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Property of being semi-Kelley

for the cartesian products and hyperspaces

Enrique Castañeda-Alvarado, Ivon Vidal-Escobar

Abstract. In this paper we construct a Kelley continuum X such that X ×

[0, 1] is not semi-Kelley, this answers a question posed by J.J. Charatonik and
W.J. Charatonik in A weaker form of the property of Kelley , Topology Proc.
23 (1998), 69–99. In addition, we show that the hyperspace C(X) is not semi-
Kelley. Further we show that small Whitney levels in C(X) are not semi-Kelley,
answering a question posed by A. Illanes in Problemas propuestos para el taller

de Teoŕıa de continuos y sus hiperespacios, Queretaro, 2013.

Keywords: continuum; property of Kelley; semi-Kelley; cartesian products; hy-
perspaces; Whitney levels

Classification: Primary 54F15, 54B20, 54G20

1. Introduction

A continuum is a nonempty compact connected metric space. A map is a con-
tinuous function. Given a continuum X with metric d, p ∈ X and A ⊂ X , we put
B(p, ε) = {x ∈ X : d(p, x) < ε} and N(A, ε) =

⋃
{B(a, ε) : a ∈ A}.

Given a continuum X and p, q ∈ X , we say that a subcontinuum A of X is
irreducible between p and q provided that p, q ∈ A, and not proper subcontinuum
of A contains p and q.

Given a continuum X , we let 2X denote the hyperspace of all nonempty closed
subsets of X equipped with the Hausdorff metric. Furthermore, we denote by
C(X) the hyperspace of all subcontinua of X , i.e., of all connected elements
of 2X . Let X and Y be continua and let f : X → Y be a map, the induced map

C(f) : C(X) → C(Y ) is given by C(f)(A) = f(A), for each A ∈ C(X).
A map µ : C(X) → [0,∞) is called a Whitney map for C(X) provided that:

(1) µ({x}) = 0 for each x ∈ X ,
(2) µ(A) < µ(B) for every A, B ∈ C(X) such that A  B.
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If µ is a Whitney map for C(X) and t ∈ [0, µ(X)], then µ−1(t) is called a Whitney

level. It is known that each Whitney level is a continuum [6, p. 1032]. A topo-
logical property P is said to be a Whitney property provided that whenever a
continuum X has property P , so does µ−1(t) for each Whitney map µ for C(X)
and each t with 0 < t < µ(X).

A continuum X is said to be Kelley provided that for each point x ∈ X , for
each subcontinuum K of X containing x and for each sequence of points {xn}∞n=1

of X converging to x there exists a sequence of subcontinua {Kn}∞n=1 of X such
that for each n ∈ N, xn ∈ Kn and limn→∞ Kn = K. This property introduced by
J. L. Kelley in [8, p. 26], is an important tool in investigation of various properties
of continua and hyperspaces (see [5]).

Let K be a subcontinuum of a continuum X . A continuum M ⊂ K is
called maximal limit continuum in K provided that there exists a sequence of
subcontinua {Mn}∞n=1 of X converging to M such that for each convergent se-
quence of subcontinua {M ′

n}
∞

n=1 of X with Mn ⊂ M ′

n for each n ∈ N and
limn→∞ M ′

n = M ′ ⊂ K we have that M ′ = M .
A continuum X is said to be semi-Kelley provided that for each subcontinuum

K and for every two maximal limit continua M and L in K either M ⊂ L or
L ⊂ M . The property of semi-Kelley is a weaker form of the property of Kelley,
this property has been introduced and studied in [3] by J.J. Charatonik and
W.J. Charatonik (see [2], [1]).

In particular in [3, Theorem 4.1, p. 80] J.J. Charatonik and W.J. Charatonik
proved that, if the cartesian product of two nondegenerate continua is semi-Kelley
then each factor is Kelley (so, semi-Kelley). Also they constructed a Kelley conti-
nuum X , [3, Example 4.3, p. 81], such that X ×X and 2X are not semi-Kelly. In
connection with this, in [3] they extend Kato’s question [7, Problem 3.4, p. 1148]
to the following.

Question ([3, Question 4.4, p. 82]). Is it true that if a continuum X is Kelley,
then the cartesian product X × [0, 1] is semi-Kelley?

In this paper, we answer this question in negative form. The continuum X of
the Example 2.1 is Kelley, however X × [0, 1] is not semi-Kelley.

With respect to hyperspaces in [3, Theorem 4.5 and Theorem 4.7, p. 83-84]
they proved that, if the hyperspace C(X) (or 2X) is semi-Kelley then X is Kelley.
In this paper, the continuum X of the Example 2.1 is Kelley but the hyperspace
C(X) is not semi-Kelley.

A. Illanes posed the following problem, see Problem 5.5 in Problemas propuestos

para el taller de Teoŕıa de continuos y sus hiperespacios, Queretaro, 2013.

Problem Is the property of being semi-Kelley a Whitney property?

In this paper, we prove that if X is as in the Example 2.1, for each Whitney map
µ for C(X) there exists a number 0 < t0 < µ(X) such that for each t ∈ (0, t0)
the Whitney level µ−1(t) is not semi-Kelley, therefore being semi-Kelley is not
a Whitney property.
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2. The example

Given Y the example defined by J.J. Charatonik and W.J. Charatonik in [4],
the continuum X of the Example 2.1 is homeomorphic to the union of two copies
of Y with a common point.

Example 2.1. In the polar coordinates (r, ϕ) in the plane, we consider the fol-

lowing circles

R = {(r, ϕ) : r = 1} and S = {(r, ϕ) : r = 3},

for each n ∈ N,

Rn = {(r, ϕ) : r = 1 +
1

2nπ
} and Sn = {(r, ϕ) : r = 3 −

1

2nπ
},

four spirals

ΣR = {(r, ϕ) : r = 1 +
1

ϕ
and ϕ ∈ [2π,∞)},

ΣS = {(r, ϕ) : r = 3 −
1

ϕ
and ϕ ∈ [2π,∞)},

Σ1 = {(r, ϕ) : r = 1 −
1

ϕ
and ϕ ∈ [2π,∞)},

Σ2 = {(r, ϕ) : r = 3 +
1

ϕ
and ϕ ∈ [2π,∞)},

and an arc

Λ = {(r, ϕ) : r =
1 − 2π

2π2
ϕ + 3 −

1

2π
and ϕ ∈ [0, 2π]}.

Define the following continua

X1 = R ∪ (
⋃

n∈N

Rn) ∪ ΣR ∪ Σ1,

see Figure 1,

X2 = S ∪ (
⋃

n∈N

Sn) ∪ ΣS ∪ Σ2

see Figure 2, and finally define the continuum X = X1 ∪ X2 ∪ Λ, see Figure 3.

Furthermore, for each n ∈ N define pn = (1 + 1

2nπ
, 0), p′n = (1 − 1

2nπ
, 0),

qn = (3 − 1

2nπ
0) and q′n = (3 + 1

2nπ
, 0), also define p = (1, 0), q = (3, 0). Observe

that, for each n ∈ N, Rn ∩ ΣR = {pn}, Sn ∩ ΣS = {qn}, moreover limn→∞ pn =
p = limn→∞ p′n and limn→∞ qn = q = limn→∞ q′n.

Additionally, for each n ∈ N, define the following subcontinua of X

Λn

R = {(r, ϕ) : r = 1 +
1

ϕ
and ϕ ∈ [2nπ, 2(n + 1)π]},
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Figure 2. X2

Λn

S = {(r, ϕ) : r = 3 −
1

ϕ
and ϕ ∈ [2nπ, 2(n + 1)π)]},

Λn

1 = {(r, ϕ) : r = 1 −
1

ϕ
and ϕ ∈ [2nπ, 2(n + 1)π]},

Λn

2 = {(r, ϕ) : r = 3 +
1

ϕ
and ϕ ∈ [2nπ, 2(n + 1)π)]}.

Notice that Λn

R
, Λn

S
, Λn

1 and Λn
2 are arcs with end points pn, pn+1; qn, qn+1;

p′n, p′n+1 and q′n, q′n+1, respectively. Moreover limn→∞ Λn

R
= R = limn→∞ Λn

1

and limn→∞ Λn

S
= S = limn→∞ Λn

2 .
Additionally, denote by ̺1 : X → R, ̺2 : X → S the projections defined by

̺1((r, ϕ)) = (1, ϕ) and ̺2((r, ϕ)) = (3, ϕ).
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Figure 3. X

Theorem 2.2. The continuum X of the Example 2.1 has the following properties:

(1) X is Kelley,

(2) X × [0, 1] is not semi-Kelley,

(3) the hyperspace C(X) is not semi-Kelley,

(4) for each Whitney map µ : C(X) → [0,∞) there exists a number 0 < t0 <
µ(X) such that for each t ∈ (0, t0) the Whitney level µ−1(t) is not semi-Kelley.

Proof: (1) To show that X is Kelley we consider a point x ∈ X , a sequence of
points {xn}∞n=1 of X converging to x and a continuum K ⊂ X containing the
point x. We have to show that there exists a sequence of continua {Kn}∞n=1 such
that for each n ∈ N, xn ∈ Kn and limn→∞ Kn = K.

If x ∈ X \ (R ∪ S), then X is locally connected at x, thus there exists m ∈ N
such that xn belongs to the arc component of X containing x for every n ≥ m.
We may take Kn as the union of K and the smallest arc in X joining xn and x if
n ≥ m, and Kn = {xn} if n < m.

Now, if x ∈ R ∪ S, without lost of generality suppose that x ∈ S, thus there
exists m ∈ N such that for every n ≥ m, xn belong to X2. We have two cases:

Case 1. K  S. For each n ∈ N, let Pn be the smallest arc that is irreducible
between x and ̺2(xn). Note that limn→∞(diam(Pn)) = 0 and limn→∞ (K∪Pn) =
K. Then it is enough to define Kn as the component of ̺−1

2 (K∪Pn) containing xn.

Case 2. S ⊂ K. Then for each n ≥ m there is a spiral Σn

S
having xn as its

end point and approaching S. Indeed, if xn ∈ ΣS then Σn

S
can be chosen as a

subspiral of ΣS ; if xn ∈ Σ2 then Σn

S
is a subspiral of Σ2; and if xn ∈ Sk for some

k ∈ N, then Σn

S
is the union of an arc joining xn to qk and a subspiral of ΣS with

end point qk. Finally put Kn = K ∪Σn

S
if n ≥ m and Kn = {xn} if n < m. Since

the spirals Σn

S
converges to S, we have that limn→∞ Kn = K.
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Thus we have X is Kelley. By [3, Statement 3.17, p. 79], we have that X is
semi- Kelley.

(2) We consider X × [0, 1] with cylindrical coordinates (r, ϕ, z).
To show that X × [0, 1] is not semi-Kelley, define the following subcontinua of

X × [0, 1],

M = {(1, 2πz, z) : z ∈ [0, 1]} ⊂ R × [0, 1].

Thus M is an arc from (p, 0) to (p, 1). Furthermore, for each n ∈ N, define

An = {(r, ϕ, z) : r = 1 +
1

ϕ
, ϕ = 2(n + z)π, and z ∈ [0, 1]} ⊂ Λn

R × [0, 1],

Bn = {(r, ϕ, z) : r = 1 +
1

2nπ
, ϕ = 2πz, and z ∈ [0, 1]} ⊂ Rn × [0, 1].

Notice that An and Bn are arcs with end points (pn, 0), (pn+1, 1) and (pn, 0),
(pn, 1), respectively. Additionally, observe that An ∩ Bn = {(pn, 0)} and An ∩
Bn+1 = {(pn+1, 1)}. Similarly, define an arc from (q, 0) to (q, 1) by

L = {(3, 2πz, z) : z ∈ [0, 1]} ⊂ S × [0, 1].

And for each n ∈ N, define

Dn = {(r,−ϕ, z) : r = 3 −
1

ϕ
, ϕ = 2(n + z)π, and z ∈ [0, 1]} ⊂ Λn

S × [0, 1],

En = {(r,−ϕ, z) : r = 3 −
1

2nπ
, ϕ = 2πz, and z ∈ [0, 1]} ⊂ Sn × [0, 1].

In this case Dn and En are arcs with end points (qn, 0), (qn+1, 1) and (qn, 0), (qn, 1)
respectively. Furthermore, Dn ∩ En = {(qn, 0)} and Dn ∩ En+1 = {(qn+1, 1)}.
Also define

KM = M ∪ (
⋃

n∈N

An) ∪ (
⋃

n∈N

Bn),

KL = L ∪ (
⋃

n∈N

Dn) ∪ (
⋃

n∈N

En).

Notice that KM and KL are homeomorphic to a sinoidal curve.
Furthermore, define Λ0 = Λ × {0} ⊂ Λ × [0, 1]. Thus Λ0 is an arc with end

points (q1, 0) and (p1, 0). Finally, define the continuum

K = KL ∪ KM ∪ Λ0.

Notice that K is homeomorphic to the union of two sinoidal curves with a common
point (see Figure 4) and by construction K ⊂ X × [0, 1].

We will show that M and L are maximal limit continua in K.
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Figure 4. K

In order to show that M and L are maximal limit continua in K, for each
n ∈ N, define

Mn = (̺1 × id)−1(M) ∩ (Λn

1 × [0, 1]),

Ln = (̺2 × id)−1(L) ∩ (Λn

2 × [0, 1]).

It is clear that limn→∞ Mn = M and limn→∞ Ln = L. Suppose that there
exists a convergent sequence of subcontinua {M ′

n}
∞

n=1 of X × [0, 1] such that
Mn ⊂ M ′

n, limn→∞ M ′

n = M ′ ⊂ K, and M 6= M ′.
As M ′ 6= M and M ⊂ M ′ ⊂ K the set P = {r ∈ N : (pr, 0) ∈ M ′} is nonempty,

define r0 = min P .
Let 0 < ε < 1, as (̺1 × id)(K) = M , then (̺1 × id)(M ′) = M , it follows

that M ′ ⊂ (̺1 × id)−1(N(M, ε)), therefore there exists n0 ∈ N such that M ′

n ⊂
(̺1 × id)−1(N(M, ε)) for every n > n0.

Notice that the component of (̺1×id)−1(N(ε, M)) that contains Mn is a subset
of (Λn−1

1 ∪ Λn
1 ∪ Λn+1

1 × [0, 1]) so M ′

n ⊂ (Σ1 × [0, 1]).
Hence, if d denotes the metric in X× [0, 1] and H denotes the Hausdorff metric

in C(X × [0, 1]), we have that H(M ′, M ′

n) ≥ d((p, 0), (pr0
, 0)) = 1

2r0π
for each

n ∈ N; it follows that M ′ is not the limit of continua M ′

n, this is a contradiction.
Therefore, M is a maximal limit continuum in K. Similarly L is a maximal

limit continuum in K. Notice that M∩L = ∅ therefore X×[0, 1] is not semi-Kelley.

(3) To show that the hyperspace C(X) is not semi-Kelley. Let µ : C(X) →
[0,∞) be a Whitney map and define r = µ(R), s = µ(S). Suppose that r ≤ s.

Define

M = {A ∈ C(R) : A ∈ µ−1(
r

2
), p /∈ IntR(A)},

C = {A ∈ C(X) : C(̺1)(A) ∈ M}
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and t0 = min{µ(A) : A ∈ C} as C is a nonempty closed subset of C(X) and
µ is a map, it follows that t0 is well defined and there exists A0 ∈ C such that
µ(A0) = t0, moreover as A0 ∈ C, then t0 > 0 and as M ⊂ C, then t0 ≤ r

2
< r;

therefore 0 < t0 < r.
Let 0 < t < t0, notice that µ(R), µ(S) > t, and µ(Rn), µ(ΛR

n ), µ(Sn), µ(ΛS
n) > t

for each n ∈ N, then we can define the following continua:

M = {A ∈ C(R) : A ∈ µ−1(t), p /∈ IntR(A)},

L = {A ∈ C(S) : A ∈ µ−1(t), q /∈ IntS(A)}.

Notice that M and L are arcs in C(R) and C(S) respectively. Denote the end
points of M and L by M0, M1 and L0, L1 respectively. It is easy to see that
p ∈ M0, p ∈ M1, q ∈ L0, q ∈ L1. Furthermore, for each n ∈ N, define

An = {A ∈ C(Rn) : A ∈ µ−1(t), pn /∈ IntRn
(A)},

Bn = {A ∈ C(ΛR

n ) : A ∈ µ−1(t)}.

Notice that An is an arc in C(Rn) and Bn is an arc in C(ΛR
n ). Moreover

limn→∞ An = M = limn→∞ Bn. Denote the end points of An and Bn by A0
n,

A1
n and B0

n, B1
n, respectively. It is easy to see that pn ∈ A0

n, pn ∈ A1
n, pn ∈ B0

n,
pn+1 ∈ B1

n and µ(A0
n ∪ B0

n), µ(B1
n ∪ A1

n+1) > t.
Also, for each n ∈ N, define

Cn = {A ∈ C(A0
n ∪ B0

n) : A ∈ µ−1(t)},

Dn = {A ∈ C(B1
n ∪ A1

n+1) : A ∈ µ−1(t)}.

Thus Cn and Dn are arcs with end points A0
n, B0

n and B1
n, A1

n+1, respectively.
Furthermore, limn→∞ Cn = {M0} and limn→∞ Dn = {M1}. Moreover, observe
that An ∩ Cn = {A0

n}, Cn ∩ Bn = {B0
n}, Bn ∩ Dn = {B1

n}, Dn ∩An+1 = {A1
n+1}.

Similarly, for each n ∈ N, define

En = {A ∈ C(Sn) : A ∈ µ−1(t), qn /∈ IntSn
(A)},

Fn = {A ∈ C(ΛS

n) : A ∈ µ−1(t)}.

Notice that En is an arc in C(Sn) and Fn is an arc in C(ΛS
n). Moreover limn→∞ En

= L = limn→∞ Fn. Denote the end points of En and Fn by E0
n, E1

n and F 0
n , F 1

n ,
respectively. It is easy to see that qn ∈ E0

n, qn ∈ E1
n, qn ∈ F 0

n , qn+1 ∈ F 1
n and

µ(E1
n ∪ F 1

n), µ(F 0
n ∪ E0

n+1) > t.
Also, for each n ∈ N, define

Gn = {A ∈ C(E1
n ∪ F 1

n) : A ∈ µ−1(t)},

Hn = {A ∈ C(F 0
n ∪ E0

n+1) : A ∈ µ−1(t)}.



Property of being semi-Kelley for the cartesian products and hyperspaces 367

Thus Gn and Hn are arcs with end points E1
n, F 1

n and F 0
n , E0

n+1, respectively.
Furthermore, limn→∞ Gn = {L1} and limn→∞ Hn = {L0}.

Additionally, observe that En ∩Gn = {E1
n}, Gn ∩Fn = {F 1

n}, Fn ∩Hn = {F 0
n},

Hn ∩ En+1 = {E0
n+1}. Furthermore, define

I = {A ∈ C(Λ) : A ∈ µ−1(t)}.

In this case, I is an arc. Denote the end points of I by I0 and I1. It is easy to
see that q1 ∈ I0, p1 ∈ I1 and µ(I0 ∪ E0

1), µ(I1 ∪ A1
1) > t.

Also define

I0 = {A ∈ C(I0 ∪ E0
1) : A ∈ µ−1(t)},

I1 = {A ∈ C(I1 ∪ A1
1) : A ∈ µ−1(t)}.

Notice that I0 and I1 are arcs with end points I0, E0
1 and I1, A1

1, respectively.
Moreover, observe that I0 ∩ E1 = {E0

1}, I0 ∩ I = {I0}, I ∩ I1 = {I1}, I1 ∩A1 =
{A1

1}. Define the following subcontinua of C(X)

KM = M∪ (
⋃

n∈N

An) ∪ (
⋃

n∈N

Bn) ∪ (
⋃

n∈N

Cn) ∪ (
⋃

n∈N

Dn),

KL = L ∪ (
⋃

n∈N

En) ∪ (
⋃

n∈N

Fn) ∪ (
⋃

n∈N

Gn) ∪ (
⋃

n∈N

Hn).

Notice that KM and KL are homeomorphic to a sinoidal curve.
Define Λ0 = I0∪I ∪I1. Thus Λ0 is an arc with end points A1

1 and E0
1 . Finally,

define the continuum

K = KM ∪ Λ0 ∪ KL.

Notice that K is homeomorphic to the union of two sinoidal curves with a common
point (see Figure 5), by construction K ⊂ µ−1(t) ⊂ C(X).

Let 0 < ε < r

2
, and δ1 > 0 given by the uniform continuity of µ for ε and

0 < δ < δ1 given by the uniform continuity of C(̺1) for δ1. Denote by H the
Hausdorff metric in C(X).

Claim 1. For each A ∈ K,

(i) µ(C(̺1)(A)) ∈ [0, r

2
],

(ii) for each B ∈ C(X) such that H(A, B) < δ, µ(C(̺1)(B)) < r.

(i) For each A ∈ K, there exists D ∈ C such that A ⊂ D, then C(̺1)(A) ⊆
C(̺1)(D), hence µ(C(̺1)(A)) ≤ µ(C(̺1)(D)) = r

2
.

(ii) If H(A, B) < δ, then H(C(̺1)(A), C(̺1)(B)) < δ1, it follows that
|µ(C(̺1)(A)) − µ(C(̺1)(B))| < ε, so µ(C(̺1)(B)) ∈ [0, r

2
+ ε], therefore

µ(C(̺1)(B)) < r.
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Figure 5. K

We will show that M and L are maximal limit continua in K. In order to show
that M and L are maximal limit continua in K, for each n ∈ N, define

Mn = {A ∈ C(Λn

1 ) : A ∈ µ−1(t)},

Ln = {A ∈ C(Λn

2 ) : A ∈ µ−1(t)}.

Notice that Mn is an arc in C(Λn
1 ) and Ln is an arc in C(Λn

2 ). Denote the end
points of Mn and Ln by M0

n, M1
n and L0

n, L1
n, respectively. It is easy to see that

p′n ∈ M0
n, p′n+1 ∈ M1

n, q′n ∈ L0
n, q′n+1 ∈ L1

n.
It is clear that limn→∞ Mn = M and limn→∞ Ln = L. Suppose that,

there exists a sequence of subcontinua {M′

n}
∞

n=1 of C(X) with Mn ⊂ M′

n,
limn→∞ M′

n = M′ ⊂ K and M 6= M′.
As M′ ⊂ N(K, δ) and limn→∞ M′

n = M′, there exists n0 ∈ N such that for
every n > n0, M′

n ⊂ N(K, δ). Notice that for each B ∈ M′

n, there exists A ∈ K
such that H(A, B) < δ, by Claim 1, µ(C(̺1)(B)) < r, so C(̺1)(B)  R. It
follows that M′

n ⊂ C(Λn−1

1
∪ Λn

1 ∪ Λn+1

1
) ⊂ C(Σ1), therefore M′

n ∈ C(C(Σ1)).
Moreover as M′ 6= M and M′ ⊂ K the set P = {m ∈ N : A0

m ∈ M′} is
nonempty, define m0 = min P . Hence, if d denotes the metric in X and H denotes
the Hausdorff metric in C(C(X)), for each n > n0, H(M′,M′

n) ≥ H(A0
m0

, M0
n) ≥

d(pm0
, p′n) > d(pm0

, p) = 1

2m0π
, this contradicts that limn→∞ M′

n = M′.
Therefore, M is maximal limit continuum in K. Similarly L is maximal limit

continuum in K. Since M ∩ L = ∅, C(X) is not semi-Kelley. Similarly if we
suppose that s ≤ r, C(X) is not semi-Kelley.

(4) Let t0 as in (3) and 0 < t < t0 we consider the continua defined in (3). Since
µ−1(t) ⊂ C(X) in particular we can take the sequence of subcontinua {M′

n}
∞

n=1
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of µ−1(t), and conclude that M is maximal limit continuum in K; similarly L is
maximal limit continuum in K.

As M,L,K ⊂ µ−1(t) and M ∩ L = ∅, it follows that µ−1(t) is not semi-
Kelley. �

To finish this paper we propose the following problems.

Problem 5. Does there exist a hereditarily unicoherent continuum X such that
X × [0, 1] or C(X) is not semi-Kelley?

Problem 6. Classify the continua for which being semi-Kelley is a Whitney
property.

Problem 7 (A. Illanes). Is the property of being semi-Kelley a Whitney reversible
property?
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[1] Calderón-Camacho I.D., Castañeda-Alvarado E., Islas-Moreno C., Maya-Escudero D., Ruiz-
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