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EXISTENCE AND GLOBAL ATTRACTIVITY OF POSITIVE
ALMOST PERIODIC SOLUTIONS FOR A KIND
OF FISHING MODEL WITH PURE-DELAY

Tianwei Zhang and Yongzhi Liao

By using some analytical techniques, modified inequalities and Mawhin’s continuation the-
orem of coincidence degree theory, some sufficient conditions for the existence of at least one
positive almost periodic solution of a kind of fishing model with delay are obtained. Further,
the global attractivity of the positive almost periodic solution of this model is also considered.
Finally, three examples are given to illustrate the main results of this paper.
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1. INTRODUCTION

In 2008, Berezansky and Idels [2] proposed a kind of time-varying fishing model which
describes how fish harvested in the form of

Ṅ(t) = N(t)

 a(t)

1 +
[
N(t−θ(t))
K(t)

]r − b(t)
 , (1.1)

where x is is the population biomass, a is the per-capita fecundity rate, K is the carrying
capacity of the environment, b is the per-capita mortality rate, r > 0, that controls how
rapidly density dependence sets in, can be regarded as an abruptness parameter, θ(t)
is the maturation time delay, a, K, b, θ ∈ C([0,∞], [0,∞]). Berezansky and Idels [2]
proposed Eq. (1.1) and studied its persistence, furthermore, the existence and stability
of a positive periodic solution to Eq. (1.1) were also considered. Before continuing,
Wang [23] investigated Eq. (1.1) and obtained some sufficient conditions for the existence
of at least one positive periodic solution by using Mawhin’s continuation theorem of
coincidence degree theory. For more results in this direction, one could refer to [1, 11,
13, 14, 32] and the references cited therein.

In real world phenomenon, the environment varies due to the factors such as seasonal
effects of weather, food supplies, mating habits and harvesting, etc. So it is usual
to assume the periodicity of parameters in the systems. However, in applications, if
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Almost periodic fishing model 613

the various constituent components of the temporally nonuniform environment is with
incommensurable (nonintegral multiples, see Example 1.1) periods, then one has to
consider the environment to be almost periodic since there is no a priori reason to expect
the existence of periodic solutions. Hence, if we consider the effects of the environmental
factors, almost periodicity is sometimes more realistic and more general than periodicity.
In recent years, the almost periodic solution of the continuous models in biological
populations has been studied extensively (see [16, 21, 26, 27, 28, 29, 30, 31, 32] and the
references cited therein).

Example 1.1. Let us consider the following simple fishing model:

Ṅ(t) = N(t)

 | sin(
√

2t)|

1 +
[
N(t)

2

]0.5 − | sin(
√

3t)|

 . (1.2)

In Eq. (1.2), | sin(
√

2t)| is
√

2π
2 -periodic function and | sin(

√
3t)| is

√
3π
3 -periodic function,

which imply that Eq. (1.2) is with incommensurable periods. Then there is no a priori
reason to expect the existence of periodic solutions of Eq. (1.2). Thus, it is significant
to study the existence of almost periodic solutions of Eq. (1.2).

It is well known that Mawhin’s continuation theorem of coincidence degree theory is
an important method to investigate the existence of positive periodic solutions of some
kinds of non-linear ecosystems (see [3, 4, 5, 6, 7, 8, 15, 16, 22, 25, 33, 34]). However, it
is difficult to be used to investigate the existence of positive almost periodic solutions of
non-linear ecosystems. Therefore, to the best of the author’s knowledge, so far, there are
scarcely any papers concerning with the existence of positive almost periodic solutions of
Eq. (1.1) by using Mawhin’s continuation theorem. Motivated by the above reason, the
main purpose of this paper is to establish some new sufficient conditions on the existence
of positive almost periodic solutions of Eq. (1.1) by using Mawhin’s continuation theorem
of coincidence degree theory.

Let R, Z and N+ denote the sets of real numbers, integers and positive integers,
respectively, C(X,Y) and C1(X,Y) be the space of continuous functions and continuously
differential functions which map X into Y, respectively. Especially, C(X) := C(X,X),
C1(X) := C1(X,X). Related to a continuous bounded function f , we use the following
notations:

f− = inf
s∈R

f(s), f+ = sup
s∈R

f(s), |f |∞ = sup
s∈R
|f(s)|, f̄ = lim

T→∞

1
T

∫ T

0

f(s) ds.

The initial condition associated with Eq. (1.1) is of the form

N(s) = ϕ(s), ∀s ∈ [−θ+, 0], N(0) = N0 > 0, ϕ ∈ C([−θ+, 0],R).

Throughout this paper, we always make the following assumption for Eq. (1.1):

(H1) a, b, K and θ are nonnegative almost periodic functions with K− > 0.
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The paper is organized as follows. In Section 2, we give some basic definitions and
necessary lemmas which will be used in later sections. In Section 3, we obtain some
sufficient conditions for the existence of at least one positive almost periodic solution
of Eq. (1.1) by means of Mawhin’s continuation theorem of coincidence degree theory.
In Section 4, we consider the global attractivity of a unique positive almost periodic
solution to Eq. (1.1). Three examples are also given to illustrate our results in Section 5.

2. PRELIMINARIES

Definition 2.1. (He [12], Gaines and Mawhin [10]) x ∈ C(R,Rn) is called almost
periodic, if for any ε > 0, it is possible to find a real number l = l(ε) > 0, for any
interval with length l(ε), there exists a number τ = τ(ε) in this interval such that
‖x(t + τ) − x(t)‖ < ε, ∀t ∈ R, where ‖ · ‖ is arbitrary norm of Rn. τ is called to the
ε-almost period of x, T (x, ε) denotes the set of ε-almost periods for x and l(ε) is called
to the length of the inclusion interval for T (x, ε). The collection of those functions is
denoted by AP (R,Rn). Let AP (R) := AP (R,R).

Lemma 2.1. (Zhang [27]) Assume that x ∈ AP (R) ∩ C1(R) with ẋ ∈ C(R). For
arbitrary interval [a, b] with b− a = ω > 0, let ξ, η ∈ [a, b] and

I1 =
{
s ∈ [ξ, b] : ẋ(s) ≥ 0

}
, I2 =

{
s ∈ [η, b] : ẋ(s) ≤ 0

}
,

then ones have

x(t) ≤ x(ξ) +
∫
I1

ẋ(s) ds, ∀t ∈ [ξ, b], x(t) ≥ x(η) +
∫
I2

ẋ(s) ds, ∀t ∈ [η, b].

Lemma 2.2. (Zhang [27]) If x ∈ AP (R), then for arbitrary interval I = [a, b] with
b− a = ω > 0, there exist ξ ∈ [a, b], ξ ∈ (−∞, a] and ξ̄ ∈ [b,+∞) such that

x(ξ) = x(ξ̄) and x(ξ) ≤ x(s), ∀s ∈ [ξ, ξ̄].

Lemma 2.3. (Zhang [27]) If x ∈ AP (R), then for arbitrary interval [a, b] with I =
b− a = ω > 0, there exist η ∈ [a, b], η ∈ (−∞, a] and η̄ ∈ [b,+∞) such that

x(η) = x(η̄) and x(η) ≥ x(s), ∀s ∈ [η, η̄].

Lemma 2.4. (Zhang [27]) If x ∈ AP (R), then for ∀n ∈ N+, there exists αn ∈ R such
that x(αn) ∈ [x∗ − 1

n , x
∗], where x∗ = sups∈R x(s).

For x ∈ AP (R), we denote by

a(x,$) = lim
T→∞

1
T

∫ T

0

x(s)e−i$s ds,

Λ(x) =
{
$ ∈ R : lim

T→∞

1
T

∫ T

0

x(s)e−i$sds 6= 0
}

the Bohr transform and the set of Fourier exponents of x, respectively.
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Lemma 2.5. (Zhang [27]) Assume that x ∈ AP (R) and x̄ > 0, then for ∀t0 ∈ R, there
exists a positive constant T0 independent of t0 such that

1
T

∫ t0+T

t0

x(s) ds ∈
[
x̄

2
,

3x̄
2

]
, ∀T ≥ T0.

Following we recall the famous Mawhin’s continuation theorem.
Let X and Y be real Banach spaces, L : DomL ⊆ X → Y be a linear mapping and

N : X→ Y be a continuous mapping. The mapping L is called a Fredholm mapping of
index zero if the following conditions hold:

• ImL is closed in Y;

• dimKerL = codimImL < +∞.

If L is a Fredholm mapping of index zero and there exist continuous projectors P : X→ X
and Q : Y → Y such that ImP = KerL, KerQ = ImL = Im(I − Q). It follows that
L|DomL∩KerP : (I − P )X → ImL is invertible and its inverse is denoted by KP . If Ω
is an open bounded subset of X, the mapping N will be called L-compact on Ω̄ if the
following conditions are satisfied:

• QN(Ω̄) is bounded;

• KP (I −Q)N : Ω̄→ X is compact.

Since ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ→ KerL.

Mawhin’s Continuous Theorem 1. (Gaines and Mawhin [10]) Let Ω ⊆ X be an
open bounded set, L be a Fredholm mapping of index zero and N be L-compact on Ω̄.
If all the following conditions hold:

(a) Lx 6= λNx, ∀x ∈ ∂Ω ∩DomL, λ ∈ (0, 1);

(b) QNx 6= 0, ∀x ∈ ∂Ω ∩KerL;

(c) deg{JQN,Ω ∩KerL, 0} 6= 0, where J : ImQ→ KerL is an isomorphism.

Then Lx = Nx has a solution on Ω̄ ∩DomL.

Under the invariant transformation N = ex, Eq. (1.1) reduces to

ẋ(t) =
a(t)

1 +
[
ex(t−θ(t))

K(t)

]r − b(t). (2.1)

Set X = Y = V1

⊕
V2, where

V1 =
{
x ∈ AP (R) : mod(x) ⊆ mod(Lx),∀$ ∈ Λ(x), |$| ≥ γ0

}
, V2 =

{
x ≡ k, k ∈ R

}
,
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where

Lx = Lx(t, ϕ) =
a(t)

1 +
[
eϕ(−θ(0))

K(t)

]r − b(t),
mod(x) = {µ : µ =

N∑
j=1

nj$j , nj , N ∈ Z, N ≥ 1, $j ∈ Λ(x)},

ϕ ∈ C([−θ+, 0],R), γ0 is a given positive constant. Define the norm ‖x‖X = sups∈R |x(s)|,
∀x ∈ X = Y.

Lemma 2.6. X and Y are Banach spaces endowed with ‖ · ‖X.

P r o o f . Obviously, X and Y are linear spaces. Assume that xn ∈ V1 and limn→∞ xn =
x0. Since xn ∈ V1, for all |$| < γ0 we have

lim
T→∞

1
T

∫ T

0

xn(s)e−i$s ds = 0.

Thus

lim
T→∞

1
T

∫ T

0

x0(s)e−i$s ds = 0

which implies that ∀$ ∈ Λ(x0), |$| ≥ γ0. It is easy to see that V1 is a Banach space
endowed with ‖ · ‖X. The same can be concluded for X and Y. This completes the
proof. �

Lemma 2.7. Let L : X→ Y, Lx = ẋ, then L is a Fredholm mapping of index zero.

P r o o f . It is obvious that L is a linear operator and KerL = V2. It remains to prove
that ImL = V1. Suppose that φ ∈ ImL ⊆ Y, there exist φ1 ∈ V1 and φ2 ∈ V2 such that

φ = φ1 + φ2.

By the definition of φ1 and Lemma 4.12 in [9], we have
∫ t

0
φ1(s) ds is almost periodic.

Since φ ∈ ImL, there exists υ ∈ X such that

Lυ = υ̇ = φ,

which implies that ∣∣∣∣ ∫ t

0

φ(s) ds
∣∣∣∣ =

∣∣∣∣ ∫ t

0

υ̇(s) ds
∣∣∣∣ ≤ |υ(t)− υ(0)|.

Since υ ∈ AP (R), there exists K > 0 such that |υ|∞ ≤ K. Then∣∣∣∣ ∫ t

0

φ(s) ds
∣∣∣∣ ≤ 2K,



Almost periodic fishing model 617

which implies
∫ t

0
φ(s) ds is almost periodic. By the almost periodic property of

∫ t
0
φ(s) ds

and
∫ t

0
φ1(s) ds, it follows that

|φ2||t| =
∣∣∣∣ ∫ t

0

φ2 ds
∣∣∣∣ =

∣∣∣∣ ∫ t

0

[
φ(s)− φ1(s)

]
ds
∣∣∣∣ < +∞, ∀t ∈ R,

which implies that φ2 ≡ 0. Therefore, φ = φ1 ∈ V1. This tells us that ImL ⊆ V1.
In the following, we will prove that V1 ⊆ ImL. Suppose that ϕ ∈ V1,

∫ t
0
ϕ(s) ds ∈

AP (R). Indeed, if $ 6= 0, then we obtain

lim
T→∞

1
T

∫ T

0

[ ∫ t

0

ϕ(s) ds
]
e−i$t dt =

1
i$

lim
T→∞

1
T

∫ T

0

ϕ(s)e−i$s ds.

Let ψ =
∫ t

0
ϕ(s) ds−m

( ∫ t
0
ϕ(s) ds

)
. So

Λ(ψ) = Λ(ϕ).

Therefore, ψ ∈ V1 ⊆ X. Further, we have

ψ̇(t) =
d
dt

(∫ t

0

ϕ(s) ds−m
[ ∫ t

0

ϕ(s) ds
])

= ϕ(t), ∀t ∈ R,

which implies that ϕ ∈ ImL. Hence, we deduce that V1 ⊆ ImL.
Therefore, V1 = ImL. Furthermore, one can easily show that ImL is closed in Y and

dim KerL = 1 = codim ImL.

Therefore, L is a Fredholm operator of index zero. This completes the proof. �

Lemma 2.8. Define N : X→ Y, P : X→ X and Q : Y→ Y by

Nx =
a(t)

1 +
[
ex(t−θ(t))

K(t)

]r − b(t), Px = x̄ = Qw, ∀x ∈ X = Y.

Then N is L-compact on Ω̄ (Ω is an open and bounded subset of X).

P r o o f . Obviously, P and Q are continuous such that ImP = KerL and ImL = KerQ.
Further, we have (I −Q)V2 = {0} and (I −Q)V1 = V1. Hence, Im(I −Q) = V1 = ImL.
In view of

ImP = KerL and ImL = KerQ = Im(I −Q),

we can conclude that the generalized inverse KP : ImL→ KerP ∩DomL of L exists and
is given by

KPx =
∫ t

0

x(s) ds−m
[ ∫ t

0

x(s) ds
]
, ∀x ∈ ImL.

Thus
QNx = m

[
Nx
]
, KP (I −Q)Nx = f [x(t)]−Qf [x(t)], ∀x ∈ ImL,
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where f [x(t)] is defined by

f [x(t)] =
∫ t

0

[
Nx(s)−QNx(s)

]
ds.

Clearly, QN and (I − Q)N are continuous. We claim that KP is also continuous.
Assume that xn ∈ ImL = V1 (n ∈ N+) such that

lim
n→∞

xn = x0.

By the completeness of V1, x0 ∈ V1 and xn − x0 ∈ V1 (n ∈ N+). Then there exists a
constant D such that

|KPxn −KPx0|∞ ≤ D|xn − x0|∞, n ∈ N+.

Therefore, limn→∞ |KPxn −KPx0|∞ = 0. So KP and KP (I −Q) are also continuous.
In addition, KP (I − Q)x are uniformly bounded on Ω̄. It is not difficult to verify that
QN(Ω̄) is bounded and KP (I − Q)Nx is equicontinuous on Ω̄. Hence, by the Arzela–
Ascoli theorem, we can conclude that KP (I−Q)N(Ω̄) is compact. Thus N is L-compact
on Ω̄. This completes the proof. �

3. EXISTENCE OF POSITIVE ALMOST PERIODIC SOLUTIONS

In this section, we study the existence of at least one positive almost periodic solution
of Eq. (1.1) by using Mawhin’s continuous theorem of coincidence degree theory.

Theorem 3.1. Assume that (H1) holds, suppose further that

(H2) b̄ > 0 and c̄ := m[a(s)− b(s)] > 0,

then Eq. (1.1) admits at least one positive almost periodic solution.

P r o o f . It is easy to see that if Eq. (2.1) has one almost periodic solution x̄, then N̄=ex̄

is a positive almost periodic solution of Eq. (1.1). Therefore, to complete the proof it
suffices to show that Eq. (2.1) has one almost periodic solution.

In order to use the Mawhin’s continuous theorem, we set the Banach spaces X and Y
as those in Lemma 2.6 and L,N, P,Q the same as those defined in Lemmas 2.7 and 2.8,
respectively. It remains to search for an appropriate open and bounded subset Ω ⊆ X.

Corresponding to the operator equation Lx = λx, λ ∈ (0, 1), we have

ẋ(t) = λ

 a(t)

1 +
[
ex(t−θ(t))

K(t)

]r − b(t)
 . (3.1)

Suppose that x ∈ DomL ⊆ X is a solution of Eq. (3.1) for some λ ∈ (0, 1), where
DomL = {x ∈ X : x ∈ C1(R), ẋ ∈ C(R)}. By Lemma 2.4, there exists a sequence
{αn : n ∈ N+} such that

x(αn) ∈
[
x∗ − 1

n
, x∗
]
, x∗ = sup

s∈R
x(s), n ∈ N+. (3.2)
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By (H2) and Lemma 2.5, for ∀t0 ∈ R, there exists a constant ω ∈ (2θ+,+∞) inde-
pendent of t0 such that

1
T

∫ t0+T

t0

b(s) ds ∈
[
b̄

2
,

3b̄
2

]
,

1
T

∫ t0+T

t0

[a(s)− b(s)] ds ∈
[
c̄

2
,

3c̄
2

]
, ∀T ≥ ω

2
. (3.3)

For ∀n0 ∈ N+, we consider [αn0 − ω, αn0 ], where ω is defined as that in (3.3). By
Lemma 2.2, there exists ξn0 ∈ [αn0 − ω, αn0 ], ξ

n0
∈ (−∞, αn0 − ω] and ξ̄n0 ∈ [αn0 ,+∞)

such that
x(ξ

n0
) = x(ξ̄n0) and x(ξn0) ≤ x(s), ∀s ∈ [ξ

n0
, ξ̄n0 ]. (3.4)

Integrating Eq. (3.1) from ξ
n0

to ξ̄n0 leads to

∫ ξ̄n0

ξ
n0

[
a(s)

1 +
(
ex(s−θ(s))

K(s)

)r − b(s)]ds

=
∫ ξ̄n0

ξ
n0

(
[a(s)− b(s)][K(s)]r − b(s)erx(s−θ(s))

[K(s)]r + erx(s−θ(s))

)
ds

= 0,

which yields that∫ ξ̄n0

ξ
n0

b(s)erx(s−θ(s)) ds =
∫ ξ̄n0

ξ
n0

[a(s)− b(s)][K(s)]r ds. (3.5)

By the definitions of ω, ξ
n0

, ξ̄n0 and (3.3), there exists s0 ∈ [ξ
n0

+ θ+, ξ̄n0 ] (s0 − θ(s0) ∈
[ξ
n0
, ξ̄n0 ]) such that

1
ξ̄n0 − ξn0

∫ ξ̄n0

ξ
n0

b(s)erx(s−θ(s)) ds ≥ 1
ξ̄n0 − ξn0

∫ ξ̄n0

ξ
n0

+θ+
b(s)erx(s−θ(s)) ds

≥
(ξ̄n0 − ξn0

− θ+)erx(s0−θ(s0))

ξ̄n0 − ξn0

× 1
ξ̄n0 − ξn0

− θ+

∫ ξ̄n0

ξ
n0

+θ+
b(s) ds

≥ erx(s0−θ(s0))

2
× b̄

2

=
b̄erx(s0−θ(s0))

4
. (3.6)

Substituting (3.6) into (3.5), we obtain

b̄erx(s0−θ(s0))

4
≤ 1
ξ̄n0 − ξn0

∫ ξ̄n0

ξ
n0

[a(s)− b(s)][K(s)]r ds ≤ a+(K+)r,
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which implies from (3.4) that

x(ξn0) ≤ x(s0 − θ(s0)) ≤ 1
r

ln
[

4a+(K+)r

b̄

]
. (3.7)

Let I = [ξn0 , αn0 ] and I1 = {s ∈ I : ẋ(s) ≥ 0}. It follows from Eq. (3.1) that∫
I1

ẋ(s) ds =
∫
I1

λ

[
a(s)

1 +
(
ex(s−θ(s))

K(s)

)r − b(s)] ds

≤
∫
I

a(s)

1 +
(
ex(s−θ(s))

K(s)

)r ds

≤
∫ αn0

αn0−ω
a(s) ds

≤ a+ω.

By Lemma 2.1, it follows from (3.7) – (3.8) that

x(t) ≤ x(ξn0) +
∫
I1

ẋ(s) ds ≤ 1
r

ln
[

4a+(K+)r

b̄

]
+ a+ω := ρ1, ∀t ∈ [ξn0 , αn0 ],

which implies that

x(αn0) ≤ ρ1.

In view of (3.2), letting n0 → +∞ in the above inequality leads to

x∗ = lim
n0→+∞

x(αn0) ≤ ρ1. (3.8)

Taking

l0 := max
{
ω,

4θ+b+erρ1

(K−)r c̄

}
.

For ∀n0 ∈ Z, by Lemma 2.3, there exist ηn0 ∈ [n0l0, (n0 + 1)l0], η
n0
∈ (−∞, n0l0] and

η̄n0 ∈ [(n0 + 1)l0,+∞) such that

x(η
n0

) = x(η̄n0) and x(ηn0) ≥ x(s), ∀s ∈ [η
n0
, η̄n0 ]. (3.9)

Similar to (3.5), integrating Eq. (3.1) from η
n0

to η̄n0 leads to

∫ η̄n0

η
n0

b(s)erx(s−θ(s)) ds =
∫ η̄n0

η
n0

[a(s)− b(s)][K(s)]r ds. (3.10)
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By the definitions of ω, η
n0

, η̄n0 and (3.3), there exists s1 ∈ [η
n0

+ θ+, η̄n0 ] (s1− θ(s1) ∈
[η
n0
, η̄n0 ]) such that

1
η̄n0 − ηn0

∫ η̄n0

η
n0

b(s)erx(s−θ(s)) ds ≤ 1
η̄n0 − ηn0

∫ η̄n0

η
n0

+θ+
b(s)erx(s−θ(s)) ds

+
1

η̄n0 − ηn0

∫ η
n0

+θ+

η
n0

b(s)erx(s−θ(s)) ds

≤
(η̄n0 − ηn0

− θ+)b+erx(s1−θ(s1))

η̄n0 − ηn0

+
θ+b+erρ1

η̄n0 − ηn0

≤ b+erx(s1−θ(s1)) +
θ+b+erρ1

l0

= b+erx(s1−θ(s1)) +
(K−)r c̄

4
. (3.11)

Substituting (3.12) into (3.11), we obtain

b+erx(s1−θ(s1)) +
(K−)r c̄

4
≥ 1
η̄n0 − ηn0

∫ η̄n0

η
n0

[a(s)− b(s)][K(s)]r ds ≥ (K−)r c̄
2

,

which implies from (3.10) that

x(ηn0) ≥ x(s1 − θ(s1)) ≥ 1
r

ln
[

(K−)r c̄
4b+

]
.

Further, we obtain from Eq. (3.1) that∫ (n0+1)l0

n0l0

|ẋ(s)|ds =
∫ (n0+1)l0

n0l0

λ

∣∣∣∣ a(s)

1 +
(
ex(s−θ(s))

K(s)

)r − b(s)∣∣∣∣ds
≤ (a+ + b+)l0.

It follows from (3.13) – (3.14) that

x(t) ≥ x(ηn0)−
∫ (n0+1)l0

n0l0

|ẋ(s)|ds

≥ 1
r

ln
[

(K−)r c̄
4b+

]
− (a+ + b+)l0 := ρ2, ∀t ∈ [n0l0, (n0 + 1)l0].

Obviously, ρ2 is a constant independent of n0. So it follows from (3.15) that

x∗ = inf
s∈R

x(s) = inf
n0∈Z

{
min

s∈[n0l0,(n0+1)l0]
x(s)

}
≥ inf
n0∈Z
{ρ2} = ρ2. (3.12)

Set C = |ρ1|+ |ρ2|+1. Clearly, C is independent of λ ∈ (0, 1). Consider the algebraic
equations QNx0 = 0 for x0 ∈ R as follows:

0 = m

[
a(t)

1 +
(
ex0
K(t)

)r − b(t)] =⇒ ex0m(b(s)) = m
[
(a(s)− b(s))Kr(s)

]
.
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So we can easily obtain that

ρ2 ≤
1
r

ln
[

(K−)r c̄
b̄

]
≤ x0 ≤

1
r

ln
[

(K+)r c̄
b̄

]
≤ ρ1.

Then ‖x0‖X < C. Let Ω = {x ∈ X : ‖x‖X < C}, then Ω satisfies conditions (a) and (b)
of Mawhin’s continuous theorem.

Finally, we will show that condition (c) of Mawhin’s continuous theorem is satisfied.
Let us consider the homotopy

H(ι, x) = m

[
a(t)

1− ι+
(
ex

K(t)

)r − b(t)], (ι, x) ∈ [0, 1]× Ω ∩KerL,

From the above discussion it is easy to verify that H(ι, x) 6= 0 on ∂Ω∩KerL, ∀ι ∈ [0, 1].
Further, by H(1, x) = 0(x ∈ R), we obtain

m[a(t)Kr(t)]
erx

− b̄ = 0 =⇒ x =
1
r

ln
m[a(t)Kr(t)]

b̄
∈ Ω.

Then

deg
(
H(1, x),Ω ∩KerL, 0

)
= sign

(
− rm[a(t)Kr(t)]e−rx

)
= −1.

By the invariance property of homotopy, direct calculation produces

deg
(
JQN,Ω ∩KerL, 0

)
= deg

(
H(0, x),Ω ∩KerL, 0

)
= deg

(
H(1, x),Ω ∩KerL, 0

)
= −1,

where deg(·, ·, ·) is the Brouwer degree and J is the identity mapping since ImQ = KerL.
Obviously, all the conditions of Mawhin’s continuous theorem are satisfied. Therefore,
Eq. (2.1) has one almost periodic solution, that is, Eq. (1.1) has at least one positive
almost periodic solution. This completes the proof. �

Corollary 3.1. Assume that (H1) – (H2) hold, suppose further that a, b, K and θ in
Eq. (1.1) are continuous nonnegative periodic functions with periods α, β, σ and δ,
respectively, then Eq. (1.1) has at least one positive almost periodic solution.

Remark 3.1. By Corollary 3.1, it is easy to obtain the existence of at least one positive
almost periodic solution of Eq. (1.2) in Example 1.1, although there is no a priori reason
to expect the existence of positive periodic solutions of Eq. (1.2).

Corollary 3.2. Assume that (H1) – (H2) hold, suppose further that a, b, K and θ in
Eq. (1.1) are continuous nonnegative ω-periodic functions, then Eq. (1.1) has at least one
positive ω-periodic solution.
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4. STABILITY

Theorem 4.1. Assume that (H1)-(H2) hold. Suppose further that

(H3) a(t) > b(t) > 0, ∀t ∈ R.

(H4) r
∫ t
t−θ(t) a(s) ds < 6, ∀t ∈ R.

Then Eq. (1.1) has a unique almost periodic solution, which is globally attractive.

P r o o f . The proof of this theorem is similar to Theorem 3.1 in [23] and we should omit
it. This completes the proof. �

Together with Corollaries 3.1 – 3.2, we obtain

Corollary 4.1. Assume that (H1) – (H4) hold, suppose further that a, b, K and θ
in Eq. (1.1) are continuous nonnegative periodic functions with periods α, β, σ and
δ, respectively, then Eq. (1.1) has a unique positive almost periodic solution, which is
globally attractive.

Corollary 4.2. (Wang [23]) Assume that (H1) – (H4) hold, suppose further that a, b,
K and θ in Eq. (1.1) are continuous nonnegative ω-periodic functions, then Eq. (1.1) has
a unique positive ω-periodic solution, which is globally attractive.

5. THREE EXAMPLES

Example 5.1. Consider the following fishing model:

ẋ(t) = x(t)

 2| cos(
√

3t)|

1 +
[

x(t−1)

2+sin(
√

3t)

]0.5 − | cos(
√

7t)|

 . (5.1)

Then Eq. (5.1) has at least one positive almost periodic solution.

P r o o f . Corresponding to Eq. (1.1), we have ā = m[2| cos(
√

3t)|] = 4
π and

b̄ = m[| cos(
√

7t)|] = 2
π . So, (H1)-(H2) in Theorem 3.1 hold. By Theorem 3.1, Eq. (5.1)

has at least one positive almost periodic solution (see Figure 1). This completes the
proof. �
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2.4

2.6

time t

x(
t)

Fig. 1. State variable x of Eq. (5.1).

Remark 5.1. In Eq. (5.1), | cos(
√

3t)| is
√

3π
3 -periodic function and | cos(

√
7t)| is

√
7π
7 -

periodic function. So Eq. (5.1) is with incommensurable periods. Through all the coeffi-
cients of Eq. (5.1) are periodic functions, the positive periodic solutions of Eq. (5.1) could
not possibly exist. However, by Theorem 3.1, the positive almost periodic solutions of
Eq. (5.1) exactly exist.

Example 5.2. Consider the following fishing model:

ẋ(t) = x(t)

 4 + cos(
√

3t)

1 +
[

x(t−1)

2+sin(
√

3t)

]0.5 − 2− cos(
√

7t)

 . (5.2)

Then Eq. (5.2) has a unique positive almost periodic solution, which is globally attrac-
tive.

P r o o f . Obviously, (H1) – (H4) in Theorem 4.1 hold. By Theorem 4.1, Eq. (5.2) has a
unique positive almost periodic solution, which is globally attractive (see Figures 2 – 3).
This completes the proof. �
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Fig. 2. State variable x of Eq. (5.2)
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Fig. 3. Stability of state variable x of Eq. (5.2).

Example 5.3. Consider the following almost periodic fishing model:

ẋ(t) = x(t)

8 + cos(
√

2t) + cos(
√

3t)

2 + 2
[

x(t−0.5)

2+sin(
√

3t)

]0.5 − 2− cos(
√

7t)

 . (5.3)

In system (5.3), cos(
√

2t) + cos(
√

3t) is almost periodic, which is not periodic. Similar
to the argument as that in Example 5.2, it is easy to obtain that system (5.3) has a
unique positive almost periodic solution, which is globally attractive (see Figures 4 – 5).
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Fig. 4. State variable x of Eq. (5.3)
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Fig. 5. Stability of state variable x of Eq. (5.3).

6. DISCUSSION

In [16, 28, 29, 32], the authors studied the existence of positive almost periodic solutions
of some discrete population models (such as fishing model, predator-prey model and
mutualism model) by using the Lyapunov functional method. By a similar method in [16,
28, 29, 32], the authors [31] studied the existence of positive almost periodic solutions of
continuous Schoener’s competition model. In [21, 26], the multiplicity of positive almost
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periodic solutions are obtained for some continuous population models with harvesting
terms by using Mawhin’s continuation theorem. But for the continuous fishing model
(1.1), there are scarcely any papers concerning with the existence of positive almost
periodic solutions. Therefore, in this paper, some criterions for the existence and stability
of positive almost periodic solution of a kind of fishing model with delay are obtained
by using some analytical techniques, modified inequalities and Mawhin’s continuation
theorem of coincidence degree theory.

Theorem 3.1 (i. e., (H1) – (H2)) indicates that model (1.1) must contain a positive
almost periodic oscillation if the per-capita fecundity rate (i. e., a(t)) is greater than the
per-capita mortality rate (i. e., b(t)). Theorem 4.1 indicates that the maturation time
delay (i. e., θ(t)) is harm for the stability of the model. The method used in this paper
provides a possible method to study the existence and global attractivity of positive
almost periodic solution of the models in biological populations.
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