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A note on the solutions of a second-order

evolution inclusion in non separable Banach spaces

Aurelian Cernea

Abstract. We consider a Cauchy problem associated to a second-order evolution
inclusion in non separable Banach spaces under Filippov type assumptions and
we prove the existence of mild solutions.

Keywords: Lusin measurable multifunctions; differential inclusion; selection

Classification: 34A60

1. Introduction

In this note we study second-order evolution inclusions of the form

(1.1) x′′(t) ∈ A(t)x(t) + F (t, x(t)), x(0) = x0, x′(0) = y0,

where F : [0, T ]×X → P(X) is a set-valued map, X is a separable Banach space,
x0, y0 ∈ X and {A(t)}t≥0 is a family of linear closed operators from X into X

that generates an evolution system of operators {U(t, s)}t,s∈[0,T ]. The general
framework of evolution operators {A(t)}t≥0 that define problem (1.1) has been
developed by Kozak ([9]) and improved by Henriquez ([7]).

The present paper is motivated by several recent papers ([1]–[3], [8], [9]]) where
existence results and qualitative properties of mild solutions for problem (1.1) have
been obtained by using fixed point techniques. All these approaches are obtained
provided that the Banach space X is separable.

De Blasi and Pianigiani ([5]) established the existence of mild solutions for
semilinear differential inclusions on an arbitrary, not necessarily separable, Ba-
nach space X . Even the results in [5] are based on Filippov’s ideas ([6]), the
approach in [6] has a fundamental difference which consists in the construction
of the measurable selections of the multifunction. This construction does not use
classical selection theorems as Kuratowsky and Ryll-Nardzewski ([10]) or Bressan
and Colombo ([4]).

In the present paper we obtain an existence result for problem (1.1) similar to
the one in [5]. We will prove the existence of solutions for problem (1.1) in an
arbitrary space X under assumptions on F of Filippov type.
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The paper is organized as follows: in Section 2 we present the notations, defi-
nitions and the preliminary results to be used in the sequel and in Section 3 we
prove the main result.

2. Preliminaries

Let us denote by I the interval [0, T ], T > 0 and let X be a real Banach space
with the norm |·| and with the corresponding metric d(·, ·). As usual, we denote by
C(I, X) the Banach space of all continuous functions x(·) : I → X endowed with
the norm |x(·)|C = supt∈I |x(t)| and by L1(I, X) the Banach space of all (Bochner)

integrable functions x(·) : I → X endowed with the norm |x(·)|1 =
∫ T

0
|x(t)|dt.

By B(X) we denote the Banach space of linear bounded operators on X .
Let P(X) be the space of all bounded nonempty subsets of X endowed with

the Hausdorff pseudometric

dH(A, B) = max{d∗(A, B), d∗(B, A)}, d∗(A, B) = sup
a∈A

d(a, B),

where d(x, A) = infa∈A |x − a|, A ⊂ X , x ∈ X .
Let L be the σ-algebra of the (Lebesgue) measurable subsets of R and, for

A ∈ L, let µ(A) be the Lebesgue measure of A.
Let X be a Banach space and Y be a metric space. An open (resp. closed) ball

in Y with center y and radius r is denoted by BY (y, r) (resp. BY (y, r)). In what
follows B = BX(0, 1).

A multifunction F : Y → P(X) with closed bounded nonempty values is said
to be dH -continuous at y0 ∈ Y if for every ε > 0 there exists δ > 0 such that for
any y ∈ BY (y0, r) we have dH(F (y), F (y0)) ≤ ε. F is called dH -continuous if it
is so at each point y0 ∈ Y .

Let A ∈ L with µ(A) < ∞. A multifunction F : Y → P(X) with closed
bounded nonempty values is said to be Lusin measurable if for every ε > 0 there
exists a compact set Kε ⊂ Ah with µ(A\Kε) < ε such that F restricted to Kε is
dH -continuous.

It is clear that if F, G : A → P(X) and f : A → X are Lusin measurable
then so are F restricted to B (B ⊂ A measurable), F + G and t → d(f(t), F (t)).
Moreover, the uniform limit of a sequence of Lusin measurable multifunctions is
also Lusin measurable.

In what follows {A(t)}t≥0 is a family of linear closed operators from X into X

that generates an evolution system of operators {U(t, s)}t,s∈I . By hypothesis the
domain of A(t), D(A(t)) is dense in X and is independent of t.

Definition 2.1 ([7], [9]). A family of bounded linear operators U(t, s) : X → X ,
(t, s) ∈ ∆ := {(t, s) ∈ I × I; s ≤ t} is called an evolution operator of the equation

(2.1) x′′(t) = A(t)x(t)

if the following conditions hold:
(i) for any x ∈ X , the map (t, s) → U(t, s)x is continuously differentiable and
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(a) U(t, t) = 0, t ∈ I;
(b) if t ∈ I, x ∈ X then ∂

∂t
U(t, s)x|t=s = x and ∂

∂s
U(t, s)x|t=s = −x.

(ii) If (t, s) ∈ ∆, then ∂
∂s
U(t, s)x ∈ D(A(t)), the map (t, s) → U(t, s)x is of class

C2 and
(a) ∂2

∂t2
U(t, s)x ≡ A(t)U(t, s)x;

(b) ∂2

∂s2U(t, s)x ≡ U(t, s)A(t)x;

(c) ∂2

∂s∂t
U(t, s)x|t=s = 0.

(iii) If (t, s) ∈ ∆, then there exist ∂3

∂t2∂s
U(t, s)x, ∂3

∂s2∂t
U(t, s)x and

(a) ∂3

∂t2∂s
U(t, s)x ≡ A(t) ∂

∂s
U(t, s)x and the map (t, s) → A(t) ∂

∂s
U(t, s)x is

continuous;

(b) ∂3

∂s2∂t
U(t, s)x ≡ ∂

∂t
U(t, s)A(s)x.

As an example for equation (2.1) one may consider the problem (e.g., [7])

∂2z

∂t2
(t, τ) =

∂2z

∂τ2
(t, τ) + a(t)

∂z

∂t
(t, τ), t ∈ [0, T ], τ ∈ [0, 2π],

z(t, 0) = z(t, Π) = 0,
∂z

∂τ
(t, 0) =

∂z

∂τ
(t, 2π), t ∈ [0, T ],

where a(·) : I → R is a continuous function. This problem is modeled in the
space X = L2(R,C) of 2π-periodic 2-integrable functions from R to C, A1z =
d2z(τ)

dτ2 with domain H2(R,C), the Sobolev space of 2π-periodic functions whose

derivatives belong to L2(R,C). It is well known that A1 is the infinitesimal
generator of strongly continuous cosine functions C(t) on X . Moreover, A1 has
discrete spectrum; namely the spectrum of A1 consists of eigenvalues −n2, n ∈ Z

with associated eigenvectors zn(τ) = 1√
2π

einτ , n ∈ N. The set zn, n ∈ N is an

orthonormal basis of X . In particular, A1z =
∑

n∈Z
−n2〈z, zn〉zn, z ∈ D(A1).

The cosine function is given by C(t)z =
∑

n∈Z
cos(nt)〈z, zn〉zn with the associated

sine function S(t)z = t〈z, z0〉z0 +
∑

n∈Z∗

sin(nt)
n

〈z, zn〉zn.

For t ∈ I define the operator A2(t)z = a(t)dz(τ)
dτ

with domain D(A2(t)) =

H1(R,C). Set A(t) = A1 + A2(t). It has been proved in [7] that this family
generates an evolution operator as in Definition 2.1.

Definition 2.2. A continuous mapping x(·) ∈ C(I, X) is called a mild solution
of problem (1.1) if there exists a (Bochner) integrable function f(·) ∈ L1(I, X)
such that

f(t) ∈ F (t, x(t)) a.e. (I),(2.2)

x(t) = −
∂

∂s
U(t, 0)x0 + U(t, 0)y0 +

∫ t

0

U(t, s)f(s)ds, t ∈ I.(2.3)

We shall call (x(·), f(·)) a trajectory-selection pair of (1.1) if f(·) verifies (2.2)
and x(·) is defined by (2.3).
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In what follows X is a real Banach space and we assume the following hypothe-
ses.

Hypothesis 2.3. (i) There exists an evolution operator {U(t, s)}t,s∈I asso-
ciated to the family {A(t)}t≥0.

(ii) There exist M, M0 ≥ 0 such that |U(t, s)|B(X) ≤ M , | ∂
∂s
U(t, s)| ≤ M0, for

all (t, s) ∈ ∆.
(iii) F (·, ·) : I ×X → P(X) has nonempty closed bounded values and, for any

x ∈ X , F (·, x) is Lusin measurable on I.
(iv) There exists l(·) ∈ L1(I, (0,∞)) such that, for each t ∈ I,

dH(F (t, x1), F (t, x2)) ≤ l(t)|x1 − x2|, ∀ x1, x2 ∈ X.

(v) There exists q(·) ∈ L1(I, (0,∞)) such that, for each t ∈ I, we have

F (t, 0) ⊂ q(t)B.

Set m(t) =
∫ t

0
l(u)du, t ∈ I. The technical results summarized in the next

lemma are essential in the proof of our result. For the proof we refer to [5].

Lemma 2.4. (i) Let Fi : I → P(X), i = 1, 2 be two Lusin measurable

multifunctions and let εi > 0, i = 1, 2 be such that

H(t) := (F1(t) + ε1B) ∩ (F2(t) + ε2B) 6= ∅, ∀t ∈ I.

Then the multifunction H : I → P(X) has a Lusin measurable selection

h : I → X .

(ii) Assume that Hypothesis 2.1 is satisfied. Then for any x(·) : I → X

continuous, u(·) : I → X measurable and ε > 0 we have

(a) the multifunction t → F (t, x(t)) is Lusin measurable on I;

(b) the multifunction G : I → P(X) defined by

G(t) := (F (t, x(t)) + εB) ∩ BX(u(t), d(u(t), F (t, x(t))) + ε)

has a Lusin measurable selection g : I → X .

3. Main result

We are ready now to prove our main result.

Theorem 3.1. We assume that Hypothesis 2.3 is satisfied. Then, for every

x0, y0 ∈ X the Cauchy problem (1.1) has a solution x(·) : I → X .

Proof: Let us note first that, if z(·) : I → X is continuous, then every Lusin
measurable selection u : I → X of the multifunction t → F (t, z(t))+B is Bochner
integrable on I. More exactly, for any t ∈ I we have

|u(t)| ≤ dH(F (t, z(t)) + B, 0) ≤ dH(F (t, z(t)), F (t, 0))

+ dH(F (t, 0), 0) + 1 ≤ l(t)|z(t)| + q(t) + 1.



A note on the solutions of a second-order evolution inclusion in non separable Banach spaces 311

Let 0 < ε < 1, εn = ε
2n+2 .

Consider f0(·) : I → X an arbitrary Lusin measurable function, Bochner inte-
grable and define

x0(t) = −
∂

∂s
U(t, 0)x0 + U(t, 0)y0 +

∫ t

0

U(t, s)f0(s)ds, t ∈ I.

Since x0(·) is continuous, by Lemma 2.4(ii) there exists a Lusin measurable
function f1(·) : I → X satisfying, for t ∈ I,

f1(t) ∈ (F (t, x0(t)) + ε1B) ∩ B(f0(t), d(f0(t), F (t, x0(t))) + ε1)

Obviously, f1(·) is Bochner integrable on I. Define x1(·) : I → X by

x1(t) = −
∂

∂s
U(t, 0)x0 + U(t, 0)y0 +

∫ t

0

U(t, s)f1(s)ds, t ∈ I.

By induction, we construct a sequence xn : I → X, n ≥ 2 given by

(3.1) xn(t) = −
∂

∂s
U(t, 0)x0 + U(t, 0)y0 +

∫ t

0

U(t, s)fn(s)ds, t ∈ I,

where fn(·) : I → X is a Lusin measurable function satisfying, for t ∈ I,

(3.2) fn(t) ∈ (F (t, xn−1(t)) + εnB) ∩ B(fn−1(t), d(fn−1(t), F (t, xn−1(t))) + εn).

At the same time, as we saw at the beginning of the proof, fn(·) is also Bochner
integrable.

From (3.2) for n ≥ 2 and t ∈ I, we obtain

|fn(t) − fn−1(t)| ≤ d(fn−1(t), F (t, xn−1(t))) + εn

≤ d(fn−1(t), F (t, xn−2(t)))

+ dH(F (t, xn−2(t)), F (t, xn−1(t))) + εn

≤ εn−1 + l(t)|xn−1(t) − xn−2(t)| + εn.

Since εn−1 + εn < εn−2 we deduce, for n ≥ 2, that

(3.3) |fn(t) − fn−1(t)| ≤ εn−2 + l(t)|xn−1(t) − xn−2(t)|.
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Denote q0(t) := d(f0(t), F (t, x0(t))), t ∈ I. We prove next, by recurrence, that,
for n ≥ 2 and t ∈ I, we have

(3.4)

|xn(t) − xn−1(t)| ≤
n−2∑
k=0

∫ t

0

εn−2−k

Mk+1(m(t) − m(u))k

k!
du

+ ε0

∫ t

0

Mn(m(t) − m(u))n−1

(n − 1)!
du

+

∫ t

0

Mn(m(t) − m(u))n−1

(n − 1)!
q0(u)du.

We start with n = 2. In view of (3.1), (3.2) and (3.3), for t ∈ I, one has

|x2(t) − x1(t)| ≤

∫ t

0

|U(t, s)| · |f2(s) − f1(s)|ds

≤

∫ t

0

M [ε0 + l(s)|x1(s) − x0(s)|]ds ≤ ε0Mt

+

∫ t

0

[Ml(s)

∫ s

0

|U(s, u)| · |f1(u) − f0(u)|du]ds

≤ ε0Mt +

∫ t

0

[M2l(s)

∫ s

0

(q0(u) + ε1)du]ds

≤ ε0Mt +

∫ t

0

[M2(q0(u) + ε1)

∫ t

u

l(s)ds]du

= ε0Mt +

∫ t

0

M2(m(t) − m(s))[q0(s) + ε0]ds,

i.e, (3.4) is verified for n = 2.
Using again (3.2) and (3.3) we have

|xn+1(t) − xn(t)| ≤

∫ t

0

|U(t, s)| · |fn+1(s) − fn(s)|ds

≤

∫ t

0

M [εn−1 + l(s)|xn(s) − xn−1(s)|]ds

≤ εn−1Mt +

∫ t

0

l(s)[

n−2∑
k=0

∫ s

0

εn−2−k

Mk+2(m(s) − m(u))k

k!
du

+

∫ s

0

Mn+1(m(s) − m(u))n−1

(n − 1)!
(q0(u) + ε0)du]ds

= εn−1Mt +

n−2∑
k=0

εn−2−k

∫ t

0

[

∫ s

0

Mk+2(m(s) − m(u))k

k!
l(s)du]ds
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+

∫ t

0

l(s)(

∫ s

0

Mn+1(m(s) − m(u))n−1

(n − 1)!
l(s)[q0(u) + ε0]du)ds

= εn−1Mt +

n−2∑
k=0

εn−2−k

∫ t

0

(

∫ t

u

Mk+2(m(s) − m(u))k

k!
l(s)ds)du

+

∫ t

0

(

∫ t

u

Mn+1(m(s) − m(u))n−1

(n − 1)!
l(s)ds)[q0(u) + ε0]du

= εn−1Mt +

n−2∑
k=0

εn−2−k

∫ t

0

Mk+2(m(s) − m(u))k+1

(k + 1)!
du

+

∫ t

0

Mn+1(m(s) − m(u))n

n!
[q0(u) + ε0]du

=

n−1∑
k=0

εn−1−k

∫ t

0

Mk+1(m(s) − m(u))k

k!
du

+

∫ t

0

Mn+1(m(s) − m(u))n

n!
[q0(u) + ε0]du,

and the statement (3.4) is true for n + 1.
From (3.4) it follows that, for n ≥ 2 and t ∈ I, one has

(3.5) |xn(t) − xn−1(t)| ≤ an,

where

an =
n−2∑
k=0

εn−2−k

Mk+1m(T )k

k!
+

Mnm(T )n−1

(n − 1)!
[

∫ 1

0

q0(u)du + ε0].

Obviously, the series whose n-th term is an is convergent. So, from (3.5) we
have that xn(·) converges uniformly on I to a continuous function, x(·) : I → X .

On the other hand, in view of (3.5) we have

|fn(t) − fn−1(t)| ≤ εn−2 + l(t)an−1, t ∈ I, n ≥ 3

which implies that the sequence fn(·) converges to a Lusin measurable function
f(·) : I → X .

Since xn(·) is bounded and

|fn(t)| ≤ l(t)|xn−1(t)| + q(t) + 1

we infer that f(·) is also Bochner integrable.
Passing with n → ∞ in (3.1) and using Lebesgue dominated convergence theo-

rem we obtain

x(t) = −
∂

∂s
U(t, 0)x0 + U(t, 0)y0 +

∫ t

0

U(t, s)f(s)ds, t ∈ I.
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On the other hand, from (3.2) we get

fn(t) ∈ F (t, xn(t)) + εnB, t ∈ I, n ≥ 1

and letting n → ∞ we have

f(t) ∈ F (t, x(t)), t ∈ I.

and the proof is complete. �
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