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1. Introduction

Let R be a commutative Noetherian ring and M an R-module. There is a natural

map µM : R→ HomR(M,M) of R to the endomorphism ring of M that maps r ∈ R

to multiplication by r on M . First and foremost, note that µM is a homomorphism

of R-algebras. In general, it is neither injective nor surjective.

Let a ⊂ R denote an ideal of R and let Hi
a(M) denote the ith local cohomology

module ofM with respect to a, where i is an integer. We refer to [1] for the definitions

and basic results about local cohomology. For the local cohomology module Hd−1
a (R)

with d = dimR, we try to examine the injectivity of µHd−1

a (R). To be more precise,

one has the injection

R

AnnR(H
d−1
a (R))

→֒ HomR(H
d−1
a (R), Hd−1

a (R)).

It is interesting to see when does the injectivity of µHd−1

a (R) occur? One way to

consider this question is to examine AnnR(H
d−1
a (R)).
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From the other point of view and in the light of [12], Theorem 2.9, vanishing of the

local cohomology modules Hi
a(R) for i = d, d−1 paves the ground for connectedness

results. The vanishing of Hd
a (R) is well understood by the Hartshorne-Lichtenbaum

vanishing theorem. However, the vanishing of Hd−1
a (R) is still mysterious. In this

direction, we consider the question whether non-vanishing of Hd−1
a (R) is equivalent

to the vanishing of its annihilator. This kind of consideration is the aim of the

present paper.

In the case of (R,m) being a regular local ring containing a field andHi
a(R) 6= 0 for

a given integer i, then in characteristic zero Lyubeznik, see [14], and in characteristic

p > 0 Huneke and Koh in [11] showed that AnnR(H
i
a(R)) = 0.

There were many attempts to compute AnnR(H
i
a(R)) with some affirmative an-

swers collected below:

(1-1) If a is an ideal of a local complete ring R with Hi
a(R) = 0 for every i 6= ht(a),

height of a, then AnnR(H
ht(a)
a (R)) = 0 (see [9]).

(1-2) If R is a complete Gorenstein local domain, then under some mild assumptions

AnnR(H
i
I(R)) = 0, where i = grade(a, R) (see [15]).

(1-3) If a is an arbitrary ideal in a complete local ring, then

AnnR(H
dimR
a (R)) =

⋂

q,

where the intersection is taken over all primary components of (0) such that

dim(R/q) = dimR and rad(a + q) = m (see [5] or [13]).

In continuation of the above attempts, we prove Proposition 2.1.

Recall that the cohomological dimension of an ideal a, denoted by cd(a, R), is

defined as

cd(a, R) = sup{i ∈ Z : Hi
a(R) 6= 0}.

In the light of (1-1), the equality ht(a) = cd(a, R) is vital for the vanishing of the

annihilator of the local cohomology modules H
ht(a)
a (R), whenever R is a complete

local ring. In Section 3, we consider conditions for the mentioned equality. Among

other results in Section 3, see Theorem 3.1 and Theorem 3.2.

2. Results

Throughout, R is a d-dimensional ring and a is an ideal of R. Assume that

Hi
a(R) 6= 0 for some i ∈ Z. We examine the annihilator of these local cohomology

modules when its Artinian structure fails.

Proposition 2.1. Let (R,m) be a local domain. Suppose Hd
a (R) = 0 and

Hd−1
a (R) is not Artinian. Then AnnR(H

d−1
a (R)) = 0.
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P r o o f. On the contrary, assume thatAnnR(H
d−1
a (R)) 6= 0, i.e. there is a nonzero

element 0 6= r ∈ AnnR(H
d−1
a (R)). As r is a nonzero divisor of R so it implies the

short exact sequence

(2.1) 0 −→ R
r
−→ R −→

R

Rr
−→ 0.

ApplyingHi
a(−) to the short exact sequence (2.1) and thinking of the fact that, by [1],

Lemma 8.1.7, Hd−1
a (−) is a right exact functor, we obtain the following isomorphism

of R-modules

Hd−1
a (R) ∼= Hd−1

a

( R

Rr

)

,

where, by [1], Theorem 7.1.6, the latter module is Artinian as dimR/Rr = d − 1.

This contradicts our assumption that Hd−1
a (R) is not Artinian. �

Recall that the arithmetic rank of the ideal a, denoted by ara(a), is the least

number of elements of R required to generate an ideal whose radical is rad(a). Thus

ara(a) equals to the integer

ara(a) = inf{i ∈ N0 : ∃ a1, . . . , ai ∈ R such that rad(a1, . . . , ai) = rad(a)}.

Example 2.1. Let k be a field. Put R = A/J , where A = k[x, y][|u, v|] is the

formal power series ring in two variables over a polynomial ring in two variables and

J = (xu+yv). Then, by [2], Proposition 2.2.4, R is a non-regular 3-dimensional local

complete domain. Put a = (u, v). Since ara(a) = 2 hence, by [1], Corollary 3.3.3,

we have Hi
a(R) = 0 for all i > 3. Also, by [6], Section 3, we see that H2

a(R)

has a submodule isomorphic to the direct sum of infinitely many copies of k. Hence,

H2
a(R) is not Artinian and so, by Proposition 2.1, we deduce that AnnR(H

2
a(R)) = 0.

By Proposition 2.1, non-Artinianness of Hd−1
a (R) leads to the vanishing of

AnnR(H
d−1
a (R)). In the sequel, we give conditions under which Hd−1

a (R) is not

an Artinian R-module. Recall that by grade(a, R) we mean the maximal length of

an R-regular sequence in a.

Proposition 2.2. Let (R,m) be a Cohen-Macaulay local ring and a a one-

dimensional ideal. Then Hd−1
a (R) is not Artinian. In particular, if the ideal a is

generated by an R-regular sequence of length d− 1, then AnnR(H
d−1
a (R)) = 0.

P r o o f. Since a is a one-dimensional ideal, there exists an element y ∈ m\ a such

that rad(a + Ry) = m. Now, by [1], Proposition 8.1.2, we have the following long

exact sequence:

. . . −→ Hd−1
a+Ry(R) −→ Hd−1

a (R) −→ (Hd−1
a (R))y −→ Hd

a+Ry(R) −→ . . . .
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As R is Cohen-Macaulay, by [1], Theorem 6.2.7, and Grothendieck’s vanishing the-

orem (see [1], Theorem 6.1.2,) we have the following short exact sequence:

(2.2) 0 −→ Hd−1
a (R) −→ (Hd−1

a (R))y −→ Hd
m(R) −→ 0.

By [1], Corollary 2.2.21, we have H0
Ry(H

d−1
a (R)) = 0 and H1

Ry(H
d−1
a (R)) = Hd

m(R).

Thinking of the fact that over a local ring (R,m) an Artinian R-module M is m-

torsion, i.e. H0
m(M) = M , in case that Hd−1

a (R) is Artinian, from the short exact

sequence (2.2) we deduce that Hd
m(R) = 0, which contradicts Grothendieck’s non-

vanishing theorem (see [1], Theorem 6.1.4).

In case that the ideal a is generated by an R-regular sequence of length d − 1,

then dim(R/a) = 1 and so by what we have proved earlier Hd−1
a (R) is not Artinian.

Now, by [1], Theorem 3.3.1, we have Hi
a(R) = 0 for all i > d − 1 and so the result

follows by Proposition 2.1, as desired. �

Proposition 2.3. Let a be a one-dimensional ideal of a d-dimensional complete

local domain (R,m). If rad(a) is not a prime ideal, then there is an epimorphism

Hd−1
a (R) −→ Hd

m(R) −→ 0. In particular, AnnR(H
d−1
a (R)) = 0.

P r o o f. Put rad(a) = p1∩ . . .∩ pn, where the pi are distinct minimal prime ideals

of a for i = 1, . . . , n. As rad(a) is not prime, so none of the pi is an m-primary ideal.

Since a is a one-dimensional ideal of R, there exists an integer t ∈ {1, . . . , n} such

that rad
(

pt +
n
⋂

j=1,j 6=t

pj

)

= m.

Set a1 := pt and a2 :=
n
⋂

j=1,j 6=t

pj. By Mayer-Vietoris sequence we have the long

exact sequence

(2.3) . . . −→ Hd−1
a1∩ a2

(R) −→ Hd
a1+a2

(R) −→ Hd
a1
(R)⊕Hd

a2
(R) −→ . . . .

As R is a complete local domain, hence by Hartshorne-Lichtenbaum vanishing theo-

rem (see [1], Theorem 8.2.1) we conclude that Hd
a1
(R) = 0 = Hd

a2
(R), which in turn,

due to the long exact sequence (2.3), implies the epimorphism

(2.4) Hd−1
a (R) −→ Hd

m(R) −→ 0.

Now, by [5], Theorem 4.2 (i), we have AnnR(H
d
m(R)) = 0, wherefrom by using the

epimorphism (2.4), it is concluded that AnnR(H
d−1
a (R)) = 0, and we are done. �
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3. Buchsbaum type modules

Let (R,m) be a local ring. A Noetherian R-module M is called a Buchsbaum

module if every system of parameters of M is a weak M -sequence (cf. [17]). Note

that every Cohen-Macaulay module is Buchsbaum (see [2], Theorem 2.1.2 (d)). By

a result of Stückrad-Vogel (cf. [17], Corollary 2.4) if M is a Buchsbaum module then

mHi
m(M) = 0 for all i < dimM . This implies that muHi

m(M) = 0 for all i < dimM

and for some integer u, which is equivalent to saying that m ⊆ rad(AnnR(H
i
m(M)))

for all i < dimM . Note that D(M), for an R-module M , stands for its Matlis dual,

i.e. D(M) = HomR(M,E(R/m)).

Proposition 3.1. Let (R,m) be a Gorenstein local ring andM a finitely generated

faithful R-module. Suppose that i and t are positive integers. Then the following

statements are equivalent:

(1) muHi
m(M) = 0 for all i < t and for some integer u.

(2) SuppR(H
i−dim(R/p)
p (M)) ⊂ {m} for all p ∈ Spec(R) \ {m} and all i < t.

P r o o f. Assume that there exists a natural integer u such that for all integers

i < t we have muHi
m(M) = 0, i.e. mu ⊆ AnnR(H

i
m(M)) for all i < t. Now,

by Grothendieck’s local duality theorem (see [1], Theorem 11.2.5 and Remark

10.2.2 (ii)), we havemu⊆AnnR(H
i
m(M)) if and only if mu⊆AnnR(Ext

dimR−i
R (M,R))

if and only if (ExtdimR−i
R (M,R))p = 0 for all p 6= m if and only if H

i−dim(R/p)
pRp

(Mp) =

0 for all p 6= m and all i < t. �

Proposition 3.2. Let (R,m) be a regular local ring containing a field and let

a be an ideal of R. Suppose that i and t are positive integers. Then the following

statements are equivalent:

(1) muHi
a(R) = 0 for all i < t and for some integer u.

(2) Hi
a(R) = 0 for all i < t.

P r o o f. Suppose the contrary and assume that there exists an integer i < t such

that Hi
a(R) 6= 0. Fix this i. By [7], page 407, Hi

a(R) is not finitely generated,

hence [1], Proposition 9.1.2, implies that auHi
a(R) 6= 0 for all u ∈ N. It follows that

muHi
a(R) 6= 0 for all u ∈ N, which contradicts our assumption. �

Proposition 3.3. Let (R,m) be a Gorenstein local ring and a an ideal of R.

Suppose that t is an integer. Then the following statements are equivalent:

(1) auHi
a(R) = 0 for all i > t and for some integer u.

(2) Hi
a(R) = 0 for all i > t.
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P r o o f. Suppose that there exist natural integers u and t such that for all integers

i > t we have auHi
a(R) = 0. As mentioned above, by [1], Remark 10.2.2 (ii), we

have AnnR(H
i
a(R)) = AnnR(D(Hi

a(R))), which, by [16], Remark 3.6, is equivalent

to saying that au ⊆ AnnR(D(Hi
a(R))) = AnnR(lim←−n

Hi
m(R/an)) for all i > t and for

some integer u. It follows from [4], Theorem 1.1, that the latter is equivalent to the

vanishing of Hi
a(R) for all i > t. �

3.1. One non-vanishing spot. Suppose that R is a ring and let a be an ideal

of R. It is well known that ht(a) 6 cd(a, R). In case that the equality holds, a is

said to be a cohomologically complete intersection ideal. Hellus and Stückrad in [9],

Corollary 2.4, have shown that AnnR(H
c
a(R)) = 0, whenever c = ht(a) = cd(a, R)

and (R,m) is a complete local ring. In what follows we are going to concentrate on

this kind of ideals and give some characterizations of them.

Proposition 3.4. Let (R,m) be a Gorenstein local ring and a an ideal of R. Sup-

pose that R/an is a Cohen-Macaulay ring for all n > 1. Then a is a cohomologically

complete intersection ideal.

P r o o f. Since R/an is a Cohen-Macaulay ring for all n > 1, by [1], Theorem 6.2.7,

Hi
m(R/an) = 0 for all i < dim(R/a). So, it follows that lim

←−l
Hi

m(R/al) = 0 for all

integers i < dim(R/a). Hence, by [16], Remark 3.6, we have Hj
a(R) = 0 for all

j > ht(a), i.e. a is a cohomologically complete intersection. �

Theorem 3.1. Let a be an ideal of a local ring R, M a finite R-module, and

suppose that there exists an integer t such that a ⊆ rad(AnnR(H
i
a(M))) for all i > t.

Then Hi
a(M) = 0 for all i > t.

P r o o f. The theorem will be proved by induction on n := dimM . In case that

d = 0 it is easily seen thatM is an Artinian R-module and so a-torsion. Now, by [1],

Corollary 2.1.7 (i), we deduce that Hi
a(M) = 0 for all i > 0. Now assume that n > 0,

a ⊆ rad(AnnR(H
i
a(M))) for all i > t and the claim is true for all i = t+ 2, t+ 3, . . . .

We want to show that Ht+1
a (M) = 0.

By [1], Corollary 2.1.3 (ii) and Corollary 2.1.7 (iii), we may assume that a contains

an M -regular element r and so dim(M/rM) = dimM − 1.

On the other hand, as a ⊆ rad(AnnR(H
t+1
a (M))), there exists an integer u such

that ruHt+1
a (M) = 0. Now, from the short exact sequence

0 −→M
ru

−→M −→
M

ruM
−→ 0,
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we get the following long exact sequence:

(3.1) . . . −→ Ht+1
a (M)

ru
−→ Ht+1

a (M) −→ Ht+1
a

( M

ruM

)

−→ Ht+2
a (M) −→ . . . .

By [1], Lemma 9.1.1, a ⊆ rad(AnnR(H
t+1
a (M/ruM))), so our induction hypothesis

implies that Ht+1
a (M/ruM) = 0. Hence, the long exact sequence (3.1) implies that

Ht+1
a (M) = 0, as desired. �

Recall that an R-module M is said to be a-cofinite if Supp(M) ⊂ V (a) and

ExtiR(R/a,M) is finitely generated for every i ∈ N0.

Corollary 3.1. Let (R,m) be a local ring and a an ideal. Then:

(1) If a ⊆ rad(AnnR(H
i
a(M))) for all i > ht(a), then a is a cohomologically complete

intersection ideal.

(2) If R is a Cohen-Macaulay ring and a ⊆ rad(AnnR(H
i
a(R))) for all i > ht(a)

then dimR(H
i
a(R)) 6 injdimR(H

i
a(R)) and Hi

a(R) is a-cofinite for every i ∈ N.

P r o o f. Part (1) is an immediate consequence of Theorem 3.1 and the fact that

ht(a) 6 cd(a, R). Part (2) is clear by Theorem 3.1 and [8], Corollary 2.4. �

Now, we are going to examine perfect ideals. Recall that an ideal a is said to be

perfect if grade(a, R) equals the projective dimension of R/a.

Remark 3.1. Note that, by [2], Theorem 2.1.5, over a Cohen-Macaulay ring S

(not necessarily local) perfectness of an ideal b of finite projective dimension implies

that S/b is Cohen-Macaulay. Therefore, by [2], Theorem 2.2.7, we conclude that if R

is a regular local ring, then a is a perfect ideal if and only if R/a is Cohen-Macaulay.

In particular, if (R,m) is a regular local ring and a is generated by an R-regular

sequence (e.g., a could be generated by part of a regular system of parameters of R)

then by [2], Exercise 1.4.27, for any natural integer n, an is perfect. Therefore, by

Proposition 3.4, we see that an is a cohomologically complete intersection ideal.

Theorem 3.2. Let R = k[x1, . . . , xn] be a polynomial ring in n variables

x1, . . . , xn over a field k and let a be a square free monomial ideal which is a perfect

ideal. Then a is a cohomologically complete intersection ideal.

P r o o f. Let ϕ : R → R be the k-linear endomorphism with ϕ(xi) = x2
i for 1 6

i 6 n. Then it is clear that ϕj(a) ⊆ a2 for j > 0, and ϕ0 = idR. It follows from the

definition of ϕ that ϕr(a) ⊆ ϕs(a) for all r > s. We claim that {ϕn(a)R} and {an}

are cofinal.
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P r o o f of the claim. (1) Let n be an arbitrary positive integer. In case n = 2k,

k ∈ Z, we have

an = (a2)k ⊇ (ϕl(a)R)k = ϕlk(a)R

for some l ∈ Z. Similarly, the case n = 2k + 1 is verified.

(2) Let m be an arbitrary positive integer. As a is a square-free monomial ideal,

there exists an integer s such that as ⊆ ϕ(a)R. So, by iteration we get the claim. �

Now, by [18], Lemma 2.1, we conclude that ht(a) = cd(a, R), i.e. a is a cohomo-

logically complete intersection ideal. �

Example 3.1. Let k be a field of characteristic 0, (xij) an m × n matrix of

indeterminates over k, and R = k[xij ]. If a is the ideal generated by the t-minors

of the matrix (xij) then by [10], Corollary 4, for t 6 min{m,n} we deduce that a

is a perfect ideal and ht(a) = (m − t + 1)(n − t + 1). However, by [3], we have

cd(a, R) = mn − t2 + 1. Then, in case that m = n = t or t = 1, the equality

ht(a) = cd(a, R) holds.
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