.
Now, we compute ε0a such that every solution

(
x(t), x̂(t)

)
to (37) with local controller

U0 from Γ1 satisfies γ0

(
h0(x(t))

)
= γ0

(
y(t)

)
= a0y

2(t) ≤ ε0a. Note that Γ1 is a subset
of

Ωλ0,c = {(x, x̂) ∈ R2 × R2, (x, x̂)TWλ0(x, x̂) ≤ c},

where c = λmax(W̃λ0)ε1b/λmax(W1). Since Ωλ0,c is an invariant set, then

(x(t), x̂(t))TWλ0(x(t), x̂(t)) ≤ c, ∀t ≥ 0.

Thus,

γ0

(
h0(x(t))

)
≤ a0

λmin(Wλ0)
(x(t), x̂(t))TWλ0(x(t), x̂(t)),

≤ a0c

λmin(Wλ0)
:= ε0a.
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Note that ∆ = 0,∆1 = ε0a and ∆2 =
√

ε0a+2b02(R+ε0a)2

b01
, where ∆,∆1 and ∆2 are

defined in [24]. Furthermore, the following condition

α1,2

(
α−1

1,1

(
ε1,a + β̄1

(
∆ + α−1

0,1

(
∆1 + β̄0(∆2, τ

∗)
)
, τ∗
)))

< ε1b, (49)

introduced in [24] is equivalent to

ae−2τ∗ + be−τ
∗

+ d < 0, (50)

where

a =
4b212b02∆2

2

b01b11
, b =

2b212ε0a
b01b11

, d =
b12

b11ε1a
− ε1b.

For ε1a = 0, 00001, from (50) we obtain τ∗ = 52.6579 which is very large and thus,
the hybrid controller of [24] frequently uses the slow controller which is not good from
performance point of view. While, in this example and for our hybrid controller we have
picked τ∗ = 0, 1.

Example 4.2. Consider the following nonlinear control system : ẋ1 = −x1 + (u− x2)x2
1,

ẋ2 = −x2 + x2
1,

y = x1,
(51)

where x = (x1, x2) ∈ R2 is the plant’s state, y ∈ R stands for the output and u ∈ R
stands for the input. A global output stabilizer of (51) is given in [3] by{

ẇ = −w + y2 − 2y5,
u = w.

(52)

Note that the derivative of the Lyapunov function

U(x1, x2, w) = x4
1 + x2

2 + (w − x2)2,

along the solutions of the closed loop system (51) – (52) satisfies

U̇(x1, x2, w) ≤ −3x4
1 − x2

2 − 2(w − x2)2.

To accelerate the convergence, we consider the controller{
ẇ = −w + y2 − 2y5,
u = w − ky, (53)

where k is a positive constant. Indeed, the derivative of U along the solutions of the
closed loop system (51) – (53) is such that

U̇(x1, x2, w) ≤ −3x4
1 − x2

2 − 2(w − x2)2 − 4kx6
1,

≤ −U(x1, x2, w)− 4kx6
1.
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We point out that for large values of k, the solutions of the closed loop system (51) – (53)
converge rapidly due to the presence of the negative term −4kx6

1.
From practical point of view, the controller u must be bounded. Under bounded

control, the following output controller

(Uk,l) :
{
ẇ = −w + y2 − 2y5,
u = sat(w − ky), (54)

stabilizes semiglobally the origin of system (51) by tuning the parameter k and the level
of saturation l. Due to the presence of the saturation function in the controller, the region
of attraction of system (51) in closed loop with the bounded controller (Uk,l) is inversely
proportional to k. The system (51) in closed loop with a fast controller (Uk0,l0) can be
rewritten as (7) with ξ0 = w, αk0(w, y) = sat(w − k0y) and ϕk0(w, y) = −w + y2 − 2y5,
where k0 is a positive constant will be chosen later. Moreover, V1(x1, x2) = 1

2 (x2
1 + x2

2)
is an IOSS-Lyapunov function of system (51) . In fact, simple computations give, for all
(x, u) in R2 × R,

V̇1(x1, x2) = −x2
1 − x3

1x2 − x2
2 + x2x

2
1 + ux3

1,

≤ −x2
1 −

1
2
x2

2 +
3
2
x6

1 + x4
1 +

1
2
u2.

Then,
V̇1(x1, x2) ≤ −V1(x1, x2) + σ1(|u|) + σ2(|y|),

where σ1(|u|) = 1
2u

2 and σ2(|y|) = 3
2y

6 + y4. Thus, the two norm estimators are given
by ż1 = −z1 + ρ1(u, y) where ρ1(u, y) = σ1(|u|) + σ2(|y|) and ż0 = −z0 + ρ0k0(y, w)
where ρ0k0(y, w) = σ1(|αk0(w, y)|) + σ2(y) + 1

2ϕ
2
k0

(w, y) + w2.
For a given positive constant k, an invariant region of attraction for the closed loop

system (51) – (54) is given by

Ωk,c = {(x1, x2, w) ∈ R3, U(x1, x2, w) ≤ c},

where c is chosen such that

Ωk,c ⊂ {(x1, x2, w) ∈ R3, −l ≤ w − kx1 ≤ l}. (55)

Let (x1, x2, w) ∈ Ωk,c. By using −w
2

2 − 2x2
2 ≤ −2wx2, we obtain

x4
1 +

w2

2
≤ U(x1, x2, w) ≤ c.

Thus, w ≤
√

2(c− x4
1) and x4

1 ≤ c, it follows

w − kx1 ≤
√

2(c− x4
1)− kx1, for x1 ∈ [− 4

√
c, 4
√
c].

Then, by picking

l = max
x1∈[− 4√c, 4√c]

√
2(c− x4

1)− kx1, (56)
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(55) holds.
To put ourself in the setting of the assumption, we give a sufficient condition relating

R and c such that
B2(0, R)×]−R,R[⊂ Ωk,c. (57)

Let (x1, x2, w) ∈ B2(0, R)×]−R,R[, we have x2
2 ≤ R2 − x2

1 and w2 ≤ R2. Thus,

U(x1, x2, w) = x4
1 + x2

2 + (w − x2)2 ≤ x4
1 + 3x2

2 + 2w2,

≤ x4
1 + 3(R2 − x2

1) + 2R2,

≤ x4
1 − 3x2

1 + 5R2.

By maximizing the function x4
1 − 3x2

1 + 5R2 on the interval ] − R,R[, we conclude
that

U(x1, x2, w) ≤

 5R2, if R ≤
√

3
2 ,

max(5R2, R4 + 2R2), if R ≥
√

3
2 .

So, U(x1, x2, w) ≤ max(5R2, R4 + 2R2). Therefore by letting

max(5R2, R4 + 2R2) = c,

(57) holds. Simple computations give

R = max(
√
c/5,

√
−1 +

√
1 + c). (58)

Now, we find a positive constant ε0b that satisfies item (I1), i. e.

{(x1, x2, w), U(x1, x2, w) ≤ ε0b} ⊂ B2(0, R)×]−R,R[. (59)

Let (x1, x2, w) ∈ {(x1, x2, w), U(x1, x2, w) ≤ ε0b}. Using the estimation −w
2

2 − 2x2
2 ≤

−2x2w, we get
w2

2
≤ x4

1 +
w2

2
≤ x4

1 + x2
2 + (w − x2)2 ≤ ε0b. (60)

Then, if we pick ε0b ≤ R2

2 , it follows that w ∈]−R,R[. Furthermore, from (60) we obtain
x2

2 ≤ ε0b−x4
1, where x1 ∈ [− 4

√
ε0b, 4

√
ε0b]. It yields x2

1 +x2
2 ≤ x2

1 + ε0b−x4
1. Maximizing

the function x2
1 + ε0b − x4

1 with respect to x1 over the interval [− 4
√
ε0b 4
√
ε0b], we get{ √

ε0b < R2 if
√
ε0b ≤ 1

2 ,
ε0b + 1

4 < R2 if
√
ε0b ≥ 1

2 .

Then, if we pick ε0b satisfying

max(
√
ε0b, ε0b +

1
4

) < R2, (61)

(59) is verified and then (I1) holds.
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Now, we move to design a positive constant ε1b that satisfies (I3). Let (x1(0),
x2(0), w(0)) an initial condition in the set {(x1, x2, w), V1(x1, x2) ≤ ε1b, w = 0}, then
x1 is in [−

√
2ε1b,

√
2ε1b]. First, we find a sufficiently small positive constant c̃ such that

{(x1, x2, w), V1(x1, x2) ≤ ε1b, w = 0} ⊂ Ωk,c̃. (62)

Since w = 0 and x2
2 ≤ 2ε1b − x2

1, we have and

U(x1, x2, w) = x4
1 + 2x2

2 ≤ x4
1 + 4ε1b − 2x2

1.

By maximizing the function x4
1 + 4ε1b − 2x2

1 with respect to x1 over the interval
[−
√

2ε1b,
√

2ε1b], we obtain U(x1, x2, w) ≤ 4ε1b. Then by letting c̃ = min(1, 4ε1b) < c,
the initial condition (x1(0), x2(0), w(0)) is in the region Ωk,c̃ and then (62) holds. More-
over, for all t ≥ 0, we have x4

1(t) ≤ U(x1(t), x2(t), w(t)) ≤ c̃ ≤ 1.
Furthermore, we find a relation between ε0a , ε1b and k such that item (I3) holds. In

fact, since the initial condition (x1(0), x2(0), w(0)) is in the set {(x1, x2, w), V1(x1, x2) ≤
ε1b, w = 0} which is included in Ωk,c̃, then the trajectory (x1(t), x2(t), w(t)) of (51) – (54)
don’t leave the invariant set Ωk,c̃ ⊂ Ωk,c ⊂ {(x1, x2, w), −l ≤ w − kx1 ≤ l}. Thus, we
have sat(w(t)−kx1(t)) = w(t)−kx1(t) for all t ≥ 0. Furthermore, for all t ≥ 0, we have

ρ0k(y(t), w(t)) =
1
2

(w − kx1)2 +
3
2
x2

1 + x4
1 +

1
2

(−w + x2
1 − 2x5

1)2 + w2,

≤ 2w2 + k2x2
1 +

3
2
x2

1 + x4
1 +

3
2

(w2 + x4
1 + 4x10

1 ),

≤ 7
2
w2 + (k2 +

3
2

)x2
1 +

5
2
x4

1 + 6x10
1 ,

≤ 7
2
w2 + (k2 +

3
2

)x2
1 +

17
2
x4

1,

≤ (k2 +
3
2

)2ε1b +
17
2

(w2 + x4
1), (63)

where the estimations x10
1 ≤ x4

1 and x2
1 ≤ 2ε1b are used. We point out that we have

omitted to indicate any time-dependence in the above estimations. Using w2 = (w −
x2)2 + x2

2 + 2x2(w − x2), from (63), it yields

ρ0k(y(t), w(t)) ≤ (2k2 + 3)ε1b +
17
2

(x2
2 + (w − x2)2 + 2x2(w − x2) + x4

1),

≤ (2k2 + 3)ε1b +
17
2

(x4
1 + 2x2

2 + 2(w − x2)2),

≤ (2k2 + 3)ε1b + 17U(x1, x2, w),
≤ (2k2 + 3)ε1b + 17c̃.

Thus, picking ε1b such that

17 min(1, ε1b) + (2k2 + 3)ε1b ≤ ε0a, (64)

it yields
ρ0k(y(t), w(t)) ≤ ε0a, for all t ≥ 0.



324 A. BENABDALLAH AND W. HDIDI

Then item (I3) holds. Since the origin of R3 is asymptotically stable for the system
(51) – (54), item (I4) holds for a sufficiently small positive value ε2.

By picking c = 10 and k = 1. From (56) and (58), we get l = 3.168, R = 1.52.
Furthermore ε0b = 5.3668 satisfies the condition (61). Let ε0a = 4.8301 ≤ ε0b, thus (64)
holds by choosing ε1b = 0.2195. Let ε1a = 0.1976 < ε1b. By using (30) in the procedure
of our work, we compute the controller (Ukγ ,lγ ), we find γ(R) = 17.58. Pick kγ = 0.5,
thus the conditions (56) and (58) give lγ = 13373. For the fast controller (Uk0,l0), pick
c0 = 3.12, k0 = 10, a computations give R0 = 1.015 and l0 = 7.81.

Now, we compute the hybrid controller of [24], by breaking up the three steps of
Corollary 3.8. An OSS-Lyapunov function of system (51) in closed loop with output
controller (54) is given by

V (x1, x2, w) = V1(x1, x2) + 3w2 =
1
2

(x2
1 + x2

2 + 6w2).

In fact, the derivative of V along the trajectory of the closed loop system (51) – (54)
gives

V̇ (x1, x2, w) ≤ −V (x1, x2, w) + φk(y),

where φk(y) = k2y2 + 9y4 + 36y10. Furthermore, we have

αk,1(|(x1, x2, w)|) ≤ V (x1, x2, w) ≤ αk,2(|(x1, x2, w)|),

where, αk,1(r) = 1
2r

2, and αk,2(r) = 3r2.
In the step 1 of the design procedure in Corollary 3.8, we find ε0b to obtain the

inclusion
Γk0 = {(x1, x2, w) ∈ R3, V (x1, x2, w) ≤ ε0b} ⊂ Ωk0,c. (65)

We have

V (x1, x2, w) ≥ 1
2

(x2
1 + x2

2 + w2),

and

U(x1, x2, w) = x4
1 + x2

2 + (w − x2)2,
≤ 3(x4

1 + x2
2 + w2).

Thus, if (x1, x2, w) ∈ Γk0 , 1
2 (x2

1 + x2
2 + w2) ≤ ε0b, it follows U(x1, x2, w) ≤ 6ε0b. By

picking ε0b = c
6 , (65) holds. We move to the step 2. Pick ε1b ≤ ε0b, it follows that

Γk = {(x1, x2, 0) ∈ R3, V (x1, x2, w) ≤ ε1b} ⊂ Γk0 .

Indeed, if (x1, x2, w) ∈ Γk, we have V (x1, x2, w) = V (x1, x2, 0) = 1
2 (x2

1+x2
2) ≤ ε1b. Then

if ε1b ≤ ε0b, (x1, x2, w) ∈ Γk0 . Moreover, we compute ε0a such that every trajectory
of (51) with the local controller (Uk0,l0) starting from the Γ1 satisfies φk0(y) = k2

0y
2 +

9y4 + 36y10 ≤ ε0a. Using the fact that Γ1 is a subset of the invariant set {(x1, x2, w) ∈
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R3, U(x1, x2, w) ≤ c1}, where c1 = 4ε1b < 1, it follows that y(t) = x1(t) < 1 for all
t ≥ 0. We deduce that

φk0(y(t)) = k2
0x

2
1 + 9x4

1 + 36x10
1 ≤ k2

0x
2
1 + 45x4

1,

≤ 2k2
0

√
ε1b + 45c1,

= 2k2
0

√
ε1b + 180ε1b := ε0a.

Pick ε1b = 0.0075, we have ε0a = 1.5 ≤ ε0b = c
6 = 1.6667. To design ε1a and τ∗ in

step 3, first, we obtain the following values after straightforward computations: ∆ =
0, ∆1 = ε0a, ∆2 = α−1

k0,1
(ε0a + αk0,2(R + ε0a)), α−1

k0,1
(r) =

√
2r, αk0,2(r) = 3r2 and

α−1
k,1(r) =

√
2r. Using ε0a = 1.5 then ∆2 = 10.611. Moreover, the condition in Step 3

αk,2

(
α−1
k,1

(
ε1,a + β̄k

(
∆ + α−1

k0,1

(
∆1 + β̄k0(∆2, τ

∗)
)
, τ∗
)))

< ε1b,

where β̄k(r, s) = αk,2(r)e−s is satisfied with ε1a = 0.0012 and τ∗ = 12.11.
Now, we compare the performance of our controller to the performance of controller

proposed by [24]. Figure 5 and Figure 6 show the trajectories of system (51) in closed
loop with the hybrid controller of our approach and the hybrid controller proposed in
[24], respectively.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

t

x 1,x
2

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

t

q

Fig. 5. Time evolution of (x1(t), x2(t)) and q(t) of the system (51) in

closed loop with the hybrid controller of our approach with

k = 1, l = 3.168 and k0 = 10, l0 = 7.81 with initial condition x0
1 = 1.5,

x0
2 = 0, w0 = z0

0 = z0
1 = s0 = q0 = 0.

In Figure 5, the trajectory starts with fast controller and a switch occurs to the slow
controller at about the time t ≈ 0.25 since the local norm estimator z0 becomes greater
to ε0a. At about t ≈ 3.3, the norm estimator z1 becomes less than ε1a and then a switch
to the fast controller occurs.
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Fig. 6. Time evolution of (x1(t), x2(t)) and q(t) of the system (51) in

closed loop with the hybrid controller of [24] with k = 1, l = 3.168 and

k0 = 10, l0 = 7.81 with initial condition x0
1 = 1.5, x0

2 = 0,

w0 = z0
0 = z0

1 = s0 = q0 = 0.

To emphasize the difference between the two hybrid controllers, we plot
U(x1(t), x2(t), w(t)). As showed by Figure 7, after the time t ≈ 0.5, U(x1(t), x2(t), w(t))
becomes close to zero. While, in Figure 8, using the strategy of [24], U(x1(t), x2(t), w(t))
becomes close to zero after the time t ≈ 1.5. Hence, the convergence to the origin of the
trajectories using our strategy is rapid than the convergence of the trajectories using
the strategy of [24]. The main drawback of the strategy introduced in [24] is that τ∗ is
selected sufficiently large to guaranteed that the solution with global controller enters
the region of attraction of the system in closed loop with local controller.

5. CONCLUSION AND DISCUSSION

For a given family of dynamic output feedback controllers (UR)R>0 that ensures semiglobal
stability of the origin of an IOSS nonlinear control system, we propose a new hybrid
output controller (UR)R>R0 that preserves the semiglobal stability of the origin and
locally improves the performance. The new hybrid output controller is based on two
norm estimators that estimate the norm of the state and a timer to trigger τ∗ the switch
between a fast controller and a slow one. Note that the trigger time τ∗ can be chosen
arbitrarily small contrarily to [24] where it is chosen sufficiently large.

Unfortunately, there are some drawbacks in the proposed hybrid controller (UR)R>R0

and it can be improved in the future in many directions. First, according to proposition
3.1 and for R > R0, we use a controller Uγ(R) to steer the system trajectories in the
region of attraction of the fast controller UR0 , but from a practical point of view the
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Fig. 7. Time evolution of U(x1(t), x2(t), w(t)) of the system (51) in

closed loop with the hybrid controller of our approach with

k = 1, l = 3.168 and k0 = 10, l0 = 7.81 with initial condition x0
1 = 1.5,

x0
2 = 0, w0 = z0

0 = z0
1 = s0 = q0 = 0.
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Fig. 8. Time evolution of U(x1(t), x2(t), w(t)) of the system (51) in

closed loop with the hybrid controller of [24] with k = 1, l = 3.168 and

k0 = 10, l0 = 7.81 with initial condition x0
1 = 1.5, x0

2 = 0,

w0 = z0
0 = z0

1 = s0 = q0 = 0.
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convergence becomes slow if γ(R) is large. It seems possible to improve the performance
of the new hybrid controller (UR)R>R0 by using the controller UR+ε instead of Uγ(R) to
steer the system trajectories in the region of attraction of the fast controller, where ε is
small positive real number. This can be possible if we solve the problem of uniting two
local output controllers.

Moreover, the number of switch between the fast controller UR0 and the slow controller
Uγ(R) can be great. We believe that it is possible to diminish the number of switch by
accelerating the convergence of the norm estimators.

Finally, the IOSS assumption is restrictive. Recently, as shown in [24] it is possible to
replace the IOSS assumption by output-to-state stability (OSS) of the two closed loop
systems with two continuous output controllers.

(Received December 30, 2014)
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